
Google PageRank with Stochastic Matrix

Md. Shariq

Puranjit Sanyal

Samik Mitra

M.Sc. Applications of Mathematics (I Year)

Chennai Mathematical Institute

1

PROJECT PROPOSAL

Group Members: Md Shariq, Samik Mitra, Puranjit Sanyal
Title: Google Page Rank using Markov Chains.

Introduction
Whenever we need to know about something the first thing that comes

to our mind is Google! Its obvious for a mathematics student to wonder how
the pages are ordered after a search. We look at how the pages were ranked
by an algorithm developed by Larry Page(Stanford University) and Sergey
Brin(Stanford University) in 1998.

In this project we consider a finite number of pages and try to rank them.
Once a term is searched, the pages containing the term are ordered according
to the ranks.
Motivation

We have many search engines, but Google has been the leader for a long
time now. Its strange how it uses Markov Chains and methods from Linear
Algebra in ranking the pages.
Project Details

We try to answer how the pages are ranked. We encounter a Stochastic
Matrix for which we need to find the eigen vector corresponding to the eigen
value 1, and for this we use QR method for solving eigen values and eigen
vectors. This can also be achieved by taking the powers of the matrix ob-
tained. And we analyze these two methods. Scilab will be extensively used
througout.

In the process we might face hurdles like, if we view calculating eigen
vector as solving the linear system, the matrix we arrive at might not be
invertible, and hence Gaussian elimination cannot be applied. Even in cal-
culation of eigen vectors the complexity is quite high.

References

• Ciarlet, Philippe G. 1989, Introduction to Numerical Linear Alge-
bra and Optimisation, First Edition, University Press, Cambridge.

• Markov Chain,
<http://en.wikipedia.org/wiki/Markov chain>

• Examples of Markov Chains,
<http://en.wikipedia.org/wiki/Examples of Markov chains>

2

Progress Report I

In order to explore the application of Markov Chain in deciding the page
rank, we went through Markov Chains initially.

Definition: Markov Chain is a random process described by a physical sys-
tem which at any given time t = 1, 2, 3, occupies one of a finite no of
states. At each time t the system moves from state i to state j with prob-
ability pij that does not depend on time t. The quantities pij are called
transition probabilities ie., the next state of the system depends only on the
current state and not on any prior states.

A transition Matrix T of a Markov Chain is an n × n matrix (where n
represents the no. of states of the system) and the corresponding entries tij’s
are the transition probabilities (0 ≤ tij ≤ 1 for all i, j = 1, 2, , n)

The state, the system currently in, is represented by the n × 1 matrix:
qk = (q1, q2, . . . , qn)′ called the state vector. The initial state of the system is
called initial state vector.

If the information of the initial state of the system is not known,but the
probability of it being in a certain state is, we use an initial probability vector
q, where

1. 0 ≤ qi ≤ 1

2. q1 + q2 + ...+ qn = 1

since the system must be any one of the n states at any given time .

Given an initial probability vector, the kth step probability vector is

qk =


q1
q2
...
qn

 where qi
k is the probability of being in state i after k steps.

When dealing with Markov Chains we often are interested in what is hap-
pening to the system in the long run or as k −→ ∞.As k −→ ∞, qk will
approach a limiting vector s called a steady state vector .

A matrix A is regular when for some positive k all entries Ak are all pos-
itive. It can be shown that if the transition matrix is regular then it has a

3

steady state vector. It can also be shown steady state vector is the eigen
vector of the transition matrix corresponding to the eigen value 1.

After describing what Markov Chains are the next question which arises
immediately is how this can be used by Google in assigning page ranks.

The importance of a page is decided by the no. of links to and from that
page. The relative importance of a page is determined by the no. of inlinks
to that page and moreover inlinks from more important pages bear more
weight than that from less important pages. Also this weight is distributed
proportionately if a particular page carries multiple outlinks.

Page Rank is formally defined by where ri =
∑
j∈li

rj
|Oj|

where ri denotes

the rank of the page j, li the set of pages that have inlinks to i and |Oj| is the
no. of pages that have outlinks from page j. An initial rank of ri(0) = 1/n
where n is the total no of pages on the web . The Page rank iterates the

ri
k+1 =

∑
j∈li

rj
k

|Oj|
for k=0,1,2,.. and ri

k is the Page rank of page i at the kth

iteration. The whole process can be represented by using matrices if qk be
the page rank vector at the kth iteration then qk+1 = T.qk where T is the
transition matrix.

If the no of outlinks from page i be Oi and it is equally likely that any
outlink can be chosen then

tij =


1

|Oj|
if there is a link from i to j

0 otherwise

Henceforth, all of the above mentioned facts can be clearly explained by
creating a finite node sample web where we will imagine the world wide web
to be a directed graph i.e. a finite set of nodes and a set of ordered pairs of
nodes representing directed edges between nodes. Each web page is a node
and each hyperlink is a directed edge.

The difficulty which may arise is that a particular page may have no
outlinks at all and so the corresponding row of the transition will have all
entries as 0. Also, it is not guaranteed that the Markov model corresponding
to every stochastic matrix will converge. In coming days we would explore
how to circumnavigate these problems.

4

Progress Report II

Following concepts have been defined, which would be relevant in the build
up:

1. discrete time Markov chain

2. column-stochastic matrix

3. essential and inessential states

4. irreducible stochastic matrix

5. irreducible Markov chain

6. spectral radius of a matrix

7. ∞− norm of a vector and a matrix

8. period of a state in a Markov chain

9. aperiodicity of a Markov chain

10. steady-state distribution

In building the theory to obtain a PageRank, following were defined

1. hyperlink matrix

2. dangling node

3. Google matrix

Also proofs of the following have been provided:

1. A stochastic matrix P always has 1 as one of its eigenvalues.

2. If P is a n× n column-stochastic matrix, then ‖P‖ = 1.

3. If P is a column-stochastic matrix, then ρ(P) = 1.

4. (Theorem:(Perron, 1907; Frobenius, 1912)): If P is a column-stochastic
matrix and P be irreducible, in the sense that pij > 0 ∀ i, j ∈
S, then 1 is a simple eigenvalue of P . Moreover, the unique eigen-
vector can be chosen to be the probability vector w which satisfies
lim
t→∞

P (t) = [w,w, . . . ,w]. Furthermore, for any probability vector q we

have lim
t→∞

P (t)q = w.

5

Then, we considered web pages as the states of a Markov chain and the
corresponding stochastic matrix was defined to be hyperlink matrix. In a
step by step process, a counter example was shown, where the matrix cannot
provide a reasonable estimate of PageRank and hence it was modified to a
better one.

Finally we arrived at the Google matrix, which satisfies the conditions
of the Perron-Frobenious theorem (proof given), and its eigenvector corre-
sponding to the eigenvalue 1 gives us the PageRank.

Power method for calculating the eigenvector was used, since we need
eigenvector corresponding to eigenvalue 1, which is the spectral radius. And
then a python code is built to calculate the eigenvector (doing upto 100 it-
erations, which is believed to be sufficient!).

Things yet to be done:

1. organizing the document.

2. making a beamer presentation of it.

3. mentioning the references.

4. (if possible) including the proofs of statements made, but not proved.

6

Google PageRank with Stochastic Matrix

Md. Shariq, Puranjit Sanyal, Samik Mitra
(M.Sc. Applications of Mathematics)

November 15, 2012

Discrete Time Markov Chain

Let S be a countable set (usually S is a subset of Z or Zd or R or Rd). Let
{X0, X1, X2, . . .} be a sequence of random variables on a probability space
taking values in S. Then {Xn : n = 0, 1, 2, . . .} is called a Markov Chain
with state space S if for any n ∈ Z≥0, any j0, j1, . . . , jn−1 ∈ S, any i, j ∈ S
one has

Pr(Xn+1 = i | X0 = j0, X1 = j1, . . . , Xn = j) = Pr(Xn+1 = i | Xn = j).

In addition, if Pr(Xn+1 = i | Xn = j) = Pr(X1 = i | X0 = j) ∀ i, j ∈ S and
n ∈ Z≥0 then we say {Xn : n ∈ Z≥0} is a time homogeneous Markov Chain.

Notation: We denote time homogeneous Markov Chain by MC.
Note: The set S is called state space and its elements are called states.

Column-Stochastic Matrix

A column-stochastic matrix (or column-transition probability matrix) is
a square matrix P = ((pij))i,j∈S (where S may be a finite or countably infinite
set) satisfying:

(i) pij ≥ 0 for any i, j ∈ S

(ii)
∑
i∈S

pij = 1 for any j ∈ S

Similarly, row-stochastic matrix can be defined considering
∑
j∈S

pij = 1 for

any i ∈ S.

7

Consider the MC, {Xn : n ∈ S} on the state space S. Let

pij = Pr(X1 = i | X0 = j) ∀ i, j ∈ S.

Then P = ((pij))i,j∈S is the column-stochastic matrix. We call P as the
stochastic matrix of MC, {Xn : n ∈ S}.

Lemma: If A is a n× n matrix whose rows(or columns) are linearly depen-
dent, then det(A) = 0.

Proof:
Let r1, r2, . . . , rn be the rows of A.
Given, r1, r2, . . . , rn are dependent, hence

∃ α1, α2, . . . , αn �
n∏
i=1

αi 6= 0 and
n∑
i=1

αiri = 0

Consider a matrix A′ with rows as


α1r1
α2r2

...
αnrn

.

Now, det(A′) = det(A)
n∏
i=1

αi.

det(A′) =

∣∣∣∣∣∣∣∣∣
α1r1
α2r2

...
αnrn

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣

n∑
i=1

αiri

α2r2
...

αnrn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
0

α2r2
...

αnrn

∣∣∣∣∣∣∣∣∣
∴ det(A′) = 0 and hence det(A) = 0 (∵

n∏
i=1

αi 6= 0). �

Theorem: A stochastic matrix P always has 1 as one of its eigenvalues.

Proof:
Let S = {1, 2, . . . , n} and P = ((pij))1≤i,j≤n.
Consider the identity matrix In,

In = ((δij))1≤i,j≤n where δij is Kronecker delta.

n∑
i=1

pij = 1 and
n∑
i=1

δij = 1

8

n∑
i=1

(pij − Iij) = 0 ∀ 1 ≤ j ≤ n

Consequently, the rows of P − In are not linearly independent and hence
det(P − In) = 0 (by the above lemma). ∴ P has 1 as its eigenvalue. �

Definition: P (n) = ((p
(n)
ij))

i,j∈S where p
(n)
ij = Pr(Xn = i | X0 = j) , i, j ∈ S.

A little work and we can see that P (n) = P n ∀ n ∈ Z≥1.
Also P (n) is a column-stochastic matrix as∑

i∈S

Pr(Xn = i | X0 = j) = 1

Classification of states of a Markov Chain

Definition 1: j −→ i (read as i is accessible from j or the process can go from
j to i) if pij

(n) > 0 for some n ∈ Z≥1.
Note: j −→ i⇐⇒ ∃ n ∈ Z≥1 and j = j0, j1, j2, . . . , jn−1 ∈ S such that
pjj1 > 0, pj1j2 > 0, pj2j3 > 0, . . . , pjn−2jn−1 > 0, pjn−1i > 0.

Definition 2: i←→ j (read as i and j communicate) if i −→ j and j −→ i.

Essential and Inessential States
i is an essential state if ∀ j ∈ S � i −→ j, then j −→ i (ie., if any state j is
accessible from i, then i is accessible from j).
States that are not essential are called inessential states.

Let ξ be set of all essential states.
For i ∈ ξ, let ξ(i) = {j : i −→ j} where ξ(i) is the essential class of i. Then
ξ(i0) = ξ(j0) iff j0 ∈ ξ(i0) (ie., ξ(i)

⋂
ξ(k) = φ iff k /∈ ξ(i)).

Definition: A stochastic matrix P having one essential class and no inessential
states (ie., S = ξ = ξ(i) ∀ i ∈ S) is called irreducible, and the corresponding
MC is called irreducible.

Let A be a n× n matrix.

• The spectral radius of a n× n matrix, ρ(A) is defined as

ρ(A) = max
1≤i≤n

{ |λi| : λi is an eigenvalue of A}

9

• ∞− norm of a vector x is defined as ‖x‖∞ = max
1≤i≤n

|xi|

• ∞ − norm of a matrix A is defined as ‖A‖∞ = max
1≤i≤n

(
n∑

j=1

|aij|).

• Also ‖A‖2 =
√
ρ(A∗A) =

√
ρ(AA∗) = ‖A∗‖2.

• If V is a finite dimensional vector space, then all norms on V are equivalent.

∴ ‖A‖∞ = ‖A‖2 = ‖A∗‖2 = ‖A∗‖∞

Lemma: If P is a n× n column-stochastic matrix, then ‖P‖ = 1.

Proof:

If P is column-stochastic, then P ′ is row-stochastic (ie.,
n∑
i=1

pji = 1).

We know that

‖P ′‖∞ = max
1≤j≤n

(
n∑
i=1

|pij|)

∵ P ′ is stochastic

‖P ′‖∞ = max
1≤j≤n

(
n∑
i=1

pij)

‖P ′‖∞ = max
1≤j≤n

1

‖P ′‖∞ = 1

‖P‖∞ = 1

Also we know that if V is any finite dimensional vector space, then all norms
on V are equivalent. ∴ ‖P‖ = 1 �

Theorem: If P is a stochastic matrix, then ρ(P) = 1.

Proof:
Let λi be an eigenvalue of P ∀ 1 ≤ i ≤ n.
Then it is also an eigenvalue for P ′.
Let xi be an eigenvector corresponding to the eigenvalue λi of P ′.

P ′xi = λixi

‖λixi‖ = |λi|‖xi‖ = ‖P ′xi‖ ≤ ‖P ′‖‖xi‖

10

⇒ |λi|‖xi‖ ≤ ‖xi‖

⇒ |λi| ≤ 1

Also we have proved that 1 is always an eigenvalue of P , hence ρ(P) = 1. �

Definition: Let i ∈ ξ. Let A = {n ≥ 1 : p
(n)
ii > 0}. A 6= φ and the greatest

common divisor(gcd) of A is called the period of state i.

If i←→ j , then i and j have same period. In particular, period is constant
on each equivalence class of essential states. If a MC is irreducible, then we
can define period for the corresponding stochastic matrix since all the sates
are essential.

Definition: Let d be the period of the irreducible Markov chain. The Markov
chain is called aperiodic if d = 1.

• If q = (q1, q2, . . . , qn)′ is a probability distribution for the states of the

Markov chain at a given iterate with qi ≥ 0 and
n∑
i=1

qi = 1, then

Pq = (
n∑
j=1

P1jqj,
n∑
j=1

P2jqj, . . . ,
n∑
j=1

Pnjqj)
′

is again a probability distribution for the states at the next iterate.

• A probability distribution w is said to be a steady-state distribution if it is
invariant under the transition, i.e. Pw = w. Such a distribution must be an
eigenvector of P corresponding to the eigenvalue 1.

The existence as well as the uniqueness of the steady-state distribution is
guaranteed for a class of Markov chains by the following theorem due to Per-
ron and Frobenius.

Theorem:(Perron, 1907; Frobenius, 1912) If P is a stochastic matrix
and P be irreducible, in the sense that pij > 0 ∀ i, j ∈ S, then 1 is a simple
eigenvalue of P . Moreover, the unique eigenvector can be chosen to be the
probability vector w which satisfies lim

t→∞
P (t) = [w,w, . . . ,w]. Furthermore,

for any probability vector q we have lim
t→∞

P (t)q = w.

11

Proof:
Claim: lim

t→∞
p
(t)
ij = wi

Proof:
∵ P = ((pij))i,j∈S � pij > 0 ∀ i, j ∈ S we have, δ = min

i,j∈S
pij > 0

(P (t+1))ij = (P (t)P)ij

p
(t+1)
ij =

∑
k∈S

p
(t)
ik pkj

Let m
(t)
i = min

j∈S
p
(t)
ij and M

(t)
i = max

j∈S
p
(t)
ij

0 < m
(t)
i ≤M

(t)
i < 1

Now,

m
(t+1)
i = min

j∈S

∑
k∈S

p
(t)
ik pkj ≥ m

(t)
i

∑
k∈S

pkj = m
(t)
i

∴ the sequence (m
(t)
i) is non-decreasing.

Also,

M
(t+1)
i = max

j∈S

∑
k∈S

p
(t)
ik pkj ≤M

(t)
i

∑
k∈S

pkj = M
(t)
i

∴ the sequence (M
(t)
i) is non-increasing.

Hence, lim
t→∞

m
(t)
i = mi ≤Mi = lim

t→∞
M

(t)
i exist.

We now try to prove that mi = Mi.

Consider M
(t+1)
i −m(t+1)

i

= max
j∈S

∑
k∈S

p
(t)
ik pkj −min

l∈S

∑
k∈S

p
(t)
ik pkl

= max
j,l∈S

∑
k∈S

p
(t)
ik (pkj − pkl)

= max
j,l∈S

[
∑
k∈S

p
(t)
ik (pkj − pkl)+ +

∑
k∈S

p
(t)
ik (pkj − pkl)−]

≤ max
j,l∈S

[M
(t)
i

∑
k∈S

(pkj − pkl)+ +m
(t)
i

∑
k∈S

(pkj − pkl)−]

12

where
∑
k∈S

(pkj−pkl)+ means the summation of only the positive terms (pkj−

pkl > 0) and similarly
∑
k∈S

(pkj − pkl)− means the summation of only the neg-

ative terms (pkj − pkl < 0).

Let
+∑

k∈S
(pkj − pkl) =

∑
k∈S

(pkj − pkl)+ and
−∑

k∈S
(pkj − pkl) =

∑
k∈S

(pkj − pkl)−

Consider
∑
k∈S

(pkj − pkl)−

=
−∑

k∈S

(pkj − pkl)

=
−∑

k∈S

pkj −
−∑

k∈S

pkl

= 1−
+∑

k∈S

pkj − (1−
+∑

k∈S

pkl)

=
+∑

k∈S

(pkl − pkj)

= −
∑
k∈S

(pkj − pkl)+

∴ M
(t+1)
i −m(t+1)

i ≤ (M
(t)
i −m

(t)
i) max

j,l∈S

∑
k∈S

(pkj − pkl)+.

If max
j,l∈S

∑
k∈S

(pkj − pkl)+ = 0, then M
(t)
i = m

(t)
i .

If max
j,l∈S

∑
k∈S

(pkj − pkl)
+ 6= 0, for the pair j, l that gives the maximum, let

r be the number of terms in k ∈ S for which pkj − pkl > 0, and s be the
number of terms for which pkj − pkl < 0. Then, r ≥ 1 and ñ = r + s ≥ 1 as
well as ñ ≤ n.
ie., ∑

k∈S

(pkj − pkl)+ =
+∑

k∈S

pkj −
+∑

k∈S

pkl

= 1−
−∑

k∈S

pkj −
+∑

k∈S

pkl

≤ 1− sδ − rδ = 1− ñδ
≤ 1− δ < 1.

13

Hence the estimate of M
(t+1)
i −m(t+1)

i is

M
(t+1)
i −m(t+1)

i ≤ (1− δ)(M (t)
i −m

(t)
i) ≤ (1− δ)t(M (1)

i −m
(1)
i)→ 0

as t→∞.
∴Mi = mi

Let wi = Mi = mi. But,

m
(t)
i ≤ p

(t)
ij ≤M

(t)
i ⇒ lim

t→∞
p
(t)
ij = wi ∀ j ∈ S

lim
t→∞

P (t) = [w,w, . . . ,w]

lim
t→∞

P (t) = [w,w, . . . ,w] = P lim
t→∞

P (t−1) = P [w,w, . . . ,w] = [Pw, Pw, . . . , Pw]

Hence, w is the eigenvector corresponding to the eigenvalue λ = 1.

Let x(6= 0) be an eigenvector corresponding to the eigenvalue λ = 1.

⇒ Px = x ⇒ P (t)x = x

lim
t→∞

P (t)x = [w,w, . . . ,w]x = (w1(
∑
i∈S

xi), w2(
∑
i∈S

xi), . . . , wn(
∑
i∈S

xi))
′ = (

∑
i∈S

xi)w.

But, lim
t→∞

P (t)x = x

⇒ x = (
∑
i∈S

xi)w (
∑
i∈S

xi 6= 0 ∵ x 6= 0)

Hence, eigenvector corresponding to eigenvalue 1 is unique upto a constant
multiple.
Finally, for any probability vector q, the above result shows that

lim
t→∞

P (t)q = (w1(
∑
i∈S

qi), w2(
∑
i∈S

qi), . . . , wn(
∑
i∈S

qi))
′ = w.

�

Let q be a probability distribution vector. Define

q(i+1) = Pq(i) ∀ i ∈ Z≥0 where q(0) = q

∴ q(t) = P (t)q(0) = P (t)q ∀ t ∈ Z≥1

From the above theorem

lim
t→∞

P (t)q = w ⇒ lim
t→∞

q(t) = w

14

Google Page Rank

There are approximately 45.3 billion web pages according to the website
www.worldwidewebsize.com. Now it’s not absurd to believe that some infor-
mation you might need, exists in atleast one of the 45.3 billion web pages.
One would think of organizing these web pages, otherwise its like searching
for a document/book in a huge unorganized library with no librarians.

This organizing and finding is done by search engines, of course there are
many, but Google is the pioneer. In this article we will look into how Google
organizes the web world.

Most search engines, including Google, continually run an army of com-
puter programs that retrieve pages from the web, index the words in each
document, and store this information in an efficient format. Each time a
user asks for a web search using a search phrase, such as abc xyz, the search
engine determines all the pages on the web that contains the words in the
search phrase (perhaps additional information such as the space between the
words abc and xyz will be noted as well) and then displays those pages in a
particular indexed way. Google claims to index 25 billion pages as per March
2011. The problem is: Roughly 95% of the text in web pages is composed
from a mere 10,000 words. This means that, for most searches, there will be
a huge number of pages containing the words in the search phrase. We need
to sort these pages such that important pages are at the top of the list.

Google feels that the value of its service is largely in its ability to provide
unbiased results to search queries and asserts that, “the heart of our software
is PageRank.” As we’ll see, the trick to sorting or ranking is to ask the web
itself to rank the importance of pages.

The outline is, when a user gives an input for the search, Google gets
hold to all the pages that conatin the search input. And now, in the search
result, these pages are displayed in the order of their ranking.

History:

PageRank was developed at Stanford University by Larry Page (hence
the name PageRank) and Sergey Brin in 1996 as part of a research project
about a new kind of search engine. Sergey Brin had the idea that infor-
mation on the web could be ordered in a hierarchy by “link popularity”: a
page is ranked higher as there are more links to it. It was co-authored by

15

Rajeev Motwani and Terry Winograd. The first paper about the project,
describing PageRank and the initial prototype of the Google search engine,
was published in 1998 shortly after, Page and Brin founded Google Inc., the
company behind the Google search engine. While just one of many factors
that determine the ranking of Google search results, PageRank continues to
provide the basis for all of Google’s web search tools.

PageRank has been influenced by citation analysis, early developed by
Eugene Garfield in the 1950s at the University of Pennsylvania, and by Hy-
per Search, developed by Massimo Marchiori at the University of Padua. In
the same year PageRank was introduced (1998), Jon Kleinberg published his
important work on HITS. Google’s founders cite Garfield, Marchiori, and
Kleinberg in their original paper.

Generating importance of pages:

A web page generally has links to other pages that contain valuable, re-
laible information related to (or may be not) to the web page. This tells us
that, the web pages to which there are links in a particular web page are of
considerable importance. It is said that Google assigns importance to all the
web pages each month.

The importance of a page is judged by the number of pages linking to
it as well as the importance of the linked pages. Let I(P) be the measure
of importance for each web page P , let it be called the PageRank. At var-
ious web sites, we may find an approximation of a page’s PageRank. (For
instance, the home page of The American Mathematical Society currently
has a PageRank of 8 on a scale of 10). This reported value is only an ap-
proximation since Google declines to publish actual PageRanks.

Suppose that a page Pj has lj links. If one of those links is to page Pi ,
then Pj will pass on 1

lj
of its importance to Pi. Let the set of all the pages

linking to Pi be denoted by Bi.

Hence the PageRank of Pi is given by

I(Pi) =
∑
Pj∈Bi

I(Pj)

lj

This looks wierd, because determining the PageRank of a page involves
the PageRank of the pages linking to it. Is it the chicken or the egg?

16

We now formulate it into a more mathematically familiar problem.

Consider a matrix H = ((Hij)) called the hyperlink matrix where

Hij =

{
1
lj

if Pj ∈ Bi

0 otherwise

Note : H is a column-stochastic matrix

∵
∑
i

Hij = 1

Also define I = [I(Pi)], then the equation of page rank can be written as

I = HI .

The vector I is the eigenvector corresponding to the eigenvalue 1 of the ma-
trix H.

Consider the web shown in the figure A1.

It is a collection of 8 web pages with the links shown by arrows. The hyperlink

17

matrix for this web is

H =



0 0 0 0 0 0 1
3

0
1
2

0 1
2

1
3

0 0 0 0
1
2

0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1

2
1
3

0 0 1
3

0
0 0 0 1

3
1
3

0 0 1
2

0 0 0 0 1
3

0 0 1
2

0 0 0 0 1
3

1 1
3

0


with I =



0.0600
0.0675
0.0300
0.0675
0.0975
0.2025
0.1800
0.2950


Hence, page 8 is most popular, followed by page 6 and so on.

Calculating the eigenvector I

There are different ways of calculating the eigenvectors. But the challenge
here is that the hyperlink matrix, H is a 45.3 billion × 45.3 billion matrix!
Studies show that on an average a web page has 10 links going out, meaning
almost all but 10 entries in each column are 0.

Let us consider the power method for calculating the eigenvector. In this
method, we begin by choosing a vector I(0) (which is generally considered
to be (1, 0, 0, . . . , 0)′) as a candidate for I and then produce a sequence of
vectors I(k) such that

I(k+1) = HI(k).

There are issues regarding the convergence of the sequence of vectors (I(n)).
Matrix under consideration must satisfy certain conditions.

For the web described in figure A1, if I(0) = (1, 0, 0, 0, 0, 0, 0, 0)′ power method
shows that

I(0) = (1, 0, 0, 0, 0, 0, 0, 0)′

I(1) = (0, 0.5, 0.5, 0, 0, 0, 0, 0)′

I(2) = (0, 0.25, 0, 0.5, 0.25, 0, 0, 0)′

I(3) = (0, 0.1667, 0, 0.25, 0.1667, 0.25, 0.0833, 0.0833)′

...

I(60) = (0.06, 0.0675, 0.03, 0.0675, 0.0975, 0.2025, 0.18, 0.295)′

I(61) = (0.06, 0.0675, 0.03, 0.0675, 0.0975, 0.2025, 0.18, 0.295)′

18

These numbers give us the relative measures for the importance of pages.
Hence we multiply all the popularities by a fixed constant so as to get the
sum of popularities equal to 1.

Consider the web shown in the figure A2.

with hyperlink matrix

H =

[
0 0
1 0

]
The algorithm defined above applies as

I(0) =

[
1
0

]
I(1) =

[
0
1

]
I(2) =

[
0
0

]
I(3) =

[
0
0

]
In this web, the measure of importance of both pages is zero, indicating

nothing about the relative importance of these pages. Problem arises as page
2 has no links going out. Consequently, page 2 takes some of the importance
from page page 1 in each iterative step but does not pass it on to any other
page, draining all the importance from the web.

Pages with no links are called dangling nodes, and there are, of course,
many of them in the real web. We’ll now modify H.

A probabilistic interpretation of H

Assume that we are on a particular web page, and we randomly follow one
of its links to another page ie., if we are on page Pj with lj links, one of which
takes us to page Pi , the probability that we next end up on page Pi is then 1

lj
.

As we surf randomly, let Tj be the fraction of time that we spend on page
Pj. Then, the fraction of time that we spend on page Pi coming from its link

in page Pj is
Tj
lj

. If we end up on page Pi, then we must have come from

19

some page linking to it, which means

Ti =
∑
Pj∈Bi

Tj
lj

From the equation we defined for PageRank rankings, we see that I(Pi) =
Ti which can be understood as a web page’s PageRank is the fraction of time
a random surfer spends on that page.

Notice that, given this interpretation, it is natural to require that the
sum of the entries in the PageRank vector I be 1, since we are considering
fraction of times spent on each page.

There is a problem with the above description, if we surf randomly, then
at some point we might end up at a dangling node. To overcome this, we
pretend that a dangling node has a link to all the pages in the web.

Now, the hyperlink matrix H is modified by replacing the column of ze-
roes (if any) with a column in which each entry is 1

n
where n is the total

number of web pages. Let this matrix be denoted by S.

Again, consider the web

where S =

[
0 1

2

1 1
2

]
and I =

[
1
3
2
3

]
meaning P2 has twice the measure of importance of P1, which seems reason-
able now.

Note: S is also a column-stochastic matrix. Let A be a matrix (with size
same as of H) whose all entries are zero except for the columns corresponding
to the dangling nodes, in which each entry is 1

n
, then S = H + A.

20

Now, consider the web shown below

where S =

0 1 0
0 0 1
1 0 0

 and let I(0) =

1
0
0

 using power method, we see that

I(1) =

0
0
1

 I(2) =

0
1
0

 I(3) =

1
0
0

 I(4) =

0
0
1

 . . .
In this case power method fails because, 1 is not a simple eigenvalue of the
matrix S.

Consider the web shown below

21

S =


0 1

2
0 0 0

1
2

0 0 0 0
0 1

2
0 1

2
1
2

0 0 1
2

0 1
2

1
2

0 1
2

1
2

0

 and let I(0) =


1
0
0
0
0

 now, using power method

I(1) =


0

0.5
0
0

0.5

 I(2) =


0.25

0
0.5
0.25

0

 I(3) =


0

0.125
0.125
0.25
0.5



. . . I(13) =


0

0.0001
0.3325
0.3332
0.3341

 I(14) =


0
0

0.3337
0.3333
0.3328

 I(15) =


0
0

0.3331
0.3333
0.3335



Hence, I =


0
0

0.333
0.333
0.333

 where PageRanks assigned to page 1 and page 2

are zero, which is unsatisfactory as page 1 and page 2 have links coming in
and going out of them. The problem here is that the web considered has
a smaller web in it, ie., pages 3, 4, 5 are a web of themselves. Links come
into this sub web formed by pages 3, 4, 5, but none go out. Just as in the
example of the dangling node, these pages form an ”importance sink” that
drains the importance out of the other two pages. In mathematical terms
power method doesn’t work here as S is not irreducible.

One last modification:

We will modify S to get a matrix which is irreducible and has 1 as a
simple eigenvalue. As it stands now, our movement while surfing randomly
is determined by S ie., either we follow one of the links on the current page
or, if we are at a page with no links, we randomly choose any other page
to move to. To make our modification, we will first choose a parameter
α � 0 < α < 1. Now, suppose we move in a slightly different way. With
probability α we are guided by S, and with probability 1− α we choose the

22

next page at random.

Now we obtain the Google Matrix

G = αS + (1− α)
1

n
J

where J is a matrix, all of whose entries are 1.

Note: G is a column-stochastic matrix. Also, G is a positive matrix, hence
by Perron’s theorem G has a unique eigenvector I corresponding to the eigen-
value 1, which can be found using the power method.

Parameter α:

The role of the parameter α is important. If α = 1 then, G = S which
means we are dealing with the unmodified version. If α = 0 then G = 1

n
J

which means the web we are considering has a link between any two pages
and we have lost the original hyperlink structure of the web. Since, α is the
probability by which we are guided by S, we would like to choose α closer to
one, so that the PageRanks are weighted heavily into the calculations.

But, the convergence of the power method is geometric with ratio |λ2
λ1
|,

where λ1 is the eigenvalue with maximum magnitude and λ2 is the eigenvalue
closest in magnitute to the magnitude of λ1. Hence power method converges
slowly if λ2 is close to λ1.

Theorem:(Taher & Sepandar) Let P be a n × n row-stochastic matrix.
Let c be a real number such that 0 ≤ c ≤ 1. Let E be a n × n row-
stochastic matrix E = evT , where e is the n-vector whose elements are all
ei = 1, and v is an n-vector that represents a probability distribution. Let
A = (cP + (1− c)E)T , then its second eigenvalue |λ2| ≤ c.

Theorem:(Taher & Sepandar) Further, if P has at least two irreducible
closed subsets (which is the case for the hyperlink matrix), then the second
eigenvalue of A is given by λ2 = c.

Hence for the Google matrix, |λ2| = α, which means when α is close to
1, the power method converges slowly.

With all these considerations on the parameter, it is believed that (not
known!), Larry Page and Serge Brin chose α = 0.85.

23

Computations:

In the theory mentioned above, matrices under consideration are of the
order 45.3 billion × 45.3 billion. Remember S = H + A and hence Google
matrix has the form

G = αH + αA+
(1− α)

n
J

∴ GI(k) = αHI(k) + αAI(k) +
(1− α)

n
JI(k)

Recall that, most of the entries in H are zero, hence evaluating HI(k), on
an average requires only ten nonzero terms for each entry in the resultant
vector. Also, rows of A are all identical as are the rows of J . Therfore, eval-
uating AI(k) and JI(k) amount to adding the current importance rankings of
the dangling nodes or of all web pages. This only needs to be done once.

It is guessed that, Google believes that with α = 0.85, 50−100 iterations
are required to obtain a sufficiently good approximation to I. For, 45.3 billion
web pages, the calculations are expected to take a few days to complete. The
web is continually changing, pages might be created or deleted, and links in
or to the pages also might be added or removed. It is rumored that Google
recomputes the PageRank vector I roughly every month. Since the PageRank
of pages can be observed to fluctuate considerably during this computations,
it is known to some as the Google Dance!

24

Consider the following web again, look at its PageRank vectors

with H =



0 0 0 0 0 0 1
3

0
1
2

0 1
2

1
3

0 0 0 0
1
2

0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1

2
1
3

0 0 1
3

0
0 0 0 1

3
1
3

0 0 1
2

0 0 0 0 1
3

0 0 1
2

0 0 0 0 1
3

1 1
3

0



α = 0.65, m ≥ 16, I =



0.0734
0.1153
0.0676
0.1187
0.1210
0.1623
0.1366
0.2051


; α = 0.75, m ≥ 17, I =



0.0675
0.1054
0.0566
0.1102
0.1163
0.1727
0.1452
0.2261



α = 0.85, m ≥ 17, I =



0.0632
0.0925
0.0455
0.0974
0.1101
0.1839
0.1564
0.2510


25

A python code, which takes as input the matrix H+A, α and m = no. of
iterations to be considered, and calculates the PageRank with m iterations
is given below:

def matmult(m1,m2):
m3 = [[0 for q in range(len(m2[0]))] for p in range(len(m1))]
for i in range(len(m1)):

for k in range(len(m2)):
for j in range(len(m2[0])):

m3[i][j] = m3[i][j] + m1[i][k]*m2[k][j]
return(m3)

def scalmatmult(c,M):
m = [[0 for q in range(len(M[0]))] for p in range(len(M))]
for i in range(len(M)):

for j in range(len(M[0])):
m[i][j] = m[i][j] + c*M[i][j]

return(m)

def matadd(m,M):
matsum = [[0 for q in range(len(M[0]))] for p in range(len(M))]
for i in range(len(M)):

for j in range(len(M[0])):
matsum[i][j] = matsum[i][j] + m[i][j] + M[i][j]

return(matsum)

def pagerank(S,alpha,m):
I = [[0] for i in range(len(S))]
I[0][0] = 1
J = [[1 for q in range(len(S[0]))] for p in range(len(S))]
G = matadd(scalmatmult(alpha,S),scalmatmult(((1-alpha)/len(S)),J))
for j in range(0,m):

I = matmult(G,I)
return(I)

26

Advances:

Google Panda is a change to the Google’s search results ranking al-
gorithm that was first released in February 23, 2011. The change aimed to
lower the rank of low-quality sites or thin sites, and return higher-quality sites
near the top of the search results. CNET reported a surge in the rankings
of news websites and social networking sites, and a drop in rankings for sites
containing large amounts of advertising. This change reportedly affected the
rankings of almost 12 percent of all search results. Soon after the Panda roll-
out, many websites, including Google’s webmaster forum, became filled with
complaints of scrapers/copyright infringers getting better rankings than sites
with original content. At one point, Google publicly asked for data points
to help detect scrapers better. Google’s Panda has received several updates
since the original rollout in February 2011, and the effect went global in April
2011. To help affected publishers, Google published an advisory on its blog,
thus giving some direction for self-evaluation of a website’s quality. Google
has provided a list of 23 bullet points on its blog answering the question of
“What counts as a high-quality site?” that is supposed to help webmasters
step into Google’s mindset.

Google Panda was built through an algorithm update that used artificial
intelligence in a more sophisticated and scalable way than previously possi-
ble. Human quality testers rated thousands of websites based on measures
of quality, including design, trustworthiness, speed and whether or not they
would return to the website. Google’s new Panda machine-learning algo-
rithm, made possible by and named after engineer Navneet Panda, was then
used to look for similarities between websites people found to be high quality
and low quality.

Google Penguin is a code name for a Google algorithm update that
was first announced on April 24, 2012. The update is aimed at decreasing
search engine rankings of websites that violate Googles Webmaster Guide-
lines by using black-hat SEO techniques, such as keyword stuffing, cloaking,
participating in link schemes, deliberate creation of duplicate content, and
others. Penguin update went live on April 24, 2012.

By Googles estimates, Penguin affects approximately 3.1% of search queries
in English, about 3% of queries in languages like German, Chinese, and Ara-
bic, and an even bigger percentage of them in highly-spammed languages. On
May 25th, 2012, Google unveiled the latest Penguin update, called Penguin
1.1. This update, was supposed to impact less than one-tenth of a percent

27

of English searches. The guiding principle for the update was to penalise
websites using manipulative techniques to achieve high rankings. Penguin 3
was released Oct. 5, 2012 and affected 0.3% of queries.

In January 2012, so-called page layout algorithm update was released,
which targeted websites with little content above the fold. The strategic
goal that Panda, Penguin, and page layout update share is to display higher
quality websites at the top of Googles search results. However, sites that
were downranked as the result of these updates have different sets of charac-
teristics. The main target of Google Penguin is spamdexing (including link
bombing).

References:

• Austin, David 2006, ‘How Google Finds Your Needle in the Web’s
Haystack’, Mathematical Society Feature Column
<http://www.ams.org/samplings/feature-column/fcarc-pagerank>

• Williams, Lance R. 2012, CS 530: Geometric and Probabilistic
Methods in Computer Science, Lecture notes, University of New Mex-
ico, Albuquerque.

• Ramasubramanian, S. 2012, Probability III (Introduction to Stochas-
tic Processes), Lecture notes, Indian Statistical Institute, Bangalore.

• Karlin, Samuel & Taylor, Howard M. 1975, ‘Markov Chains’,
A first course in Stochastic Processes, Second Edition, Academic Press,
New York, pp. 45-80.

• Ciarlet, Philippe G. 1989, Introduction to Numerical Linear Alge-
bra and Optimisation, First Edition, University Press, Cambridge.

• Deng, Bo 2010, Math 428: Introduction to Operations Research, Lec-
ture notes, University of Nebraska-Lincoln, Lincoln.

• Page, Lawrence & Brin, Serge 1998, The antaomy of a large-
scale hypertextual Web search engine, Computer Networks and ISDN
Systems, 33, pp. 107-17
<http://infolab.stanford.edu/pub/papers/google.pdf>

• Atherton, Rebecca 2005, ‘A Look at Markov Chains and Their Use
in Google’, Master’s thesis, Iowa State University, Ames.

28

• Haveliwala, Taher H. & Kamvar, Sepandar D. 2003, The sec-
ond eigenvalue of the Google matrix, Stanford University Technical
Report.

• PageRank, modified 06.11.2012, Wikipedia, viewed 12.11.2012,
<http://en.wikipedia.org/wiki/PageRank>

• Google Panda, modified 09.11.2012, Wikipedia, viewed 12.11.2012,
<http://en.wikipedia.org/wiki/Google Panda>

• Google Penguin, modified 19.10.2012, Wikipedia, viewed 12.11.2012,
<http://en.wikipedia.org/wiki/Google Penguin>

29

