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• Title: Concave quadratic optimization.

• Description: The general quadratic problem consists of a quadratic ob-
jective functions and a set of linear inequality constraints as shown below:

Minimize Q(x) = CTx+
1

2
xTDx

subject to Ax ≤ b
x ≥ 0

where, C is an n vector b is an n vector. A is an n × n matrix and D is
an n× n matrix.

There are many types of quadratic programming problems, the classifica-
tions are based on the nature of the matrix D. We will mainly work on
concave quadratic problems where D is negative semi definite.

• Motivation: Concave quadratic problems are of great importance in var-
ious fields of real life. This type of problems often arise in problems
involving economies of scale. Certain aspects of VLSI chip design can also
be formulated as concave quadratic problems. The classical quadratic
assignment problem can also be formulated using this.

Concave quadratic problems are the simplest among all quadratic prob-
lems. This has some nice properties e.g all solutions of a concave quadratic
problem lie at some vertex of the feasible region.That is why solving con-
cave quadratic problems is of great importance.

• Problem definition: Problems of optimizing a concave quadratic func-
tion with respect to set of linear constraints and non-negativity restrictions
with a additional restriction that some or all of the variables are required
to be integers. Relevant numerical examples will be provided.

• Plan:
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– In our project we will first introduce what a quadratic optimiza-
tion problem is and will give a brief description of various types of
quadratic optimization problems where concave quadratic problems
will be highlighted mostly.

– Then we will look into concave quadratic problems specifically. The
properties of this type of problems which make it simple to solve will
be discussed briefly.

– The final step will be about various methods of solving a concave
quadratic problem e.g. Extreme point ranking method, Cut-
ting plane method, Solving by using convex envelope of the
concave function, Solving the problem by reducing it to bi-
linear programming, Reduction to seperable form. We will
give brief descriptions of the methods mentioned here with some small
examples.

• References: Wikipedia and some lecture notes.

PROJECT REPORT ONE: QUADRATIC OPTIMIZATION
GROUP MEMBERS: Bidisha Roy,Ankani Chattoraj,Sebanti Chakrabarti

A General Quadratic optimization problem can be written as:

minf(x) = 1
2X

TQX + CX

AX ≤ b

X ≥ 0

• C is a n-dimensional row vector describing the coefficients of the linear terms
in the objective function.
• Q is a n × n symmetric matrix describing the coefficients of the quadratic

terms, assumed without loss of generality.If not,replace it by Q+QT

2 which does
not change the value of f .
• X is the n dimensional column vector and the decision variable,which if not
non-negative,can be converted to non negative by a linear transformation.
• A is n × n matrix and b is an m-dimensional column vector,defining the
constraints.
We assume that a feasible solution exists and that the constraints region is
bounded.
If Q is positive definite then f(x) is strictly convex for all feasible points and
the problem has a unique local minimum which is also the global minimum.
Classification of quadratic optimization :
Quadratic problems are classified based on the nature of the matrix Q -
(1) Bilinear problems: When the matrix Q is such that there exists two sub
vectors of distinct variables Y and Z of X so that the problem is linear when
one of these vectors is fixed,then it is called a bilinear problem.
(2) Concave quadratic problems: When the matrix Q is negative semi
definite that is all its eigenvalues are non positive,then it is called a Concave
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Quadratic problem.
(3) Indefinite quadratic problem: When the matrix Q has both positive
and negative eigenvalues,then it is called an Indefinite Quadratic problem.

∗Karush-Kuhn-Tucker condition: This condition is necessary in general
case of quadratic optimization and it is also sufficient when Q is positive definite.
The lagrangianfunction for the quadratic optimization programme is-

L(X,µ) = CX + 1
2X

TQX + µ(AX − b)

where µ is an m-dimension row vector.
The KKT conditions for a local minimum are given as follows :

∂L

∂xj
≥ 0, j = 1, ...., n, C +XTQ+ µA ≥ 0 (1)

∂L

∂xi
≤ 0, i = 1, ...., n, AX − b ≤ 0 (2)

xj
∂L

∂xj
= 0, j = 1, ...., n, XT (C +XTQ+ µA) = 0 (3)

µigi(X) = 0, i = 1, ....,m (4)

xj ≥ 0, j = 1, ....., n X ≥ 0 (5)

µi ≥ 0, i = 1, ....m µ ≥ 0 (6)

To put (1)-(6) into a more manageable form we introduce non negative surplus
variable Y ∈ Rn to the inequalities in (i) and non negative slack variable v ∈ Rn

to the inequalities in (ii) to obtain the equations-

CT +QX +ATµT − Y = 0 and AX − b+ v = 0
So,the KKT conditions become:

QX +ATµT − Y = −CT (7)

AX + v = b (8)

X ≥ 0, y ≥ 0, µ ≥ 0, v ≥ 0
Y TX = 0, µv = 0

The first two expressions are linear equations and the third is the non-negativity
conditions and the fourth one comes from complementary slackness.
• METHODS OF SOLUTION OF CONCAVE PROBLEMS:

• Extreme point ranking method: The solution of the concave problems lies
at a vertex of a polytope. So the solution can be obtained by complete
enumeration of the extreme points.But this method is not very useful in
case of large problems.

• Cutting plane methods : The basic approach of this methods involved
starting from a specific vertex of the polytope.The edges of the polyhedron
issuing from the vertex are used to define a cone that contain a feasible
region.The use of cuts is to successively reduced the cone and generate an
auxiliary subproblem which is solved in the sub cone,that give rise to a
new vertex point.This is basically an iterative method.
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• Convex envelops: concave problems can be developed from the use of
the convex envelop of the concave function. This method based on the
theorem –
If F (x) is the convex envelope of a concave function f(x) taken over a
convex domain S then any point that globally minimizes f(x) over S also
minimizes F (x) over S.

• Reduction to bilinear programming: The concave quadratic program can
also be solved by reduction to an associated bilinear programming prob-
lem.

• Reduction to separable form : It is possible to reduced the concave quadratic
problem to a separable quadratic form. The method is given the matrix
Q,compute the real eigenvalues of –Q and the corresponding eigenvectors
so that Q = UDUT ,U = diag[u1, u2, ......, un],the matrix of eigen vectors
and UTU + I and D = diag[α1, ......, αn],the eigenvalues. These values
are computed thena multiple-cost row linear programme with 2n rows are
solved.Using the solution theQP can be reformulated in a separable form:

Min

i=1∑
n

qi(xi)

s.t.A
′
X ≤ b

′

X ≥ 0

Where qi(xi) = cixi − 1
2αix

2
i and A

′
and b

′
are produced from A and b

through linear transformation using U .

PROJECT REPORT 2: SOLVING QUADRATIC OPTIMIZATION
GROUP MEMBERS: Bidisha Roy,Ankani Chattoraj,Sebanti Chakrabarti.

The General Quadratic Programming Problem

The general quadratic problem consists of a quadratic objective functions and
a set of linear inequality constraints as given below:

max(f(x)) = cx− 1

2
xTQx

Such that, Ax ≤ b

x ≥ 0The objective function isf(x)cx− 1

2
xTQx

=

n∑
j=1

cjxj −
1

2

n∑
i=1

n∑
j=1

qijxixj

where, qij are elements of Q and Q is symmetric. If i = j then xixj = x2j . So

i 12qij is the coefficient of x2i . If i 6= j then 1
2 (qijxixj+), so −qij is the coefficient

for the product of xi and xj (since qji = qij).

4



Some necessary definitions

• HYPERPLANE : A hyperplane is a concept geometry. It is a general
section of a plane into a different number of dimensions. A hyperplane of
an n-dimensional space in a flat subset with dimension n-1. By nature it
separates the space into two spaces.

• HALF SPACES: The points that are not incident to the hyperplane and
portioned into two convex sets such that any subspace connecting a point
in one set to a point in the other must intersect the hyperplane. Then
such sets called half spaces.

• POLYTOPE: In elementary geometry, a polytope is a geometric object
with flat sides which exists in any general number of dimensions .A polygon
is a polytope of two dimensions and so on in higher dimensions.

• HYPERRECTANGALE: In geometry, a hyper rectangle is the generalisa-
tion of a rectangle for higher dimensions, formally defined as the Cartesian
product of intervals.

Motivations of Cutting-Plane techniques

We prefer Cutting-plane methods as they

• do not require differentiability of the objective and constraint functions

• can exploit certain types of structure in large and complex problems

• do not require evaluation of the objective and all the constraint functions
at each iteration

This can make cutting-plane methods useful for problems with a very large
number of constraints.

Idea of Cutting-Plane technique

The goal of cutting-plane and localization methods is to find a point in a convex
set X ⊂ Rn, which we call the target set, (which might be empty set also). In
an Optimization Problem, the target set X can be taken as the set of optimal
points for the problem. To start, we do not have any direct description of the
target set X.

In that case we proceed through an oracle (an approach to get an inequality).
Suppose now we query the oracle at a point x ∈ Rn, it returns the following
information to us: it either tells us that x ∈ X (in which case we are done), or
it returns a separating hyperplane between x and X, i.e., a 6= 0 and b such that

aTZ ≤ b for z ∈ X, aTX ≥ b
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The inequality aTZ ≤ b defines a cutting plane at the query point x, for the
target set X, chosen shaded.

To find a point we need to search only the rectangle drawn above, the un-
shaded half space Z such that aTZ > b cannot contain any point in the target
set.

Now, this hyperplane generated is called a cutting plane, or cut (as it elim-
inates the halfspace Z such that aTZ > b from our sketch as no such point can
be in tangent set)

Now, there can be two cases-

1. The cutting plane is generated on x (or the message that x ∈ X). When
the cutting plane contains the query point x, we refer it as neutral cut or
neutral cutting plane.

Assumption: 2 norm of a is equal to 1 since dividing a and b by 2-norm
of a defines the same cutting plane.

2. When aT ≥ b which means that x lies in the interior of the halfspace that
is being cut from consideration, the cutting plane is called deepcut.

REMARK: A deepcut is better i.e. more informative than a neutral with
the same normal vector excludes a larger set of points from consideration.
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Tuy’s Cutting-Plane

Pre requisite result:

1. 1) A global minimum of a concave function f over X exists among extreme
points (vertices) of X. [Journal of global optimization 13:225-240,
1998]

2. A cutting plane is a linear constraint which eliminates a locally optimal
solution and yet does not eliminate a globally optimal solution. [Journal
of global optimization 13:225-240, 1998]

Method

Tuy is 1964 proposed a simple algorithm based on above ideas of cutting plane
to solve a concave quadratic problem.

7



Let x
′

be a given locally optimal extreme point at which the value of the
objective function is smaller than those at neighbouring vertices. Also, let E
be an ellipsoid associated with the contour of f(x

′′
) where x

′′
is the incumbent

solution. Since f(x) is a concave function, we have f(x) ≥ f(x
′′
) for all x in E.

Therefore, we can ignore the region X intersection E in the process of finding
a global minimum of f over X. Along the edge di from x

′
, we look for a point

Pi at which the objective function value is equal to the value f(x
′′
). A linear

constraint atcut ≤ bcut determined by Pi, i = 1, 2, . . . , n is the so-called Tuy’s
cutting plane.

REMARK:

1. Tuy’s cut would be substantiality deeper when the objective function f(.)
is a low rank concave quadratic function. [Journal of global optimiza-
tion 13:225-240, 1998]

2. We usually have a deeper cut when p is substantiality smaller than n.
Where f(.) in rank p concave quadratic programming problem. [Journal
of global optimization 13:225-240, 1998]

Extension of this method

Rosen’s cutting plane is an extension of this method. Tuy’s cutting plane elim-
inates a portion of a feasible region in the neighbourhood of a locally optimal
extreme point. Thus it may be called a neutral or boundary cut. Rosen came
up in 1983 with Rosen cutting plane which occurs interior cut and eliminates a
hyper rectangle whose centre is located at the global maximum of the objective
function under the assumption that the feasible region is compact.
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Cutting-Plane TUY/TABU search algorithm

TABU SEARCH: Tabu search is a local search algorithm that can be used for
combinational optimization problems. Tabu search used a local neighbourhood
search process to iteratively move from one potential solution x to an improved
solution “x′′ in the neighbourhood of x until some stopping criterion has been
satisfied.

Now, we show the algorithm, for solving a concave quadratic programming
problem.

Minimize ctx+
1

2
xtQx

Subject to Ax ≤ b

where, c ∈ Rn, Q ∈ Rn×n, A ∈ Rm×n and b ∈ Rm.
We assume that the rank p of the non-positive definite symmetric matrix

Q is small compared to ′n′ and feasible region X0 = {x ∈ Rn 3 Ax ≤ b} is
bounded.

We first solve a series of linear programming problem:

(LP )Ksuch that Minimize (ck)tx

Subject to Ax ≤ b

where, ck, K = {1, 2, · · · , k} are given set of vectors in Rn. Let xk be an optimal
solution of (LP )k and let V = {x1, x2, . . . , xk}.

• We will choose a sequence of vectors ck such that V is well scattered over
X0.

• Let x0 ∈ V be the starting point of cutting plane/Tabu search method,
then the Tabu list consists of those points,

1. which have been dominated by Tuy’s cuts added during the course
of computation,

2. which are the set of extreme points of X0 newly generated by Tuy’s
cuts which do not belong to V0, the set of extreme points of X0,

• These vertices satisfying condition (1) cannot be superior to the solution
by the definition of Tuy’s cut, and,

• These vertices satisfies (2) can be ignored in the search process became
there is at least one optimal solution in V0

Summary of the Topic

The advantage of such an approach is that at each iteration, the auxiliary prob-
lem has the same set of constraints and differs only in the objective function.
Moreover the objective function at each step can be obtained from the previous
iteration by simple linear transformation and column replacement.

NOTE: This method relies on all the vertices to be non degenerates. In case
of degeneracy a suitable perturbation methods needs to be used.

However, Zwat(1973) proposed that the approach can be non-convergent
due to cycling the need of an infinite sequence of cutting planes. The reason for
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cycling behaviour as well as nonconvergence of these approaches lies in the fact
that although the approaches generate cones during the algorithm, they failed
to explicitly incorporate these cones into the remaining steps. This is essential
to avoid the re-emergence of the vertices that are already been considered. This
difficulty with the approaches was recognized by Zwat(1974),who proposed a
modified e-convergent approach where, at each iteration, constraints are added
to ensure that the solution of the LP at each iteration is contained in the cone
with the vertex at the current local minimum and a perturbed set of extreme
rays coincident at the vertex.

Books

Nonlinear optimization - Andrzej and Ruszczy Ski

FINAL PROJECT REPORT: SOLVING QUADRATIC OPTI-
MIZATION
GROUP MEMBERS: Bidisha Roy,Ankani Chattoraj,Sebanti Chakrabarti.

Scalar Quadratic optimization without constraints:
minimize( 1

2qx
2 + cx+ co) has a finite solution if and only if

• q = 0 and c = 0 this is the one condition.

• The another condition is q > 0

In the first case there is no unique optimum.
In the second case we can write-
1
2 qx

2 + cx+ co = 1
2q(x+ c

q )2 + co− c2

2q and the optimum is achieved for x = −c
q

Now another way for solving this problem is to factorize Q in the form

Q = LDLT

Then,

min
1

2
XTQX + CTX

= min
1

2
XTLDLTX + CT (LT )−1LTX

= min

n∑
k=1

1

2
dky

2
k + C̃kyk

=

n∑
k=1

min
1

2
dky

2
k + C̃kyk

where y = LTX and C̃ = L−1C. Thus, we have reduced to the problem to
n independent scalar quadratic Optimization Problems, which are now easy to
solve.
Now Q̂1 = [q̂1, ....., q̂n]T will be a minimizer when-

• dk ≥ 0; k = 1, ....n
⇔ Q is a positive semi− definite.
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• and dkq̂k = − c̃k
⇔ DLT x̂ = −  L−1c =⇒ LDLT x̂ = c i.e. Qx̂ = − c

Furthermore,f(x) = 1
2X

TQX + CTX + Co is unbounded if-

• some dk < 0 ⇔ Q is not positive semi-definite or

• some of the equations dkq̂k = − c̃k do not have a solution i.e. dk = 0
and c̃k 6= 0 ⇔ The equation Qx̂ = − c do not have a solution.

Theorem: Let f(x) = 1
2X

TQX + CTX + Co, x̂ will be a minimizer if,
(i) Q is a positive semi-definite.
(ii) QX̂ = − C i.e. X̂ = −Q−1C
Comment: The condition that QX = − C has a solution is equivalent to
c ∈ <(Q).
Quadratic optimization with Linear Constraints:

minimize 1
2X

TQX + CTX + Co

such that AX = b

where Q = QT ∈ Rn × n,A ∈ Rm × n,C ∈ Rn,b ∈ Rm and Co ∈ R.

Assumption:

• We assume that b ∈ <(A) and n > m i.e N(A) 6= {0}.

• Assume that N(A) = span{Z1, ....., Zk} and define the null space matrix
Z = [Z1, ......, Zn].

If AX̄ = b,it holds that an arbitrary solution to the linear constraint has the
form X = X̄ + Zv for some v ∈ Rk,This follows since,

A(X̄ + Zv) = AX̄ +AZv = b+ 0 = b

with X = X̄ + Zv inserted in the problem.We get

f(X) = 1
2v

TZTQZv + (ZT (QX̄ + C))T v + f(X̄)

We can now apply previous theorem to obtain the following, X̂ is an optimal
solution to

minimize 1
2X

TQX + CTX + Co

such that AX = b

if- (i) ZTQZ is positive semi definite.
(ii)X̂ = X̄ + Ẑv where ZTQZv̂ = − ZT (QX̄ + C)

Comment: The second condition in the theorem is equivalent with the
existence of a û ∈ Rm such that[

Q −AT

A 0

] [
x̂
û

]
=

[
−c
b

]
The second constraint in the theorem can be written

ZT (Q(x̄+ Zv̂) + c) = 0
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Since, N (A) = R(Z) this is equivalent with

Q(x̄+ Zv̂) + c ∈ N (A) = R(AT )

⇐⇒ Qx̂+ c = AT û for some û ∈ Rm

PROBLEM:
Let f(x) = 1

2x
TQx+ CTx+ Co, where

Q =

[
2 0
0 1

]
and c =

[
1
1

]
,Co = 0. Consider the minimization of f over

the feasible region ξ = x | Ax = b where A = [2 1] and b = 2

Answer:
So the problem looks like:[
min − x12 + 1

2x2
2 + x1 + x2

s.t. 2x1 + x2 = 2

]
The null space of A is spanned by Z and the reduced Hessian is given by,

Z =

[
−1
2

]
,Q̄ = ZTQZ = 2

Since,the reduced Hessian is positive definite so the problem is convex.
Now the unique solution is then given by taking an arbitrary x̄ ∈ ξ e.g.
x̄ = [1 0]T and solving,
Q̄v̂ = − c̄ = −ZT (Qx̄+ c) = −3
∴ v̂ = − 3

2

x̂ = x̄+ Zv̂

=

[
1
0

]
+

[
−1
2

]
(−3

2
)

=

[
− 5

2
3

]
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