

Orbit closures of quiver representations

Kavita Sutar

Chennai Mathematical Institute

September 5, 2012

Outline

(1) Orbit closures
(2) Geometric technique
(3) Calculations
(4) Results

- Quiver $Q=\left(Q_{0}, Q_{1}\right)$ is a directed graph with set of vertices Q_{0} and set of arrows Q_{1}. (Notation: $t a \xrightarrow{a} h a$)
- Dynkin quiver - underlying unoriented graph is a Dynkin diagram.

- Quiver $Q=\left(Q_{0}, Q_{1}\right)$ is a directed graph with set of vertices Q_{0} and set of arrows Q_{1}. (Notation: ta $\xrightarrow{a} h a$)
- Dynkin quiver - underlying unoriented graph is a Dynkin diagram.
- A representation of Q is a pair $V=\left(\left(V_{i}\right)_{i \in Q_{0}},(V(a))_{a \in Q_{1}}\right)$, where V_{i} are finite-dimensional vector spaces over algebraically closed field k and $V_{t a} \xrightarrow{V(a)} V_{h a}$.
- Dimension vector $\underline{d}=\left(\operatorname{dim} V_{i}\right)_{i \in Q_{0}}$.
- The representation space of dimension type $\underline{d}=\left(d_{i}\right)_{i \in Q_{0}} \in \mathbb{N}^{Q_{0}}$

$$
\begin{aligned}
\operatorname{Rep}(Q, \underline{d}) & =\left\{V=\left(\left(V_{i}\right)_{i \in Q_{0}},(V(a))_{a \in Q_{1}}\right) \mid \operatorname{dim}\left(V_{i}\right)=d_{i}\right\} \\
& =\prod_{a \in Q_{1}} \operatorname{Hom}\left(V_{t a}, V_{h a}\right) \cong \mathbb{A}^{N} .
\end{aligned}
$$

- $\operatorname{GL}(\underline{d})=\prod_{i \in Q_{0}} \mathrm{GL}\left(d_{i}\right)$
- $\operatorname{GL}(\underline{d})$ acts on $\operatorname{Rep}(Q, \underline{d})$ by simultaneous change of basis at each vertex

$$
\begin{aligned}
&\left(\left(g_{i}\right)_{i \in Q_{0}},(V(a))_{a \in Q_{1}}\right)=\left(g_{h a} V(a) g_{t a}^{-1}\right)_{a \in Q_{1}} \\
&\{\mathrm{GL}(\underline{d})-\text { orbits }\} \longleftrightarrow \\
& \text { \{isomorphism classes of representations } \\
&\text { of } Q\}
\end{aligned}
$$

Orbit closure \bar{O}_{V} is a subvariety of the affine space $\operatorname{Rep}(Q, \underline{d})$.

Example

$$
\begin{aligned}
& \stackrel{1}{\bullet} \xrightarrow{\mathrm{a}} \stackrel{2}{\bullet} \xrightarrow[\left(Q_{0}, Q_{1}\right) ;]{\mathrm{b}} \stackrel{3}{\bullet} \\
& Q=\{1,2,3\}, Q_{1}=\{a, b\}
\end{aligned}
$$

$$
\stackrel{V}{1}^{V_{a}} \stackrel{V}{2}_{V_{2}}^{V_{b}} V_{3}^{V_{3}} \operatorname{Rep}(Q, \underline{d})=\operatorname{Hom}\left(V_{1}, V_{2}\right) \times \operatorname{Hom}\left(V_{2}, V_{3}\right)
$$

$$
\underline{d}=\left(\operatorname{dim} V_{1}, \operatorname{dim} V_{2}, \operatorname{dim} V_{3}\right)
$$

$$
\begin{gathered}
G L(\underline{d})=G L(3) \times G L(4) \times G L(3) \\
\left(g_{1}, g_{2}, g_{3}\right) \cdot\left(V_{a}, V_{b}\right):=\left(g_{2} V_{a} g_{1}^{-1}, g_{3} V_{b} g_{2}^{-1}\right)
\end{gathered}
$$

\bar{O}_{V} is an affine variety in \mathbb{A}^{24}.

Example

- $\operatorname{Rep}(Q, d)=\mathbb{M}_{d \times d}(k)$
- Group action: conjugation
- Orbits: conjugacy classes of matrices in $\mathbb{M}(d, k)$
- Geometry: normal, Cohen-Macaulay varieties with rational singularities.
- For nilpotent $V(a)$,
- if char $k>0$ then $\bar{O}_{V(a)}$ is a Frobenius split variety.
- if char $k=0$ then $\bar{O}_{V(a)}$ is Gorenstein; defining ideal generated by minors of various sizes.

Example

- $\operatorname{Rep}(Q, d)=\mathbb{M}_{d_{2} \times d_{1}}(k)$
- Group action: $\left(g_{1}, g_{2}\right) * V(a)=g_{1} V(a) g_{2}^{-1}$
- Orbits: $O_{r}=$ matrices of rank r, $0 \leq r \leq m=\min \left(d_{1}, d_{2}\right)$
- $\bar{O}_{r}=\bigcup_{j \leq r} O_{j}$ (determinantal varieties) $=\{W \in \operatorname{Rep}(Q, d) \mid \operatorname{rank} W(a) \leq r\}$
- Geometry: normal, Cohen-Macaulay varieties with rational singularities; Gorenstein if $r=0, r=m$ or $d_{1}=d_{2}$; regular if $r=0$ or $r=m$;
- Resolution of defining ideal (Lascoux); defining ideal generated by $(r+1) \times(r+1)$ minors.

Why study orbit closures?

- types of singularities
- degenerations
- desingularization
- normality, C-M, unibranchness
- tangent spaces
- defining equations
- etc.

Some results

(1981) Abeasis, Del Fra, Kraft

Equi-oriented quiver of type A_{n} : orbit closures are normal, Cohen-Macaulay with rational singularities.

(1998) Laxmibai, Magyar

Extended the above result to arbitrary characteristic.

(2001,2002) Bobinski, Zwara

Proved the above result for A_{n} with arbitrary orientation and for D_{n}.

- Defining ideals?
- What about quivers of type E ?

To study orbit closures by calculating resolutions

Strategy

Use geometric technique

$$
\begin{aligned}
& Z \longleftrightarrow X \times \mathcal{V} \xrightarrow{\longrightarrow} \mathcal{V} \\
& \downarrow q \quad \downarrow q \\
& Y \longleftrightarrow X
\end{aligned}
$$

- X : affine space
- Y : subvariety
- \mathcal{V} : a projective variety

- Let $Z=\operatorname{tot}(\eta)$ and $X \times \mathcal{V}=\operatorname{tot}(\mathcal{E})$.
- Exact sequence of vector bundles over \mathcal{V} :

$$
0 \rightarrow \eta \rightarrow \mathcal{E} \rightarrow \tau \rightarrow 0
$$

- Define $\xi=\tau^{*}$

$$
\begin{aligned}
& K(\xi) \bullet: 0 \rightarrow \Lambda^{t} \xi \rightarrow \cdots \rightarrow \Lambda^{2}\left(p^{*} \xi\right) \rightarrow p^{*} \xi \rightarrow \mathcal{O}_{X \times \mathcal{V}} \\
& \text { resolves } \mathcal{O}_{Z} \text { as } \mathcal{O}_{X \times \mathcal{V}} \text {-module }
\end{aligned}
$$

- Let $Z=\operatorname{tot}(\eta)$ and $X \times \mathcal{V}=\operatorname{tot}(\mathcal{E})$.
- Exact sequence of vector bundles over \mathcal{V} :

$$
0 \rightarrow \eta \rightarrow \mathcal{E} \rightarrow \tau \rightarrow 0
$$

- Define $\xi=\tau^{*}$

$$
\begin{aligned}
K(\xi) \bullet 0 \rightarrow \bigwedge^{t} \xi \rightarrow \cdots & \rightarrow \bigwedge^{2}\left(p^{*} \xi\right) \rightarrow p^{*} \xi \rightarrow \mathcal{O}_{X \times \mathcal{V}} \\
& \downarrow q_{*} \\
& \text { F. }
\end{aligned}
$$

Main theorem [Weyman]

- $F_{i}=\bigoplus_{j \geq 0} H^{j}(\mathcal{V}, \bigwedge \xi) \otimes_{K} A(-i-j)$ where $A=K[X]$.
- $F_{i}=0$ for $i<0 \Rightarrow \mathbf{F}_{\mathbf{0}}$ is a finite free resolution of the normalization of $K[Y]$.
- If $F_{i}=0$ for $i<0$ and $F_{0}=A \Rightarrow Y$ is normal, Cohen-Macaulay and has rational singularities.

- $F_{i}=\bigoplus_{j \geq 0} H^{j}\left(\mathcal{V}, \bigwedge^{i+j} \xi\right) \otimes_{K} A(-i-j)$ where $A=K[\operatorname{Rep}(Q, \underline{d})]$.
- If $F_{i}=0$ for $i<0 \Rightarrow \mathbf{F}$. is a finite free resolution of the normalization of $K\left[\bar{O}_{V}\right]$.
- If $F_{i}=0$ for $i<0$ and $F_{0}=A \Rightarrow \bar{O}_{V}$ is normal and has rational singularities.

Steps in the construction

- Construct the Auslander-Reiten quiver of Q.
- Find a directed partition of the AR quiver (with s parts).
- Define a subset of $Z_{\mathcal{I}_{*}, V}$ of $\operatorname{Rep}(Q, \underline{d}) \times \prod_{x \in Q_{0}} \operatorname{Flag}\left(\underline{\beta}, V_{x}\right)$

$$
\begin{aligned}
Z_{\mathcal{I}_{*}, V}=\{ & \left(V,\left(R_{s}(x) \subset \cdots \subset R_{2}(x) \subset V_{x}\right)_{x \in Q_{0}}\right) \\
& \left.\forall a \in Q_{1}, \forall t, \quad V(a)\left(R_{t}(t a)\right) \subset R_{t}(h a)\right\}
\end{aligned}
$$

Theorem [Reineke]

- $q\left(Z_{\mathcal{I}_{*}, V}\right)=\bar{O}_{V}$.
- q is a proper birational isomorphism of $Z_{\mathcal{I}_{*}, V}$ and \bar{O}_{V}.

Example - determinantal variety

$V=a(0 K) \oplus b(K K) \oplus c(K 0)$
$\beta_{i}=\operatorname{dim} R_{i}$

Example - determinantal variety

$$
\begin{array}{cl}
V_{1} \xrightarrow{\phi} V_{2} & X=\operatorname{Hom}\left(V_{1}, V_{2}\right)=V_{1}^{*} \otimes V_{2} \\
\operatorname{dim} V_{1}=2 & \text { Orbit closure } \bar{O}_{V}=\left\{\phi: V_{1} \rightarrow V_{2} \mid \operatorname{rk} \phi \leq 2\right\} \\
\operatorname{dim} V_{2}=3 & \mathcal{V}=\operatorname{Gr}\left(2, V_{2}\right) \\
r=\operatorname{rank} \phi=2 & Z=\operatorname{tot}\left(V_{1}^{*} \otimes \mathcal{R}\right)=\{(\phi, R) \mid \operatorname{im}(\phi) \subseteq R\} \\
& A=K[X]=\operatorname{Sym}\left(V_{1} \otimes V_{2}^{*}\right)
\end{array}
$$

Lascoux resolution

$$
\begin{gathered}
0 \longrightarrow S_{21} V_{1} \otimes \wedge^{3} V_{2}^{*} \otimes A(-3) \xrightarrow{d_{2}} \wedge^{2} V_{1} \otimes \wedge^{2} V_{2}^{*} \otimes A(-2) \xrightarrow{d_{1}} A \longrightarrow 0 \\
d_{1}=\left(x_{11} x_{22}-x_{12} x_{21}, x_{11} x_{32}-x_{12} x_{31}, x_{21} x_{32}-x_{22} x_{31}\right) \\
d_{2}=\left(\begin{array}{cc}
x_{31} & -x_{32} \\
-x_{21} & -x_{22} \\
x_{11} & x_{12}
\end{array}\right)
\end{gathered}
$$

Non-equioriented A_{3}

$Z \subset \operatorname{Rep}(\boldsymbol{Q}, \underline{d}) \times \prod_{i=1}^{3} \operatorname{Aln}\left(g f_{i} \beta_{i} \beta_{i} V_{i} X_{i}\right)$

Non-equioriented A_{3}

A_{4} (source-sink)

A_{4} (source-sink)

$\boldsymbol{v}=\bigoplus_{a \in Q_{1}}\left(\sum_{t=1}^{s} \mathcal{R}_{t}^{t a} \otimes \mathcal{Q}_{t}^{h a *}\right) \xi=\bigoplus_{a \in Q_{1}}\left(\mathcal{R}_{t}^{t a} \otimes \mathcal{Q}_{t}^{h a *}\right)$
$\bullet \xi=\bigoplus S_{\lambda(a)} \mathcal{R}_{t}^{t a} \otimes S_{\lambda(a)^{\prime}} \mathcal{Q}_{t}^{h a *}$

$$
\sum_{a \in Q_{1}}|\lambda(a)|=t
$$

- Assign weights to each summand.
- Apply Bott's theorem to these weights to calculate

$$
F_{i}=\bigoplus_{j \geq 0} H^{j}\left(\mathcal{V}, \bigwedge_{i+j}^{i+j} \xi \otimes_{K} A(-i-j), \quad j=\#\right. \text { exchanges }
$$

- $D(\underline{\lambda}):=\sum_{a \in Q_{1}}|\lambda(a)|-j=(i+j)-j=i$.
- Rewrite

$$
F_{D(\underline{\lambda})}=\bigoplus_{j \geq 0} H^{j}\left(\mathcal{V}, \bigwedge^{i+j} \xi\right) \otimes_{K} A(-i-j)
$$

Non-equioriented A_{3}

$$
V_{1} \longrightarrow V_{3} \longleftarrow V_{2}
$$

$$
F_{D(\underline{\lambda})}=\bigoplus_{|\lambda|+|\mu|=t} c_{\lambda, \mu}^{\nu}\left(S_{\lambda} V_{1} \otimes S_{\mu} V_{2} \otimes S_{\nu} V_{3}^{*}\right)
$$

Theorem (-)

- $D(\underline{\lambda}) \geq E_{Q}$
- $F_{0}=A$ and $F_{i}=0$ for $i<0$. Thus \bar{O}_{V} is normal and has rational singularities.

$$
V_{1} \xrightarrow{\phi} V_{3} \stackrel{\psi}{\longleftarrow} V_{2}
$$

Theorem(-)

- Minimal generators of the defining ideal:

Let $p=\operatorname{rank}(\phi), q=\operatorname{rank}(\psi), r=\operatorname{rank}(\phi+\psi)$, the minimal generators of \bar{O}_{V} are

- $(p+1) \times(p+1)$ minors of ϕ,
- $(q+1) \times(q+1)$ minors of ψ,
- $(r+1) \times(r+1)$ minors of $\phi+\psi$, taken by choosing $b+k+1$ columns of ϕ and $c+l+1$ columns of ψ such that $k+l=d-1 . \quad(b, c, d$ are multiplicities of some indecomposable representations)
- Characterization of Gorenstein orbits.

$$
\begin{aligned}
& V=\bigoplus_{\alpha \in R^{+}} X_{\alpha} \\
& \underline{d}=(3,4,3)
\end{aligned}
$$

$$
\xi=\mathcal{R}_{1} \otimes \mathcal{Q}_{2}^{*} \oplus \mathcal{R}_{3} \otimes \mathcal{Q}_{2}^{*}
$$

$$
A=\operatorname{Sym}\left(V_{1} \otimes V_{3}^{*}\right) \otimes \operatorname{Sym}\left(V_{2} \otimes V_{3}^{*}\right)
$$

$$
\begin{gathered}
A \\
\uparrow \\
\uparrow \\
\left(\wedge^{3} V_{1} \otimes \wedge^{3} V_{3}^{*} \otimes A(-3)\right) \oplus\left(\wedge^{3} V_{2} \otimes \wedge^{3} V_{3}^{*} \otimes A(-3)\right) \oplus \\
\left(\wedge^{2} V_{1} \otimes \wedge^{2} V_{2} \otimes \wedge^{4} V_{3}^{*} \otimes A(-4)\right) \\
\uparrow \\
\uparrow \\
\left(\wedge^{3} V_{1} \otimes \wedge^{2} V_{2}^{*} \otimes S_{2111} V_{1}^{*} \otimes A(-5)\right) \oplus\left(\wedge^{4} V^{*} \otimes A(-4)\right) \oplus\left(\Lambda_{211} V_{2} \otimes \wedge^{4} V_{3}^{*} \otimes A(-4)\right) \oplus \\
\left.\wedge^{3} V_{1} \otimes \wedge^{3} V_{2} \otimes S_{2111} V_{3}^{*} \otimes A(-5)\right) \oplus \\
\uparrow S_{222} V_{3}^{*} \otimes A(-6) \\
\uparrow \\
\left(S_{211} V_{1} \otimes \wedge^{3} V_{2} \otimes S_{2221} V_{3}^{*} \otimes A(-7)\right) \oplus\left(\wedge^{3} V_{1} \otimes S_{211} V_{2} \otimes S_{2221} V_{3}^{*} \otimes A(-7)\right) \oplus \\
\left(\wedge^{2} V_{1} \otimes S_{222} V_{2}^{*} \otimes S_{2222} V_{3}^{*} \otimes A(-8)\right) \oplus\left(S_{222} V_{1} \otimes \wedge^{2} V_{2} \otimes S_{2222} V_{3}^{*} \otimes A(-8)\right) \oplus \\
\wedge^{3} V_{1} \otimes \wedge^{3} V_{2} \otimes S_{3111} V_{3}^{*} \otimes A(-6) \\
\uparrow \\
\left(S_{211} V_{1} \otimes S_{211} V_{2} \otimes S_{2222} V_{3}^{*} \otimes A(-8)\right) \oplus\left(S_{222} V_{1} \otimes \wedge^{3} V_{2} \otimes S_{3222} V_{3}^{*} \otimes A(-9)\right) \oplus \\
\left(\wedge^{3} V_{1} \otimes S_{222} V_{2} \otimes S_{3222} V_{3}^{*} \otimes A(-9)\right) \\
\uparrow
\end{gathered}
$$

Source-sink quivers

Theorem(-)

Q be a source-sink quiver and V be a representation of Q such that the orbit closure \bar{O}_{V} admits a 1 -step desingularization Z. Then

$$
D(\underline{\lambda}) \geq E_{Q}
$$

Corollary

If Q is Dynkin then \bar{O}_{V} is normal and has rational singularities.
Orbit closures of type E_{6}, E_{7} and E_{8} admitting a 1-step desingularization are normal!

Corollary

If Q is extended Dynkin then $\mathbf{F}_{\mathbf{\bullet}}$ is a minimal free resolution of the normalization of \bar{O}_{V}.

Equioriented A_{n}

Theorem(-)

Let Q be an equioriented quiver of type A_{n} and β, γ be two dimension vectors. Let $\alpha=\beta+\gamma$ and $V \in \operatorname{Rep}(Q, \alpha)$. Then

- $D(\underline{\lambda}) \geq E_{Q}$
- $F(\beta, \gamma)_{i}=0$ for $i<0$.
- $F(\beta, \gamma)_{0}=A$.
- The summands of $F(\beta, \gamma)_{1}$ are of the form $\bigwedge^{\gamma_{i}+\beta_{j}+1} V_{i} \otimes \bigwedge^{\gamma_{i}+\beta_{j}+1} V_{j}^{*}$ where $1 \leq i<j \leq n$.

Thank you!

