Seeing what we hear: Electromagnetic Counterparts of Gravitational Wave Sources

> Varun Bhalerao (varunb@iucaa.ernet.in)

GW Sources

EM Counterparts

Followup requirements

Indian Capabilities

Transient Hunt

NS + NS merger

(Resmi's talk)

Electromagnetic Counterparts of Gravitational Wave Sources | Varun Bhalerao (IUCAA)

2 March 2015

3

GW Sources

EM Counterparts

Followup requirements

Indian Capabilities

Transient Hunt

NS + NS inspirals

- Pre-merger emission ???
- Short-Hard Gamma-Ray Bursts beamed » X-rays, bright detection if on-axis
- "Kilonova" from nucleosynthesis in disk
 » Optical / IR, faint (22 26 mag)
 » Fast (hours days)
 - » Rare (One tentative detection so far)
- Radio emission from interaction with surroundings (weeks – months)

Complementary information

GW

- Masses
- Spins
- Geometric properties
 - » Position
 - » Distance
 - » Inclination angle...

EM

- Beaming
- Nucleosynthesis
- Ejecta properties
 - » Mass
 - » Velocity...

Complete astrophysical picture

There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know.

Electromagnetic Counterparts of Gravitational Wave Sources | Varun Bhalerao (IUCAA)

Donald Rumsfeld, US secretary of defense

GW Sources

EM Counterparts

Followup requirements

Indian Capabilities

Transient Hunt

The follow-up challenge

The follow-up challenge

Right place,

Right time,

Right equipment

The right place

A Global Network

A Global Network

A Global Network

The right time

Day and night!

Response timescales

• Gamma-ray / X-ray : Seconds to Minutes

• Optical / Infrared : Hours

• Radio: Days

The right equipment

Where/how do we look?

Localization

Triangulate from arrival times

LIGO-India advantage:

Longer
 baselines

Better
 localization

Source localization

Image: Stephen Fairhurst

LIGO-India: Improved localization

Image: Stephen Fairhurst

How large is the search region?

Localization

Virgo Supercluster

Local Superclusters

GW Sources

EM Counterparts

Followup requirements

Indian Capabilities

Transient Hunt

GW & India

- LIGO-India awaits cabinet approval
- First detection likely before it is functional

 Can we detect electromagnetic counterparts for triggers from the three other detectors?

Elsewhere in the world

Telescope	Aperture	Field of View	Exposure	Overhead	Sensitivity	
	(m)	(deg^2)	(sec)	(Readout)	$(5\sigma \text{ mag in R band})$	
Zwicky Transient Facility	1.2	35	60	15	20.6	
La Silla Quest	1.0	9.4 (80%)	60	30	20.5	
Catalina Real-Time Transient Survey	0.7	8.0	30	18	19	
Palomar Transient Factory	1.2	7.1	60	40	20.6	
Pan-STARRS 1	1.8	7.0	60	3	22.0	
Skymapper	1.35	5.62	110	20	21.5	
CTIO-Dark Energy Camera	4.0	3.0	50	17	23.7	
WIYN-One Degree Imager	3.5	1.0	60	30	23	
CFHT-Megacam	3.6	0.9	60	40	23	
Large Synoptic Survey Telescope	8.4(6.7)	9.6	15	2	24.5	
Subaru-HyperSuprimeCam	8.2	1.77	30	20	24.5	

From Nissanke, Kasliwal and Georgiva, 2012, arXiv:1210.6362

Can the small beat the big?

EM observing in India Location: Exclusive access to ~ 1/3rd of the sky

Opportunity Responsibility

EM observing in India

Location: Exclusive access to ~ 1/3rd of the sky

Suite of telescopes and instruments

ASTROSAT

A Satellite Mission for Multi-wavelength Astronomy Indian Space Research Organisation

ASTROSAT

A Multi-Wavelength Satellite

Electromagnetic Counterparts of Gravitational Wave Sources | Varun Bhalerao (IUCAA)

2 March 2015

Astrosat

Cadmium Zinc Telluride Imager

- Energy Range: 010-150 keV
- Effective area:
 - **°~ 500 cm²**
- Field of view:
 FOV 5° (FWHM)
 Resolution 3'
- Timing resolution:
 20 μs precision

http://www.iucaa.ernet.in/~astrosat/czti_specs.html s | Varun Bhalerao (IUCAA) 2 March 2015 38

Giant Meterwave Radio Telescope

Optical / Infrared: Big guns

- 1.3m Devasthal Fast Optical Telescope
- 1.3m Kavalur Telescope

- 2m Himalayan Chandra Telescope
- 2m IUCAA Girawali Telescope
- 1.2m Mt. Abu IR Telescope

• 3.6m ARIES Telescope

Quick specs

Telescope	Aperture	FOV	Info		
DFOT	1.3m	$1^{\circ} \times 1^{\circ}$	Img		
НСТ	2m	10' × 10'	Img	Spec	IR
IGO	2m	10' × 10'	Img	Spec	IR
Mt. Abu IR	1.2m	8' × 8'		Spec	IR
VBT	2.3m	_		Spec	
Baker Nunn Camera	0.5m	4° × 4°	Img		
Mt. Abu CDK	0.7m	51' × 51'	Img		

EM observing in India

Location: Exclusive access to ~ 1/3rd of the sky

• Suite of telescopes and instruments

Rapid response capabilities

• Readiness: software and manpower

GW Sources

EM Counterparts

Followup requirements

Indian Capabilities

Transient Hunt

Finding the transient

Finding the transient

Reference images

Better than new data

» Deeper

- » Better seeing
- Example: IGO
 - » Sky visible: $\delta > -40^{\circ} = 36,000 \text{ sq deg } (88\%)$
 - » IFOSC FOV = 10'.5 × 10'.5 = 0.03 sq deg
 - » Full sky coverage: 1.2 million images
 - » Few min exp => ~100 per night => ~ 32 years
- ~ 1 year for 1 sq deg FOV

Public reference image data?

- Reference images must be in same band
- SDSS: ~1/3rd sky
- USNO: All sky, lower quality

- CRTS: All sky, unfiltered
 - » Median 100 visits/sky location
 - » Work with CRTS group (Ashish Mahabal et al) to create reference images

Finding the transient

Automatic transient search

- Catalog each source, find new ones
 - » Problem: transients often on galaxies
- Image subtraction
 - » Problem: varying observing conditions
 - » Must match Point Spread Function first

Individual sources: detection easier

3 pixel Gaussian smoothed

Point Spread Function

Sample: bad image subtraction

VALULI DITALETAU LIUCAAT

Lots of statistically significant residuals!

Electromagnetic Counterparts of Gravitational Wave Sources | Varun Bhalerao (IUCAA)

2 March 2015

54

Finding the transient

False positives

- Instrumental:
 - » PSF mismatch
 - » CCD defects
 - » Diffraction spikes

- Astrophysical:
 - » Asteroids
 - » Satellites
 - » Cosmic rays

Detection is contextual!

Run-of-the-mill transients are contaminants
 » Flare stars, variables

- Utilize expected source properties
 - » GRB: expect fading
 - » Use multiple exposures
 - » Also eliminates asteroids (move tens of arcsec per hour)

Human "vetting"

Electromagnetic Counterparts of Gravitational Wave Sources | Varun Bhalerao (IUCAA)

2 March 2015

Good days, Bad days

GRB 140808A

- 19,853 detections > 5σ
- 4,804 with RB2 > 0.1
- 2,349 not stellar
- 2,349 not asteroids
- 127 detected twice
- 12 saved for follow-up

GRB 140620A

- 152,224 detections > 5σ
- 50,930 with RB2 > 0.1
- 17,872 not stellar
- 17,872 not asteroids
- 34 saved for follow-up

Fermi GRB followup project, iPTF collaboration

Finding the transient

Follow-up

- Multi-wavelength, multi-location
- Optical:
 - » HCT, IGO (multi-band photometry/spectra)
 - » Observe before candidate fades too much
 - » Keck, Palomar, Gemini for next night
- Other wavelengths:
 - » Swift, CARMA

Example: iPTF & Fremi GRBs

- Error boxes for Fermi GBM detections can be $100 150 \text{ deg}^2$
- Observe up to 20 tiles, three times each
 » Helps eliminate new asteroids, spurious events
- Up to 10⁵ statistically significant candidates
- 10 100 after machine classification
 » 1000 on bad nights
- 2 5 identified as "real" by humans
- Further follow-up identifies afterglow

Summary

Summary

- Identifying and studying electromagnetic counterparts to gravitational wave sources is crucial for complete astrophysical understanding
- Much remains unknown about possible counterparts
- Search for EM counterparts is an extremely challenging problem...

... and we need to work very hard to make it possible!