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- Inflation is a phase of accelerated expansion taking place in the 
very early Universe. 

Inflation in brief

Inflation does not replace the Hot Big Bang model. It is a new ingredient 
which completes the standard model. It takes place before the Hot Big 
Bang phase
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- Inflation is a phase of accelerated expansion taking place in the 
very early Universe. 

Inflation in brief

- Why? This allows us to solve several puzzles of the standard 
hot Big Bang model (horizon problem, flatness problem etc …)

- How? We need a fluid with negative pressure!

In GR, any form of energy weighs including pressure 
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Inflation in brief

If the scalar field moves slowly (the potential is flat), then pressure is 
negative 
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Inflation in brief

The field oscillates, decays and the decay products thermalize …
Then the radiation dominated era starts …
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- Inflation is a phase of accelerated expansion taking place in the 
very early Universe. 

Inflation in brief

- Why? This allows us to solve several puzzles of the standard 
hot Big Bang model (horizon problem, flatness problem etc …)

- How? We need a fluid with negative pressure!

- In HEP, matter is described by field theory; we take a scalar 
field, the inflaton, since compatible with the cosmological 

principle
- Inflation is also a phase of exponential expansion during which 

the 
Hubble radius is almost constant
- Inflation has to come to an end: reheating stage

- The large scale structure and the CMB anisotropy originate 
from the vacuum fluctuations stretched on cosmological 
scales



inflation radiation matter
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state of the 

harmonic 
oscillator

Quantum fluctuations as seeds of CMB anisotropy and large scale structures

Structure formation and inflation: the cosmological Schwinger effect

The mechanism rests on the 
quantum gravitational nature 
of the inflaton and gravitational 
fields

Two types of fluctuations: density 
perturbations +tensor perturbations 
(primordial gravity waves)
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- Inflation is a phase of accelerated expansion taking place in the 
very early Universe. 

Inflation in brief

- Why? This allows us to solve several puzzles of the standard 
hot Big Bang model (horizon problem, flatness problem etc …)

- How? We need a fluid with negative pressure!

- In HEP, matter is described by field theory; we take a scalar 
field, the inflaton, since compatible with the cosmological 

principle
- Inflation is also a phase of exponential expansion during which 

the 
Hubble radius is almost constant
- Inflation has to come to an end: reheating stage

- The large scale structure and the CMB anisotropy originate 
from the vacuum fluctuations stretched on cosmological 
scales

- The properties of the fluctuations can be characterized by the 
correlation function: 2-point functions (power spectrum), 3-point 
function (bispectrum) etc …
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- The slow-roll phase is described in terms 
of slow-roll parameters 

Parametrizing single field slow-roll inflation

- The reheating phase depends 
on all the couplings between the 
inflaton and the other fields 
(scalar, fermions, gauge bosons)

- It can be parametrized by the 
the reheating temperature and 
the mean equation of state during 
reheating.

In fact, the CMB only depends 
on a specific combination, the 
Reheating parameter
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Calculating the two-point correlations: slow-roll parameters

 The correlation functions depend on the slow-roll parameters evaluated 
at the time at which the pivot scale crossed out the Hubble radius during 
inflation

inflation radiation matter

 The relevant quantities are                       and                      and the 
     reheating dependence enters here since       depends on the reheating 
     parameter   
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Reheating



Consistency relation:

Gravitational waves are subdominant 

The spectral indices are given by 

The running, i.e. the scale dependence of the spectral indices, of dp and gw are 

Inflationary predictions: the two-point correlation function   

- The amplitude is controlled by H 
-  For the scalar modes, the amplitude also 
   depends on  1 

- 

The power spectra are scale-
invariant plus logarithmic 
corrections the amplitude of which 
depend on the sr parameters, ie on 
the microphysics of inflationC~ -0.7
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Predictions in the slow-roll space: one example

“Large field”
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Different 
values of p

“Large field”

Predictions in the slow-roll space
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Different 
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Different 
values of p

“Large field”

Different 
value of φ*

= different 
reheating era

Predictions in the slow-roll space
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Three-point correlation function for vanilla models

       is of the order of the slow-roll parameters and hence unobservable 
with the current technology …
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  There are literally hundreds of different models of inflation 

Inflation with non-minimal kinetic 
term

Inflation with features
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  There are literally hundreds of different models of inflation 

 Even if one considers single field slow-roll models with minimal kinetic only, 
it remains at least two hundreds models …

 All these models were recently compared to Planck data in “Encyclopedia 
Inflationaris” (JM, C. Ringeval & V. Vennin, arXiv:1303.3787)

 But different models make different predictions so we can distinguish 
among them. Non-vanilla models typically predict non-adiabatic perturbations 
or non-Gaussianities.
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Planck 2013 results in brief:

 Spatially flat universe with adiabatic and Gaussian 
fluctuations

Planck 2015 results in brief:

  Single field slow-roll inflation with minimal kinetic term is 
preferred

 We can focus on single field models, not because they are the simplest 
ones but because they are favored by Planck (Giannantonio & Komatsu 2014)
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CMB constraints in the slow-roll plane
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CMB constraints in the slow-roll plane

 Planck 2015 constraints on the 
slow-roll parameters

 Planck 2015 constraints on the 
inflaton potential

 Planck 2015 constraints on the energy scale of inflation
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Planck 2013 (and 2015) constraints 

One can derive constraints on 
power-law parameters
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Planck 2013 (and 2015) constraints 

 Deviation from exact scale 
invariance detected at a 
significant level and robust

Planck 2013

Planck 2015

 No detection of gravity waves, 
upper 

     bound on r

 No detection of scalar running
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An example: « large field inflation »

*
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What is the best model of inflation?

But what is the best one?

 Vanilla models are preferred but this leaves us with many different models 
(~ 200 models) … for each of them, one can establish their predictions and 
compare to the Planck data 

 To answer this question one can calculate the Bayesian evidence of each model
(the integral of the likelihood over the prior space). Using Bayes theorem, this 
leads to the probability of a model

 This is a highly non-trivial computing problem … needs to set a pipeline 
of numerical codes: CAMB, CosmoMC, Multinest …
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Planck: and the winners are …

KMIII

HI (Starobinsky 
model)ESI

Plateau inflation are the winners!
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 Two models with a different number of parameters can have the same 
Bayesian evidence if the extra parameters do not affect the predictions 

 Inflation in the evidence-Number of unconstrained parameter plane

 One can break this degeneracy by introducing the Bayesian complexity 
or, equivalently, the number of unconstrained parameters given the data.    

 A good model is then a model with a good Bayesian evidence and with 
a number of unconstrained parameter close to zero, ie all the parameters 
are constrained by the data.    

 One can then represent the performance of a model in the space “Bayesian 
evidence” versus “number of unconstrained parameters”.  

Evidence

Nb of unconstrained 
parameters0 +1 +2

“bad” models

-1

“good” models Of course, you would 
like your model to be here!!!
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 Inflation in the evidence-Number of unconstrained parameter plane



The Jeffreys’ scale

NB: Here, the reference is the best model!!



Statistics

26 % inconclusive zone

21 % weak zone

18 % moderate zone

34 % strong zone

Summary

15 different potentials
in the inconclusive zone
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Planck 2013 constraints on reheating

 Planck can constrain the reheating epoch

 Technically, this means putting contraints on the reheating parameter 
introduced before

 Reheating is contrained if the posterior has a width smaller than that 
of the prior

prior

posterior

Constrain on reheating
= width of prior/width of posterior>1
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Planck 2013 constraints on reheating

Constraints
on reheating

Model performance 

No constraint
on reheating
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Planck2013 constraints on reheating



Recap

  Planck 2013: single field inflation with a plateau-like potential. More complicated 
models (multiple field scenarios, non-minimal kinetic term scenario etc … ) should all 
have a “bad” Bayesian evidence …
 

  This could change if non standard features are found (NG etc …)
 

 Planck2013: 1/3 of the models are now ruled out 

  KMIII, ESI, Starobinsky model, … are the winners
  

  Reheating is now constrained, average reduction of the prior to posterior width 
of about 40%

  Future CMB experiments such as COrE+: can ruled out 3/4 of the models and 
provide very good constraints on the reheatin epoch.
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Gravitational Waves Production (III)
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