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2 Formalisms of classical and quantum mechanics

2.1 Setup of classical mechanics

• The set of possible instantaneous locations of a classical particle is called its configuration
space. This is usually three dimensional Euclidean space R3 . The number of coordinates needed
to specify the instantaneous configuration of a system is the number of degrees of freedom. A
system consisting of a pair of particles has 6 degrees of freedom x1, y1, z1, x2, y2, z2 , its configu-
ration space is R3 × R3 = R6 . A particle attached to a fixed support by a rod of fixed length
has two degrees of freedom, its configuration space is a sphere. The configuration space and
number of degrees of freedom are kinematical notions. They do not depend on the nature of
forces between the particles.

• If the forces acting on/between the particles are known, then we may determine the dynamical
time evolution of the system by solving Newton’s equations for the trajectories. For one particle,
mr̈ = F . Newton’s equations are second order in time, they require two sets of initial conditions,
the initial positions r(0) and initial velocities ṙ(0). In other words the initial coordinates
r(0) and initial momenta p(0) = mṙ(0) determine the future trajectory. We say that the
instantaneous state of the system is specified by giving the coordinates and momenta of all
the particles. The set of possible instantaneous states of a system is its phase space. For a
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particle moving along a line, its phase space is the x− p phase plane. Newton’s equations may
be formulated as Hamilton’s equations for the time evolution of coordinates and momenta

ẋ =
∂H

∂p
and ṗ = −∂H

∂x
. (1)

For a particle in a potential H(x, p) = p2

2m + V (x) and Hamilton’s equations are a pair of first
order equations

ẋ =
p

m
and ṗ = −dV

dx
, (2)

which may be written as a single second order equation expressing Newton’s second law mẍ =
−V ′(x). The curve in phase space (x(t), p(t)) is called the phase trajectory. Draw the phase
portrait for a free particle as well as for a simple harmonic oscillator, indicating the direction
of trajectories. A dynamical variable that is constant along trajectories is called a constant of
motion. Its value may differ from trajectory to trajectory. The hamiltonian H = T + V is a
conserved quantity for conservative systems (i.e. where the force is the negative gradient of a
scalar potential).

• Dynamical variables like angular momentum and the hamiltonian are functions of the basic
dynamical variables position and momentum. In general, any real function of position and
momentum is called an observable. Observables are simply real-valued functions on phase space.
They must be real since observables are physical quantities that may be measured.

2.2 Framework and postulates of quantum mechanics

2.2.1 Hilbert Space of states of a quantum system

• States of a quantum system are vectors in a linear space (“vector space”) called a complex
Hilbert space H . For a particle moving on a line, its configuration space is R1 , parametrized by
one coordinate x . Its quantum state space H = L2(R) is the space of square-integrable functions
ψ(x) on the classical configuration space. ψ is called the state function or state vector or wave
function of the particle.

• By Born’s probability postulate, |ψ(x)|2dx is interpreted as the probability of finding the
particle between x and x + dx . Since the total probability of the particle being somewhere
should be one, we normalize the wave function

∫∞
0 |ψ(x)|2dx = 1. This is why we restrict to

square-integrable wave functions. ψ(x) itself is called a probability amplitude, its square is
a probability density.

• Unlike the classical space of states (phase space) which can be a non-linear manifold (e.g. if a
particle is constrained to move on a circle), the quantum Hilbert space is always a linear space.
The sum of two states ψ + φ is a possible state and so is a complex multiple cψ of any state.
This is the principle of linear superposition of states, used to explain the interference of matter
waves in the double slit experiment.

• A complex Hilbert space H is a vector space over the complex numbers. It is a space of
ket vectors |ψ〉 closed under linear superposition. If |ψ〉 and |χ〉 are state vectors, then so is
α|ψ〉+ β|χ〉 , for any α, β ∈ C . A simple example is the two dimensional complex vector space

of spin states of a spin half particle which are usually denoted as column vectors |ψ〉 =

(
ψ1

ψ2

)
.

Notably, the space of states of a quantum system is a complex, rather than a real vector space.
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• The quantum state space is equipped with an inner or dot product. The inner product of a
pair of vectors ψ, χ is denoted 〈ψ|χ〉 . For the spin- 1

2 Hilbert space, the inner product is

〈ψ|χ〉 =

(
ψ1

ψ2

)†(
χ1

χ2

)
=
(
ψ∗1 ψ∗2

)(χ1

χ2

)
= ψ†χ = ψ∗1χ1 + ψ∗2χ2. (3)

ψ† is called the hermitian adjoint, it is the complex conjugate transpose, it is a row vector. So
associated with a vector space of colummn/ket vectors there is a ‘dual’ space of row/bra vectors,
the adjoints of the kets |ψ〉† = 〈ψ| =

(
ψ∗1 ψ∗2

)
. The inner product may also be regarded as

producing a complex number from a bra and a ket vector 〈ψ|χ〉 . However, the inner product of
a non-zero vector with itself is always a positive real number 〈ψ|ψ〉 > 0, it is called the square
of the length of the vector.

• Another example is n-dimensional complex vector space Cn with the inner product 〈u|v〉 =∑
i u
∗
i vi . The Hilbert space of a particle moving on a line is L2(R) with 〈f |g〉 =

∫∞
−∞ f

∗(x)g(x) dx .

• From these examples (keep 〈u|v〉 = u∗i vi in mind) we abstract the basic properties of the inner
product (these are its defining properties in an axiomatic approach)

〈αu|v〉 = α∗〈u|v〉, 〈u|βv〉 = β〈u|v〉, 〈u+ v|w〉 = 〈u|w〉+ 〈v|w〉, 〈u|v〉∗ = 〈v|u〉. (4)

〈u|v〉 is linear in the second vector v and anti-linear in the first vector u on account of complex
conjugation of the components of the first vector.

• The norm/length of a vector is ||v|| =
√
〈v|v〉 . The norm of a vector is unchanged upon

multiplying by a phase eiα . If 〈u|v〉 = 0 then the vectors are orthogonal.

• Two state vectors that differ by multiplication by a non-zero complex number ψ2(x) = cψ1(x)
represent the same physical state. We often work with unit norm states.

• A basis for the Hilbert space is a set of vectors |ei〉 such that any vector |v〉 may be expressed
as a linear combination of |ei〉 in a unique way. The number of basis vectors is the dimension of
the vector space. The standard basis vectors of the two dimensional spin Hilbert space C2 are

|e1〉 =

(
1
0

)
, |e2〉 =

(
0
1

)
, so

(
v1

v2

)
= v1|e1〉+ v2|e2〉. (5)

The coefficients vi in the expansion |v〉 =
∑

i vi|ei〉 are called the components of |v〉 . The
components of the adjoint are the complex conjugates: 〈v| =

∑
i〈ei|v∗i . [We will often drop the

summation symbol and assume repeated indices are summed.] E.g. the adjoints of the basis
vectors are row bra-vectors

〈e1| = e†1 =
(
1 0

)
, 〈e2| = e†2 =

(
0 1

)
. (6)

Cn is an n-dimensional vector space. The state space of a particle moving on a line, L2(R) is
infinite dimensional, it is called a function space. It is intuitively clear that this is an infinite
dimensional space since the values of the function ψ(x) at each x ∈ R can be freely specified
(subject to normalizability). x here plays the role of the index i = 1, 2 in the two dimen-
sional spin-half vector space C2 . A possible basis for a function space is the set of monomials
{1, x, x2, x3, x4, · · · } . Indeed, any function ψ that has a Taylor series around x = 0 admits a
expression as a linear combination of these. The coefficients are the derivatives of ψ at x = 0:

ψ(x) = ψ(0) + ψ′(0)x+
1

2
ψ′′(0)x2 +

1

3!
ψ′′′(0)x3 + · · · (7)
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However this basis of monomials is a bit inconvenient. In particular, the basis vectors are not
orthogonal, in fact they are not even normalizable with respect to the above L2 inner product.
A more convenient basis for L2(R) consists of the energy eigenstates of the harmonic oscillator
|n〉 , which we will study in more detail later.

• It is often convenient to work with an orthonormal basis, i.e., a basis of vectors |ei〉 which are
pairwise orthogonal and each normalized to have unit norm, 〈ei|ej〉 = δij . The standard basis
|ei〉 for Cn with components |ei〉j = δij is orthonormal with respect to the usual inner product
〈u|v〉 =

∑
i u
∗
i vj .

• A set of orthonormal vectors is said to be a complete orthonormal set if it forms a basis for
the vector space, i.e., if we may write any vector as a linear combination.

2.2.2 Observables and hermitian linear operators on states

An observable A in quantum mechanics (e.g. hamiltonian, position, momentum, angular mo-
mentum, spin, magnetic moment) is a hermitian (self-adjoint) linear operator on the Hilbert
space of states H . Hermiticity is the quantum analogue of classical observables being real-
valued functions. We will see that a hermitian operator has real eigenvalues, which are possible
results when A is measured. To define a hermitian operator, we first note that a linear operator
on a vector space takes vectors to vectors in a linear way: A(a|ψ〉 + b|χ〉) = aA|ψ〉 + bA|χ〉 .
When A acts on a vector |v〉 it produces a new ket vector A|v〉 which is also denoted |Av〉 .
• A linear operator is an abstract concept, whose concrete realisation is a matrix. A linear
operator on C2 is simply a 2×2 matrix, once we choose a basis to represent it. For example, the

Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are linear operators represented

as matrices in the standard basis for C2 .

• If |ej〉 are a basis for H , then a linear operator A is determined by how it acts on the basis
vectors. Since A is linear A|ej〉 must be a linear combination of the basis vectors themselves

A|ej〉 =
∑
k

|ek〉Akj . (8)

Akj are the components of A in this basis, they may be written as entries in a matrix, with Akj
occupying the slot in the kth row and jth column. The vector that makes up the first column
Ak1 is the ‘image’ of e1 (i.e. coefficients in the linear combination appearing in A|e1〉), the
second column Ak2 is the image of e2 and so on.

• If the basis ei is orthonormal 〈ei|ej〉 = δij , then we have

〈ei|A|ej〉 =
∑
k

〈ei|ek〉Akj =
∑
k

δikAkj = Aij . (9)

We say that Aij are the matrix elements of A between the o.n. basis states ei and ej .

• A matrix A is hermitian if it equals its own complex conjugate transpose. The latter is called
its adjoint A† = (A∗)t . So A is hermitian if A = A† , i.e., if it is self-adjoint. In terms of matrix
entries, A∗ij = Aji . In particular, the diagonal entries of a hermitian matrix are real, while the off
diagonal entries are complex conjugates of each other. The Pauli matrices are hermitian. Note
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that the adjoint of a product is the product of adjoints in the opposite order. (AB)† = B†A†

and that (A|ψ〉)† = 〈ψ|A† . We also denote A|ψ〉 = |Aψ〉 , so that |Aψ〉† = 〈Aψ| .
• The concept of hermiticity makes sense for a linear operator, even if we have not represented
it explicitly as a matrix by choosing a basis. To explain the concept, we need the idea of matrix
elements between states. If u, v are a pair of states, then 〈u|A|v〉 is called the matrix element
of A between the states u and v . To know an operator is to know its matrix elements.

• The adjoint of A is the operator A† defined via its matrix elements 〈u|A†|v〉 = 〈Au|v〉 . So
if we know the matrix elements of A , then we may find the matrix elements of A† . A linear
operator is hermitian if 〈u|Av〉 = 〈Au|v〉 for all states u, v ∈ H . A hermitian operator is also
called symmetric by mathematicians since it does not matter whether A is written on the left
or on the right.

• Now let us see how this abstract definition of hermiticity reduces to the formula Aij = A∗ji
for hermitian matrices. We must equate the matrix elements of A and those of A† . Let ei be
an orthonormal basis, then the matrix element of A between the states ei and ej is just Aij ,
as is seen by taking the inner product of the above equation with ei

〈ei|A|ej〉 =
∑
k

〈ei|ek〉Akj =
∑
k

δikAkj = Aij . (10)

On the other hand, what are the matrix elements of A†? By the definition of the adjoint,

〈ei|A†ej〉 = 〈Aei|ej〉 = 〈ej |Aei〉∗ = (Aji)
∗ (11)

So a linear operator is self-adjoint if its matrix elements in an orthonormal basis satisfy Aij =
(Aji)

∗ .

2.2.3 Outer products of vectors and completeness relation

• Outer products of vectors: Consider the vector space Cn with standard basis |ei〉 . Just
as we may ‘dot’ row and column n-vectors to get a scalar inner product, we may also form their
‘outer’ product (column times a row), to get an n× n matrix. For n = 2 show that

|e1〉〈e1| = e1e
†
1 =

(
1 0
0 0

)
, |e2〉〈e2| =

(
0 0
0 1

)
, |e1〉〈e2| =

(
0 1
0 0

)
, |e2〉〈e1| =

(
0 0
1 0

)
.

(12)
More generally, check that |ei〉〈ej | is a matrix with a 1 in the ij -entry and 0’s elsewhere. From
this we see that a matrix whose entries are Aij in the ith row and jth column, can be expressed
as

A =
∑
ij

Aij |ei〉〈ej | (13)

Now let us use this expression to find how a matrix acts on a vector v = vk|ek〉 . We get

Av =
∑
ij

Aij |ei〉〈ej |vk|ek〉 = Aijvk|ei〉〈ej |ek〉 = Aijvkδjk|ei〉 = Aikvk|ei〉. (14)

So the ith component of Av is
∑

k Aikvk .
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• In particular, the identity operator I , may be expressed as

I =
∑
i

|ei〉〈ei| =
∑
ij

δij |ei〉〈ej | (15)

The identity operator has the components δij in any basis since it takes every vector to itself.
This ‘resolution’ of the identity operator as a sum of outer products of a set of orthonormal basis
vectors is called the completeness relation. It is quite useful in many physical problems and
calculations. E.g. the energy eigenstates of the Harmonic oscillator form a complete orthonormal
set and satisfy the above completeness relation. Coherent states for the harmonic oscillator also
satisfy a completeness relation even though they are not orthogonal and are in fact an over-
complete set.

• An anti-hermitian operator is one that satisfies A† = −A . A unitary operator is one whose
inverse is its adjoint, UU † = U †U = I . It is clear that the identity I is hermitian as well as
unitary. If A is anti-hermitian, then iA is hermitian since (iA)† = A†i† = −A(−i) = A .

2.2.4 Hermiticity of position and momentum operators

• Physically interesting examples of hermitian operators for a particle with one degree of freedom
moving on a line include the position operator x̂ψ(x) = xψ(x), and momentum operator p̂ψ(x) =
−i~ψ′(x). Check that x̂† = x̂ and d̂ = ∂

∂x is anti-hermitian. We must show 〈f |x̂g〉 = 〈x̂f |g〉 for
any two states f, g . This is seen as follows:

〈f |x̂g〉 =

∫
f∗(x)xg(x) dx =

∫
(xf(x))∗g(x) dx = 〈x̂f |g〉. (16)

Showing hermiticity of p̂ = −i~ ∂
∂x requires integration by parts. Let us show that d̂ = ∂

∂x is

anti-hermitian, from which it will follow that p̂ = −i~d̂ is hermitian. Let us denote complex
conjugate of f by f̄ here for convenience

〈f |d̂g〉 =

∫
f̄(x)g′(x)dx = −

∫
f̄ ′(x)g(x) dx+

[
f̄g
]∞
−∞ = −〈d̂f |g〉. (17)

Here we assumed f, g vanish at ±∞ , which is the case for square-integrable functions. Boundary
conditions play an important role in determining the hermiticity of momentum. If we have a
particle moving on a finite interval [a, b] (as in a square well), then

〈f |d̂g〉 =

∫ b

a
f̄(x)g′(x)dx = −

∫ b

a
f̄ ′(x)g(x) dx+

[
f̄g
]b
a

= −〈d̂f |g〉+
[
f̄g
]b
a
. (18)

For d̂ to be anti-hermitian, the boundary term must vanish. This happens, for instance, if the
functions vanish at the end points (f(a) = f(b) = 0, as in an infinite square well) or satisfy
‘periodic boundary conditions’ f(a) = f(b).

• Of particular importance is the concept of expectation value of an observable A in a state
ψ , which is defined as the normalzed diagonal matrix element of A in the state ψ

〈A〉ψ =
〈ψ|Aψ〉
〈ψ|ψ〉

(19)
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The expectation value of a hermitian operator in any state is a real number. For, by hermiticity,
and 〈u|v〉 = 〈v|u〉∗ , we have

〈ψ|Aψ〉 = 〈Aψ|ψ〉 = 〈ψ|Aψ〉∗ (20)

In other words, the diagonal matrix element of A is equal to its own complex conjugate. We
are familiar with this: the diagonal entries of a hermitian matrix in an orthonormal basis
〈ei|A|ei〉 = Aii are real.

• It follows from the reality of expectation values of a hermitian operator that the eigenvalues
of a hermitian operator are also real. In fact, the eigenvalues are simply the expectation values
in the corresponding eigenstates.

2.2.5 Commutators of operators

• Multiplication of matrices/operators is in general not commutative AB 6= BA (in general).
The amount by which they fail to commute is called the commutator [A,B] = AB −BA . Any
operator commutes with itself or any power of itself [A,An] = An+1 −An+1 = 0. On the other
hand, check that xp− px = [x, p] = i~I by acting on a state ψ(x):

xpψ = −i~xψ′(x), while pxψ = −i~ ∂

∂x
(xψ) = −i~xψ′(x)− i~ψ(x) ⇒ [x, p]ψ = i~ψ. (21)

• x and p are said to be canonically conjugate observables. In QM, the commutator plays the
role that the Poisson bracket plays in CM. Just as the Poisson bracket {f, g} of two observables
is another observable, 1

i~ [A,B] is again an observable (i.e., hermitian) if A,B are hermitian. To
show this it suffices to check that [A,B] is anti-hermitian if A and B are hermitian.

([A,B])† = (AB −BA)† = B†A† −A†B† = BA−AB = −[A,B]. (22)

An important property of the commutator is the product or Leibnitz rule, check that

[A,BC] = [A,B]C +B[A,C]. (23)

• In three dimensions, we have three coordinate and momentum operators x, y, z and px =
−i~ ∂

∂x , py = −i~ ∂
∂y , pz = −i~ ∂

∂z . It is easily seen that the momenta commute with each other
and the coordinates commute among themselves, more over [x, px] = i~ while [x, py] = 0
etc. These so-called Heisenberg canonical commutation relations may be summarised as
[xi, pj ] = i~ δij .

2.2.6 Eigenvalue problem for hermitian operators

• The eigenvalue problem for a linear operator (hermitian or not) is the equation A|ψ〉 =
λ|ψ〉 . A non-zero vector |ψ〉 6= 0 that satisfies this equation for some complex number λ is
called an eigenvector of A with eigenvalue λ . Taking the adjoint of the eigenvalue equation we
also have

(A|ψ〉)† = 〈ψ|A† = λ∗〈ψ| (24)

So if |ψ〉 is an eigen-ket of A with eigenvalue λ , then 〈ψ| is an eigen-bra of A with eigenvalue
λ∗ . In particular, if A = A† is hermitian, then 〈ψ|A† = 〈ψ|A = λ∗〈ψ| . In other words, if |ψ〉 is
an eigen-ket of A , then 〈ψ| is an eigen-bra of A with eigenvalue λ∗ . We will soon show that λ
is real if A is hermitian.
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• The eigenstate of the position operator x̂ with eigenvalue x′ is denoted |x′〉 , i.e., x̂|x′〉 = x′|x′〉 .
We will see that measurement of the position of a particle that is in state |x′〉 is guaranteed to
give the value x′ . The ‘position-space’ or ‘coordinate-space’ wave function of any state |ψ〉 is
defined as the inner product 〈x|ψ〉 = ψ(x). It follows that ψ∗(x) = 〈ψ|x〉 .
• Similarly, the eigenvalue problem for momentum is p̂|k〉 = ~k|k〉 . It is conventional to write
the momentum eigenvalue in terms of wave number as ~k . We will see that |k〉 is a state in
which a measurement of the particle’s momentum will give ~k . The momentum space wave
function of a particle in state |ψ〉 is defined as ψ̃(k) = 〈k|ψ〉 . ψ̃ is pronounced ‘psi-tilde’.

• Here are some useful facts about hermitian matrices/operators:

1. The eigenvalues of a hermitian operator are real. This is because the eigenvalues of a
hermitian operator are simply the expectation values in the corresponding eigenstates

A|ψ〉 = λ|ψ〉 ⇒ 〈ψ|A|ψ〉 = 〈ψ|λψ〉 = λ〈ψ|ψ〉 ⇒ λ =
〈ψ|A|ψ〉
〈ψ|ψ〉

. (25)

2. Eigenvectors |χ〉, |ψ〉 corresponding to distinct (necessarily real) eigenvalues µ 6= λ are
orthogonal. To see this, we calculate 〈χ|Aψ〉 in two ways using hermiticity and reality of
eigenvalues and subtract.

〈χ|Aψ〉 = λ〈χ|ψ〉 and 〈χ|Aψ〉 = 〈Aχ|ψ〉 = 〈ψ|Aχ〉∗ = µ∗〈ψ|χ〉∗ = µ〈χ|ψ〉. (26)

Thus (λ − µ)〈χ|ψ〉 = 0. Since λ 6= µ we must have 〈χ|ψ〉 = 0, i.e., eigenvectors corre-
sponding to distinct eigenvalues are orthogonal.

3. It can be shown that a hermitian operator can be diagonalised by a unitary transformation
U †HU = Λ where Λ is a diagonal matrix with eigenvalues along the diagonal. Moreover,
the eigenvectors of a hermitian operator can be chosen to form a complete orthonormal
basis for H

A|ψi〉 = λi|ψi〉, 〈ψi|ψj〉 = δij ,
∑
i

|ψi〉〈ψi| = I, . (27)

Furthermore, two hermitian operators which commute can be simultaneously diagonalised.
In other words, there is a basis of common eigenvectors in which both are diagonal. And
if they do not commute, as in the case of [x, p] = i~I , they cannot be simultaneously
diagonalised. Operators that commute are said to be compatible, we will see that they
can be simultaneously measured.

4. The eigenvalue problem for the momentum operator is p̂|k〉 = ~k|k〉 . The position space
eigenfunction 〈x|k〉 of the momentum operator is a plane wave. p̂ψ(x) = ~kψ(x) becomes
−i~ψ′ = ~kψ or ψ = Aeikx . We will choose A = 1. In other words 〈x|k〉 = eikx and so
〈k|x〉 = e−ikx .

5. The position-space or coordinate-space eigenfunctions of the position operator are delta-
functions. Let’s see why. The eigenvalue problem is

x̂ ψ(x) = xψ(x) = λψ(x) where λ is a constant. (28)

The only way this can be satisfied for all x is for ψ(x) to vanish at all x 6= λ . Now if ψ(x)
were to vanish at x = λ as well, then it would be the zero function and not qualify as a

9



non-trivial eigenvector. The value of ψ(x) at x = λ can either be finite or ψ(λ) = ±∞ .
If |ψ(λ)| <∞ , then the state will have zero norm and cannot describe a particle that can
be found somewhere. So ψ must be infinite at x = λ . In fact, ψ(x) is proportional to
the Dirac delta function. It is normalized so that ψ(x) = δ(x − λ). It is conventional to
denote the position eigenvalue by x′ rather than λ . So δ(x−x′) is an eigenfunction of the
position operator with eigenvalue x′ , it is a function of x that is zero every where except
at x′ . Think of it as a limit of functions that are sharply peaked at x = x′ . Thus the
coordinate space wave function of the eigenstate |x′〉 of x̂ is 〈x|x′〉 = δ(x − x′). Now if
we have two position eigenstates |x′〉 and |x′′〉 , then their coordinate space wave functions
are 〈x|x′〉 = δ(x− x′) and 〈x|x′′〉 = δ(x− x′′). Their inner product is

〈x′′|x′〉 =

∫
δ(x− x′′)δ(x− x′) dx = δ(x′ − x′′). (29)

So position eigenstates are orthogonal and ‘delta-normalized’. They form a complete set
in the sense that they satisfy a completeness relation∫

dx |x〉〈x| = I. (30)

To see this, take the matrix elements of the LHS between coordinate basis states |x′〉 and
|x′′〉 ∫

dx 〈x′|x〉〈x|x′′〉 =

∫
dx δ(x− x′)δ(x− x′′) = δ(x′ − x′′). (31)

On the other hand, the matrix elements of the identity are also the same 〈x′|I|x′′〉 =
〈x′|x′′〉 = δ(x′ − x′′). Since

∫
dx |x〉〈x| and I have the same matrix elements, they are

equal.

• Similarly, momentum eigenstates form a complete set∫
dk

2π
|k〉〈k| = I. (32)

Check this by evaluating the matrix elements between position basis states |x′〉 and |x′′〉 .
On the rhs we get 〈x′|I|x′′〉 = δ(x′ − x′′). On the lhs we get the same using the Fourier
representation of the delta function∫ ∞

−∞

dk

2π
〈x′|k〉〈k|x′′〉 =

∫ ∞
−∞

dk

2π
eikx

′
e−ikx

′′
= δ(x′ − x′′). (33)

How do we get the last equality? If x′ = x′′ then we are integrating the function 1, and
the answer should be infinite, and indeed δ(0) = ∞ . On the other hand, when x′ 6= x′′ ,
then we have ∫

dk

2π
[cos(k(x′ − x′′)) + i sin(k(x′ − x′′))] = 0 (34)

Since the average value of both the sine and cosine functions is zero.

• Momentum eigenstates with distinct wave numbers are orthogonal (as we expect for the
eigenstates of a hermitian operator)

〈k′|k′′〉 =

∫
dx 〈k′|x〉〈x|k′′〉 =

∫
dx e−ik

′xeik
′′x = 2π δ(k′ − k′′). (35)
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6. Among hermitian operators, the positive operators are particularly interesting physically. A her-
mitian operator is positive (or non-negative) if its expectation value in every state is non-negative
〈ψ|A|ψ〉 ≥ 0, for all ψ ∈ H . Since eigenvalues are simply the expectation values in eigenstates,
we see that positive operators have non-negative eigenvalues. If A is any linear operator, then we
check that A†A and AA† are both hermitian and positive operators.

E.g. (AA†)† = A†
†
A† = AA†. (36)

To check positivity, we work out the expectation value in any state:

〈ψ|A†A|ψ〉 = 〈Aψ|Aψ〉 = ||Aψ||2 ≥ 0 and 〈ψ|AA†|ψ〉 = 〈A†ψ|A†ψ〉 = ||A†ψ||2 ≥ 0. (37)

An example is kinetic energy T = 1
2mp

2 = 1
2mp

†p = 1
2mpp

† , since p = p† is hermitian. So we may
conclude that the energy eigenvalues of a free particle must all be non-negative.

2.2.7 Measured value of observables in states and interpretation of expectation values

• Measurement of an observable A in state ψ of unit norm produces a real number that is
one of the eigenvalues of A . Born’s probability postulate: Suppose we have several identically
prepared systems in the same state ψ and we measure the value of A in each system and collect
the values. Then the frequency of occurrence of the measured value λ is pλ = |〈ψλ|ψ〉|2 where
ψλ is the unit norm eigenstate corresponding to the eigenvalue λ .

• The expectation value of an observable A in a state ψ is the mean value obtained when A
is measured on many copies of the system prepared in the same state ψ . How do we see this?
Each measurement gives a (possibly different) eigenvalue λ with probability pλ . So the mean
measured value is a sum over the eigenvalues of A (counted with multiplicity)∑

λ

pλλ =
∑
λ

λ|〈ψ|ψλ〉|2 =
∑
λ

λ〈ψ|ψλ〉〈ψ|ψλ〉∗ =
∑
λ

λ〈ψ|ψλ〉〈ψλ|ψ〉 =
∑
λ

〈ψA|ψλ〉〈ψλ|ψ〉 = 〈ψ|A|ψ〉.

(38)

We used the eigenvalue equation and completeness of the eigenvectors
∑

λ |ψλ〉〈ψλ| = I .

• Physical interpretation of 〈x|k′〉 = eik
′x and 〈x|x′〉 = δ(x − x′) in the context of probability of

results of measurements. Suppose a particle is in a position eigenstate |x′〉 . Then its coordinate space
wave function is 〈x|x′〉 = δ(x − x′). Now suppose we make a measurement of its position. Then the
probability of getting the value x is px ∝ |〈x|x′〉|2 . Notice that px = 0 for x 6= x′ . So if we measure the
position of a particle known to be in the position eigenstate |x′〉 , then the only value of position that can
result is x′ itself.

• Suppose a particle is in a position eigenstate |x′〉 . Then its momentum space wave function is 〈k|x′〉 =
e−ikx

′
. Suppose we make a measurement of its momentum. Then the probability of getting the value ~k

is pk ∝ |〈k|x′〉|2 = |eikx|2 = 1. In other words, all momenta are equally probable. This makes physical
sense in light of the Heisenberg uncertainty principle. If the particle is in a position eigenstate, then its
position is known with perfect accuracy. So we would expect its momentum to be maximally uncertain.
And indeed, what we find is that all possible momenta are equally likely, so we have no knowledge as to
what the result of a momentum measurement may give.

• After measuring an observable A and getting the eigenvalue λ , the state of the system
‘collapses’ from state ψ to eigenstate ψλ corresponding to the eigenvalue λ (A|ψλ〉 = λ|ψλ〉).
• Reproducibility of measurements: If A is measured again, soon after a previous mea-
surement of A , then the same value λ will be obtained and the system will remain in the same
eigenstate of A . If a system is in an eigenstate |ψ0〉 of energy, then we know in advance that
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measurement of energy will result only in the eigenvalue E0 and that the state will not change
after the measurement.

• If two observables (hermitian operators A,B ) commute, they have common eigenvectors and
are simultaneously diagonalisable. We say they are simultaneously measurable or compatible.
What this means is that if A has been measured, and a value a obtained, then a measurement
of B will not affect the eigenstate |ψa〉 of A to which the system had collapsed. This is because
|ψa〉 is an eigenstate of B as well. An immediate measurement of B will certainly result in
the eigenvalue of B corresponding to the eigenvector ψa . A subsequent measurement of A will
again result in the value a . It is in this sense that A and B can be simultaneously measured.

• Let us indicate why commuting observables have common eigenfunctions. Suppose A is
hermitian and has eigenvalues λi (assumed non-degenerate) with corresponding eigenfunctions
ψi , so Aψi = λiψi . Non-degeneracy means that each eigenspace is one dimensional. Now
suppose B commutes with A . Then consider B(Aψ), we evaluate it in two ways. On the one
hand, B(Aψi) = λiBψi . On the other, BAψi = ABψi . Thus A(Bψi) = λi(Bψi). In other
words, both ψi and Bψi are eigenfunctions of A with the same eigenvalue. Since the eigenspaces
of A are assumed one dimensional Bψi and ψi must be linearly dependent, i.e. multiples of
eachother: Bψi = µiψi . In other words we have shown that an eigenfunction of A is also an
eigenfunction of B !

• It is worth noting that measurement of an observable in a state ψ is a complicated process
that is still not well-understood, and is certainly not the multiplication of the operator A with
the state vector ψ .

2.2.8 Relation between wave function in position and momentum space

• The wave function is a complete specification of the state of a quantum mechanical system,
just as giving the position and momentum of a particle completely specifies its classical state.
For a particle moving in 3-space, the coordinate space wave function is ψ(x, y, z; t). For a
system of n particles, the coordinate space wave function is a function of the three coordinates
of each of the n particles ψ(~r1, ~r2, · · ·~rn; t). In other words, the coordinate space wave function
is a (time-dependent) function on the classical configuration space of the system.

• We have seen that the position space wave function of a state |ψ〉 is defined as ψ(x) = 〈x|ψ〉 .
Let us denote a momentum eigenstate with momentum eigenvalue p = ~k by |k〉 , where k is the
wave number. Then the momentum space wave function of the same state |ψ〉 is ψ̃(k) = 〈k|ψ〉 .
The point is that |ψ〉 is an abstract state vector. We can study it (‘represent it’) via its
components in any basis. In particular, we may look at its components 〈x|ψ〉 = ψ(x) in the basis
of position eigenstates or its components 〈k|ψ〉 = ψ̃(k) in the basis of momentum eigenstates.
Let us see how ψ(x) is related to ψ̃(k).

• Now inserting a complete set of momentum eigenstates and using 〈x|k〉 = eikx ,

ψ(x) = 〈x|ψ〉 =

∫
dk

2π
〈x|k〉〈k|ψ〉 =

∫
dk

2π
eikxψ̃(k) (39)

So the position space wave function is the inverse-Fourier transform of the momentum space
wave function. Similarly, we have the Fourier transform

ψ̃(k) =

∫
dxe−ikxψ(x). (40)
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• ψ(x) and ψ̃(k) are to be compared with the state of a classical mechanical system, which is
given by a simultaneous specification of coordinates and momenta. In the quantum theory, ψ
cannot depend on both the coordinates and momenta (in an arbitrary manner). This is related
to the uncertainty principle.

• The absolute square of the wave function |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) gives the probability
density for finding the particle at location x at time t . Similarly, |ψ̃(k, t)|2 dk2π is the probability
of finding the particle in momentum interval [k, k + dk] at time t .

2.2.9 Schrödinger time evolution of states

• When left to itself, the state of the system evolves according to the Schrödinger equation
i~ ∂
∂t |ψ(t)〉 = H|ψ(t)〉 . H is the hermitian hamiltonian. Given the initial state |ψ(0)〉 , the SE

determines the state at subsequent times, just as Hamilton’s equations ẋ = ∂H
∂p , ṗ = −∂H

∂x do in
classical mechanics.

• In the position basis, the SE is

i~
∂

∂t
〈x|ψ(t)〉 = 〈x|Hψ(t)〉 or i~

∂ψ(x, t)

∂t
= (Hψ)(x, t) (41)

For a particle in a potential (Hψ)(x, t) = − ~2

2m
∂2ψ(x,t)
∂x2 + V (x)ψ(x, t), and we get

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x). (42)

The SE is a linear PDE, first order in time and second order in space derivatives of the unknown
ψ . Contrast this with Newton’s equation which in general is a system of non-linear ODEs for
xi(t).

• We often need to work with the adjoint of the Schrodinger equation, which is obtained using
H = H†

− i~ ∂
∂t
〈ψ(t)| = 〈ψ(t)|H. (43)

In the coordinate basis, the adjoint of the SE reads

− i~ ∂
∂t
〈ψ(t)|x〉 = 〈ψ(t)|H|x〉 = 〈Hψ|x〉 = 〈x|Hψ〉∗ ⇒ −i~ ∂

∂t
ψ∗(x, t) = ((Hψ)(x))∗ (44)

or −i~ ∂
∂tψ
∗(x, t) = − ~2

2m
∂2ψ∗(x)
∂x2 + V (x)ψ∗(x) for a particle in a real potential V (x). So in the

coordinate basis, the adjoint of the SE is just its complex conjugate.

2.2.10 Separation of variables, stationary states, time-independent Schrodinger equation

• The problem of time-evolution is to solve the Schrodinger equation i~∂|Ψ(t)〉
∂t = Ĥ|Ψ(t)〉 given

the initial state Ψ(t = 0)〉 . For a particle in a potential V (x), the SE is a LINEAR partial
differential equation for the unknown function Ψ(x, t) = 〈x|Ψ(t)〉 .

i~
∂Ψ(x, t)

∂t
= (HΨ)(x, t) = − ~2

2m

∂2Ψ(x, t)

∂t
+ V (x)Ψ(x, t). (45)
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To solve it we use the method of separation of variables. We look for separable solutions in the
form of a product Ψ(x, t) = ψ(x)T (t). Now, not every solution of the SE is such a product. But
due to the linearity of the equation linear combinations of solutions are again solutions. The
idea is to find sufficiently many separable solutions so that every solution can be written as a
linear combination of separable solutions. Putting the ‘ansatz’ (guess) Ψ(x, t) = ψ(x)T (t) into
the equation, we get

i~Ṫ (t)ψ(x) = T (t)(Hψ)(x). (46)

Dividing by Tψ we get

i~
Ṫ (t)

T (t)
=

(Hψ)(x)

ψ(x)
= E. (47)

LHS depends only on time while the RHS depends only on position, provided H is not explicitly
time-dependent. The only way these can be equal is for both to equal the same constant, say E ,
so-named, since it turns out to have the physical meaning of energy eigenvalue. Now we have
two separate equations. The one for T (t) has the solution T (t) = c exp(−iEt/~). The other
equation

(Hψ)(x) = Eψ(x) or 〈x|H|ψ〉 = E〈x|ψ〉 or H|ψ〉 = E|ψ〉 (48)

is simply the eigenvalue equation for the hamiltonian operator. It is also called the time-
independent Schrodinger eigenvalue equation. It typically has lots of solutions, namely all the
eigenstates |ψn〉 of the hamiltonian, with their corresponding energy eigenvalues En . As for any
hermitian operator, we can take these |ψn〉 to be orthonormal. Thus the separable solutions of
the Schrodinger equation are

Ψn(x, t) = cnψn(x)e−iEnt/~. (49)

where ψn are eigenstates of the hamiltonian. These separable solutions are called stationary
states since the probability density in these states P (x, t) = |Ψ(x, t)|2 = |cn|2|ψn(x)|2 are
independent of time. Stationary states have the simplest possible time dependence of all solutions
of the Schrodinger equation, i.e., sinusoidal or harmonic time dependence.

• Now the general solution of the SE is got by taking a linear combination of stationary states

Ψ(x, t) =
∑
n

cnψn(x)e−iEnt/~. (50)

To find the solution of the initial value problem, we must choose the cn so that the initial state
is |Ψ(0)〉 . In other words, we must have∑

n

cn|ψn〉 = |Ψ(0)〉 (51)

To find the cn we take the inner product with |ψm〉 , and use orthogonality of energy eigenstates∑
n

cn〈ψm|ψn〉 =
∑
n

δmncn = cm = 〈ψm|Ψ(0)〉 ⇒ cm =

∫
ψ∗m(x)Ψ(x, 0) dx. (52)

Thus we have solved the initial value problem for the Schrodinger equation.
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2.2.11 Conserved probability density and current

• The absolute square of the wave function |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) gives the probability
density for finding the particle at location x at time t . Suppose n copies of a system are
prepared in the same quantum mechanical state ψ(x). (For example, we could have a hydrogen
atom in its ground state in each of 100 different boxes) Then a measurement of the position
of each particle (at the same time) gives a (possibly) different result (this is an experimental
fact). Born’s statistical interpretation of the wave function is that, as n→∞ , the distribution
of position measurements approaches the probability density |ψ(x, t)2| .
• To qualify as a probability density, the total probability of finding the particle anywhere must
be one. In other words, we need ||ψ||2 =

∫
dx |ψ(x, t)|2 = 1. However, there could be a problem.

For consistency, the total probability of finding the particle somewhere must remain equal to
one at all times, total probability must be conserved. This is indeed the case, as is checked using
the Schrödinger equation and its adjoint

i~
∂

∂t
〈ψ|ψ〉 = i~〈ψ|Hψ〉 − i~〈ψH|ψ〉 = 0. (53)

In other words, if the wave function is normalized to one initially (t = 0), then it continues
to have norm one in the future. This is called global conservation of probability. But it is
not merely the total probability that is conserved. Probability cannot jump from one place to
another, it flows continuously like a fluid. There is a local conservation of probability just like
for mass in a fluid. The rate of increase of mass of fluid in a box is equal to the inward flux
of fluid across the walls of the box (provided there isn’t a source/sink of fluid inside the box).
The probability density |ψ(x, t)|2 satisfies a continuity equation with an associated probability
current. Consider a particle in a potential

i~ ∂t(ψ∗ψ) = i~ (ψ∗tψ + ψ∗ψt) =

(
~2

2m
ψ∗′′ − V ψ∗

)
ψ + ψ∗

(
− ~2

2m
ψ′′ + V ψ

)
=

~2

2m

[
ψ∗′′ψ − ψ∗ψ′′

]
=

~2

2m
∂x
(
ψ∗′ψ − ψ∗ψ′

)
(54)

Let P (x, t) = |ψ(x, t)|2 and define the probability current density

j(x, t) =
~

2mi

(
ψ∗ψ′ − ψ∗′ψ

)
, then ∂tP (x, t) + ∂xj(x, t) = 0. (55)

The last equation is called the law of local conservation of probability (in differential form) or a
continuity equation. To interpret this formula we consider how the probability for the particle
to be in an interval [x0, x1] changes with time. So integrate ∂tP + ∂xj = 0 over this interval at
a fixed time t to get the law of local conservation of probability in integral form:

∂t

∫ x1

x0

P (x) dx+

∫ x1

x0

∂j(x)

∂x
dx = 0 ⇒ ∂t

∫ x1

x0

P (x) dx = j(x0)− j(x1) (56)

by the fundamental theorem of calculus. This equation says the rate of increase of probability
in [x0, x1] equals the probability current flowing in at x0 minus that flowing out at x1 .

• All of this also works in three dimensions. The rate of increase of probability in a region
(volume) Ω must equal the inward flux of probability across the surface ∂Ω that borders Ω.

P (~r, t) = ψ∗(~r, t)ψ(~r, t), ~j =
~

2mi
[ψ∗ (∇ψ)− (∇ψ∗)ψ] =

~
m
=ψ∗∇ψ

15



∂tP (~r, t) +∇ ·~j(x, t) = 0, i.e.
∂ρ

∂t
+
∂j1
∂x

+
∂j2
∂y

+
∂j3
∂z

= 0.

∂t

∫
Ω
P (~r, t)d3r +

∫
Ω
d3r∇ ·~j = 0 or ∂t

∫
P (~r, t)d3r = −

∫
∂Ω

~j · d~S. (57)

d~S is the outward pointing area element on the bounding surface ∂Ω. It says that the rate
of increase of probability in a region must equal the inward flux of probability current across
the surface of the region. We used the divergence theorem to write the volume integral of a
divergence as a surface integral.

2.3 Ehrenfest’s theorem

• The expectation values 〈x〉, 〈p〉, 〈E〉 etc are functions of time (space has been integrated over).
The average position and momentum of an electron will depend on time in a way governed by
the Schrödinger equation. According to Ehrenfest’s theorem, these expectation values evolve
as do the corresponding classical variables, whose evolution is given by Newton’s/Hamilton’s

equations! E.g. d〈x〉
dt = 〈p〉

m , so the average position evolves in the same way as given by the first
of Hamilton’s equations. To see this and related results, we first derive a general equation for
the time evolution of expectation value of an observable A in a unit-norm state that evolves via
the SE

i~
∂

∂t
〈ψ|A|ψ〉 = −〈ψ|HA|ψ〉+ 〈ψ|AH|ψ〉 = 〈ψ|[A,H]|ψ〉. (58)

• Putting A = H and using [H,H] = 0 shows that the average energy (expectation value of

hamiltonian) is constant ∂〈Ĥ〉
∂t = 0. This is the analogue of the classical constancy of energy

along a trajectory.

• Taking A = p we find the time evolution of mean momentum for a particle subject to the

hamiltonian H = p2

2m + V . Show that

[p,H] = [p, V ] = −i~V ′ (59)

Thus we have
∂〈p〉
∂t

= 〈−V ′〉. (60)

Thus Newton’s second law (or the second of Hamilton’s equations) ṗ = −V ′(x) continues to
hold in quantum mechanics, but in the sense of expectation values. The average momentum
evolves as though it is a classical variable subject to an ‘average force’ !

• If A = x , then [x,H] = [x, p
2

2m ] = i~p
m . So

∂〈x〉
∂t

=

〈
p

m

〉
. (61)

This is the first of Hamilton’s equations ẋ = ∂H
∂p = p

m , but now in the sense of expectation
values.

• So if the electron is in the initial state ψ(x, t = 0), Schrödinger’s equation tells us how the state evolves
in time. We have used this to determine the motion of the average position of the electron and found
that it is related to the average momentum in the same way as the actual position and momentum of
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a particle are related by Hamilton’s equation of classical mechanics. To the extent that the expectation
value of x provides an approximate position for a localized electron wave packet, we see that the quantum
mechanical motion of the wave-packet mimics the classical motion of a particle. However, the wave packet
typically spreads out in time, and ceases to be well-described by merely its mean position. This reduces
the utility of the Ehrenfest result in determining where a quantum particle may be found at later times,
based purely on its classical motion.

2.4 Generators of transformations, symmetries and conservation laws

2.4.1 Generators of space translations

• What does it mean to say that momentum p̂ generates translations, angular momentum
generates rotations and the hamiltonian generates time translations?

• Consider first a system with one degree of freedom so that the wave function or potential is
a function of one variable f(x). Recall that p̂ = −i~ ∂

∂x . Under a translation x 7→ x + δa , the
function becomes

f(x+δa) = f(x)+δa f ′(x)+
1

2
(δa)2f ′′(x)+ · · · = f(x)−δa 1

i~
(−i~)

∂

∂x
f(x)+ · · · =

(
I +

ip̂ δa

~
+ · · ·

)
f.

It is in this sense that momentum generates an infinitesimal translation. More generally, for
a finite translation one gets f(x + a) = eipa/~f(x), as we will see below. Physically, f could
be a wave function or a potential. If pf = 0 we say that f is translation invariant since
f(x + δx) = f(x). For example, a constant potential V (x) = V0 is translation invariant. Or
a potential V (x, y) is translation invariant in the z-direction. We say it is annihilated by pz ,
since pzV (x, y) = 0.

• In 3d, under an infinitesimal translation r→ r + δa , a function changes to f(r + δa). Using
the Taylor expansion

f(r + δa) = f(r) + δa · ∇f(~r) +
1

2
δai δaj ∂i∂jf(r) + · · · (62)

We can write this in terms of momentum

f(r + δa) ≈ (1 +
i

~
δa · p̂)f(r) (63)

And for a finite translation by a = n δa we apply the infinitesimal translation n times and let
n→∞ holding a fixed

f(r + a) = lim
n→∞

(
I +

i

~
1

n
a · p̂

)n
f(r) = e

i
~a·p̂f(x). (64)

We say that p̂ is the infinitesimal generator of translations. If we expand the exponential we
will recover the Taylor expansion.

2.4.2 Generator of time translation and time evolution operator

• To find the generator of time translations, we observe that the Schrödinger equation i~ψ̇ = Hψ
may be solved for short times to write

ψ(t+ δt) ≈ ψ(t)− iHδt

~
ψ(t) ⇒ ψ(t+ δt) =

[
1− iHδt

~

]
ψ(t) (65)
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In this sense, the hamiltonian generates infinitesimal time-translations of the wave function.
As above, a finite time-translation is given by composing a succession of infinitesimal time-

evolutions |ψ(t)〉 = e−iĤt/~|ψ(0)〉 . The operator U(0, t) = e−iHt/~ is called the time evolution
operator. It is unitary if the hamiltonian is hermitian, since then U †U = eiHt/~e−iHt/~ = I . We
may write the time evolution operator as an infinite exponential series

U(0, t) = I − iHt

~
+

(
−it
~

)2 1

2!
H2 +

(
−it
~

)3 1

3!
H3 + . . . (66)

• Though U is not an observable, it is still an important operator in quantum mechanics. It
is easy to find its eigenstates and eigenvalues. Suppose the eigenstates of the hamiltonian are
H|ψn〉 = En|ψn〉 . Then one finds that the energy eigenstates are also eigenstates of the time
evolution operator and that

U |ψn〉 = e−iEnt/~|ψn〉. (67)

The eigenvalues of U are complex numbers of unit magnitude e−iEnt/~ . The eigenvalues of the
time evolution operator give the time evolution of stationary states Ψn(t) = ψne

−iEnt/~ .

2.4.3 Angular momentum as generator of rotations

• The small change in ~r upon making a rotation by small angle δφ counter clockwise about the
axis δ~φ is δ~r = δ~φ× ~r .

f(~r + δ~φ× ~r) ≈ f(~r) +
(
δ~φ× ~r

)
· ~∇f(~r) (68)

Now (A × B) · C = A · (B × C) since both of them measure the volume of a parallelepiped
defined by the vectors A,B,C . Thus using p = −i~∇ ,

f(~r + δ~φ× ~r) ≈ f(~r) +
i

~
δ~φ · (r × p) f(~r) =

(
I +

i

~
δ~φ · ~L

)
f(~r). (69)

So angular momentum generates rotations. For a finite rotation counter clockwise about axis ~φ
by angle |~φ| we have

f(~r) 7→ e
i
~
~φ·~Lf(~r). (70)

Here L · φ = Lxφx + Lyφy + Lzφz . We say that Lx generates a rotation about the x axis, Ly
generates a rotation about the y axis and Lz generates a counter clockwise rotation about the
z .

• Now if V (r) is a spherically symmetric (central) potential, then we know it is unaffected by
rotations. It follows that LV (r) = 0. In other words, LiV (r) = 0, or the angular momentum
operators annihilate the potential. It follows that L2 =

∑
i L

2
i also annihilates a spherically

symmetric potential. Check that this implies [L2, V (r)] = 0. This result will be used in studying
motion in a central potential, where one shows L2 commutes with the hamiltonian (say of the
hydrogen atom), so that L2 and H are simultaneous observables.

2.4.4 Symmetries and conservation laws

• An observable A (not explicitly dependent on time) is said to generate a symmetry of the
hamiltonian H if it commutes with the hamiltonian [A,H] = 0. A symmetry leads to a
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conserved quantity in the following sense: the expectation value of A in any state (evolving
via the Schrödinger equation) is independent of time. Let us see why. Recall from Ehrenfest’s
theorem, that

i~
∂

∂t
〈ψ|A|ψ〉 = 〈ψ|[A,H]|ψ〉. (71)

In addition, we know that time evolution does not change the norm of a state, ∂t〈ψ|ψ〉 = 0. So

if [A,H] = 0, then the expectation value 〈A〉ψ = 〈ψ|A|ψ〉
〈ψ|ψ〉 is time-independent.

• The classical version of this relation between symmetries and conservation laws is called
Noether’s theorem.

• E.g., consider a particle moving in a potential V (r). If the potential is independent of the
z -coordinate, then V (r+aẑ) = V (r) so that ẑ ·∇V = 0 or pz(V ) = 0. It follows that [pz, V ] = 0

and since [pz,
p2

2m ] = 0, [pz, H] = 0. So if the potential is z -translation-invariant then 〈ψ|pz|ψ〉
is conserved in time.

• Similarly, if the potential is invariant under rotations (a central potential), then each compo-
nent of angular momentum is conserved in the sense of expectation values ∂t〈ψ|L|ψ〉 = 0.

• Another consequence of a symmetry ([A,H] = 0), is that if the initial state ψ(0) is an
eigenstate of A with eigenvalue a , then the system remains in that eigenstate and measurement
of A at any time will result in the value a . Indeed, suppose the initial state is ψ(0), then we
know that |ψ(t)〉 = e−iHt/~|ψ(0)〉 . If [A,H] = 0, it is easily checked that |ψ(t)〉 is an eigenvector
of A

A|ψ(t)〉 = Ae−iHt/~|ψ(0)〉 = e−iHt/~A|ψ(0)〉 = e−iHt/~a|ψ(0)〉 = a|ψ(t)〉. (72)

• If A is a symmetry of the hamiltonian H , then A and H are commuting observables [A,H] =
0 and therefore have a common basis of eigenvectors where both operators are diagonal1. It
follows that energy eigenstates can be labelled by energy as well as by the eigenvalue of the
symmetry A . This is particularly important when there are several energy levels that are
degenerate. The degenerate levels can often be distinguished by the eigenvalue of a symmetry
generator. For example, the hamiltonian of the hydrogen atom commutes with Lz as well as
with L2 , which are a set of three commuting operators. So energy levels can be labelled with
the eigenvalues ~m and ~l(l + 1) of Lz and L2 in addition to the energy eigenvalue En which
depends only on the principal quantum number.

3 Simple Harmonic oscillator

• Small oscillations of a spring about equilibrium are governed by Hooke’s restoring force −kx
or potential energy 1

2kx
2 . Classical eq. ẍ = −kx has solution x(t) = A cos(ωt) + B sin(ωt)

where the angular freq. ω =
√
k/m . So the hamiltonian is H = p2/2m + 1

2mω
2x2 . Larger

oscillations often require corrections to Hooke’s law, and the inclusion of anharmonic forces.
Hooke’s law is called the linearized (since force is linear in displacement and equation of motion
is linear) or harmonic approximation.

1Suppose Aψ = λψ and for simplicity assume that λ is a non-degenerate eigenvalue of A . Then A(Hψ) =
HAψ = λ(Hψ) so that Hψ is also an eigenvector of A with the same eigenvalue λ . As this we assumed λ was
a nondegenerate eigenvalue, we must have Hψ = µψ for some µ . So ψ is a common eigenvector of both A and
H .
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• Approximation applies to oscillations of many systems about a point of equilibrium. For
example, for small amplitude motion in neighborhood of a minimum x0 of a potential V (x) =
V (x0) + 1

2V
′′(x0)(x− x0)2 + . . . , as long as the second derivative of the potential is non-zero at

x0 . The omitted higher order terms in the potential are ‘anharmonic’ terms.

• Classically, for fixed energy, motion lies between the turning points, where the particle comes
instantaneously to rest. The turning points are the solutions of E = V (x0) = 1

2kx
2
0 . All classical

trajectories are bound, the particle cannot escape to |x| → ∞ for any fixed energy, unlike the
free particle. Newton’s equation mẍ = −kx has solutions x(t) = x0 cos(ωt + δ) where the
amplitude x0 and phase δ are determined by initial conditions.

• Quantum mechanically, to study the dynamics we reduce the time-dependent Schrodinger
equation to the time-independent one for energy eigenstates by separation of variables. The
Schrodinger eigenvalue problem is

− ~2

2m

∂2

∂x2
ψ(x) +

1

2
mω2x2ψ(x) = Eψ(x). (73)

3.1 Algebraic approach via creation and annihilation (ladder) operators

• We will find all the energy eigenstates of the SHO by solving Hψ = Eψ . Rather than solving
this second order differential equation directly, we follow a different approach. The ground state
will be found by solving a first order differential equation. Then we will create all the excited
states by suitably modifying the ground state. This may seem an odd way to proceed. But the
method works in many quantum mechanical systems and is justified by its success.

• It is convenient to work in dimensionless variables. For example we may express all energies as
multiples of 1

2~ω . κ =
√
mω/~ has dimensions of L−1 , so we may define dimensionless position

and momentum variables by

ξ = κx, p =
p

~κ
= −i ∂

∂ξ
, ⇒ H =

p2

2m
+

1

2
mω2x2 =

~ω
2

(
ξ2 + p2

)
(74)

ξ, p are dimensionless. Being the sum of two squares, the hamiltonian is a positive function on
phase space. Now, to the extent possible, we wish to factorize the hamiltonian as the product
of an operator and its adjoint, which would automatically be a positive operator. To this end,
define the dimensionless annihilation (lowering) and creation (raising) operators

a =
ξ + ip√

2
, a† =

ξ − ip√
2

⇒ a†a =
1

2

(
ξ2 + p2 + i[ξ, p]

)
=

1

2

(
ξ2 + p2 − 1

)
(75)

Here we used [ξ, p] = i . Thus, up to an additive constant, the hamiltonian has been factorized:

H = ~ω
(
a†a+

1

2

)
= ~ω

(
aa† − 1

2

)
, a =

1√
2

(
ξ +

∂

∂ξ

)
, a† =

1√
2

(
ξ − ∂

∂ξ

)
. (76)

• a, a† do not commute, their commutator is [a, a†] = aa† − a†a = 1. In terms of x and p

a† =
1√
2

(
κx− ip

~κ

)
=

1√
2

(
κx− 1

κ

∂

∂x

)
, a =

1√
2

(
κx+

1

κ

∂

∂x

)
(77)
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• Now suppose ψ is an energy eigenstate Hψ = Eψ . The main virtue of the creation and
annihilation operators is that they act on ψ to produce energy eigenstates with higher (E+~ω )
and lower (E − ~ω ) energies. Using [a, a†] = 1 we find

H
(
a†ψ

)
= (E + ~ω)

(
a†ψ

)
, H (aψ) = (E − ~ω) (aψ) . (78)

Now by repeated application of a , we can produce states with negative energy. However, we
already saw that 〈H〉 ≥ 0. A way around this problem is that by repeated application of a we
must eventually reach a state ψ0 that is annihilated by a : aψ0 = 0. ψ0 is the ground state.
By repeated application of a† on ψ0 we get all the excited states. Repeated application of a on
ψ0 gives the zero vector.

• aψ0(x) = 0 leads to the first order differential equation (ξ + ∂
∂ξ )ψ0(ξ) = 0 or

ξψ0 = −ψ′0 ⇒ logψ0 = −−ξ
2

2
+ c ⇒ ψ0 = Ae−ξ

2/2 ⇒ ψ0(x) = Ae−κ
2x2/2, A =

√
κ

π1/4

The g.s. energy is 1
2~ω . Why? Hψ0 = ~ω(a†a+ 1

2)ψ0 = 1
2~ωψ0 .

• The classical ground state is the static solution of Hamilton’s equations, x(t) = 0, p(t) = 0,
where the particle is eternally at rest at the equilibrium point. The quantum g.s. energy 1

2~ω
is not zero, it is called the zero point energy. Classically, the ground state wave function has
zero width, it is concentrated at the point x = 0. Let us indicate why the ground state wave
function cannot be too narrow or too broad. The g.s. energy is the expectation value of the
hamiltonian in the normalised ground state. Integrate by parts to show that it can be written
as

〈H〉 =
~2

2m

∫ ∞
−∞
|ψ′(x)|2 dx+

1

2
mω2

∫
x2|ψ(x)|2 dx. (79)

• We introduced κ =
√

mω
~ which is a constant with dimensions of inverse length. κ controls

the rate of decay of the position space probability distribution. The larger κ is, the less probable

it is to find the particle far from the point of equilibrium x = 0. κ2 =
√
mk
~ is large if the force

constant or mass is large, both of which prevent the particle from going far from x = 0. This
is true both quantum mechanically as well as classically. But unlike classically, in QM, the
particle in the g.s. has a non-zero probability to be found beyond the classical turning points.
The probability for a particle in the ground state to be found beyond the classical turning points
x0 is

P (|x| > x0) = 2

∫ ∞
x0

|ψ0(x)|2 dx (80)

This can be evaluated using the error function, it is a very small number for macroscopic m,ω
and E . Now if ψ(x) is very wide, then the mean potential energy would become large, since
large values of x contribute more to the potential energy. On the other hand, if ψ(x) is very
narrow, it must also rise and fall very steeply, resulting in large values of ψ′(x), which would
make the mean kinetic energy very large. The ground state wave function must strike a balance
between these two competing tendencies, the gaussian with width 1/κ is neither too broad nor
too narrow and results in a minimum possible energy expectation value.

• All the excited states are obtained as ψn(x) = An(a†)nψ0(x), for n = 1, 2, 3, . . . for appropriate
normalization constants shown below to be An = 1√

n!
to ensure ||ψn|| = 1.
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• Since a†ψ0 is an eigenstate with energy ~ω more than that of ψ0 , the energy level obtained
by n-fold application of a† is En = 1

2~ω + n~ω = ~ω
(
n+ 1

2

)
. This is the energy spectrum of

the SHO.

• Define the number operator N̂ = a†a , then Ĥ = ~ω
(
N̂ + 1

2

)
. So N̂ψn = nψn for n =

0, 1, 2, · · · .
• To find normalization constants An so that ||ψn|| = 1 for n = 1, 2, 3, · · · . We first note that
though ψ0 may have norm one, a†ψ0 need not have norm one, so let us write

a†ψn = cnψn+1, and aψn = dnψn−1 (81)

To find dn , we observe that (use the fact that a and a† are adjoints)

1 = 〈ψn−1|ψn−1〉 = 〈aψn
dn
|aψn
dn
〉 ⇒ |dn|2 = 〈ψn|a†aψn〉 = 〈ψn|N̂ψn〉 = n||ψn||2 = n. (82)

Thus dn =
√
n . Similarly we find that cn =

√
n+ 1. So

a†ψ0 = c0ψ1 = ψ1. a†ψ1 =
√

2ψ2 ⇒ ψ2 =
1√
2!
a†a†ψ0, . . . ⇒ ψn =

1√
n!

(a†)nψ0. (83)

• For example, the normalized 1st excited state is (A1 = 1)

ψ1 = A1a
†ψ0 =

A1A√
2

(
ξ − ∂

∂ξ

)
e−

ξ2

2 = A
√

2ξe−
ξ2

2 =
√

2κ

√
κ

π1/4
xe−

κ2x2

2 =

√
2mω

~

(mω
π~

)1/4
xe−

mωx2

2~

In particular, the first excited state wave function is odd, it has one node (ψ1(0) = 0).

• The excited states are ψn = An
1√
2
n

(
ξ − ∂

∂ξ

)n
ψ0 ∝ Hn(ξ)e−ξ

2/2 for some polynomials Hn(ξ),

which turn out to be the Hermite polynomials. It is clear that Hn is even in ξ (parity even) for

n even and odd in ξ (parity odd) for n odd since it involves
(
ξ − ∂

∂ξ

)n
. The particle has zero

probability density to be found at the equilibrium point x = 0 in all the odd stationary states!
In general, the nth excited state has n nodes. Precisely,

ψn(ξ) =

√
κ√
π

1√
2nn!

Hn(ξ)e−ξ
2/2 (84)

The
√

2n is because Hermite polynomials are conventionally normalized to have leading coeffi-
cient 2n . The first few Hermite polynomials are

H0 = 1, H1 = 2ξ, H2 = 4ξ2 − 2, H3 = 8ξ3 − 12ξ. (85)

• Let us define the parity operator Pf(x) = f(−x). It may be seen to be a hermitian operator
on L2(R)

〈f |P|g〉 =

∫ ∞
−∞

f∗(x)g(−x) dx =

∫ ∞
−∞

f∗(−x)g(x) dx = 〈Pf |g〉. (86)

P2 = I so the eigenvalues of parity are ±1. The eigenfunctions of parity with eigenvalue one
are the even functions (Pf(x) = f(x) called even parity functions) and the eigenfunctions with
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eigenvalue −1 are the odd functions, Pf(x) = f(−x) = −f(x). Since H = − ~2

2m
∂2

∂x2 + 1
2mω

2x2

is unchanged under x→ −x one can show that [P, H] = 0. Indeed,

P(Hψ) = − ~2

2m

∂2ψ(−x)

∂x2
+

1

2
mω2x2ψ(−x) = H(Pψ) (87)

So parity is a symmetry, and its expectation value in any state is preserved in time. Moreover
P and H are simultaneously diagonalisable. So energy eigenfunctions can be labelled by the
energy as well as parity eigenvalue. The nth state has energy eigenvalue En = ~ω(n + 1

2) and
parity eigenvalue (−1)n .

• The energy eigenstates are orthogonal. For m,n 6= 0, we calculate 〈ψn|ψm〉 in two different
ways, by inserting the number operator N/n = a†a/n which acts as the identity on the nth

eigenstate Nψn = nψn :

〈ψn|ψm〉 =
1

m
〈ψn|a†aψm〉 =

1

m
〈aψn|aψm〉 (88)

On the other hand,

〈ψn|ψm〉 =
1

n
〈a†aψn|ψm〉 =

1

n
〈aψn|aψm〉 (89)

To be equal, m = n or if m 6= n , 〈ψn|ψm〉 = 0. Combining with normalization, 〈ψn|ψm〉 = δmn ,
for m,n 6= 0 (they cannot be zero since we divided by them). Now, if one of the states is the
ground state, then 〈0|n〉 = 1√

n!
〈0|(a†)n|0〉 = 〈anψ0|ψ0〉 = 0 since aψ0 = 0. So all excited states

are orthogonal to the ground state. Of course, the g.s. has been normalised to 1, so it follows
that 〈m|n〉 = δmn for all m,n = 0, 1, 2, 3, . . . .

• The higher excited states are increasingly oscillatory between the classical turning points. But
they decay exponentially to zero outside the classical turning points. As the quantum number
n grows, the probability density in the nth excited state begins to approach (in a coarse-grained
sense) a classical probability density. By the latter we mean: suppose we have several springs
with the same force constant and same energy (large compared to ~ω ), but let them start
oscillating at different times. Then at a common time, we measure the location of each classical
oscillator and plot the distribution of positions. We are likely to find fewer oscillators near their
points of equilibrium and more near their turning points. This is because the oscillator slows
down as it approaches the turning point and speeds up near the equilibrium point. The classical
probability distribution is the one to which |ψn(x)|2 tends (provided we do not look too close to
see the rapid oscillations). The appearance of classical behaviour in the limit of large quantum
numbers is one manifestation of Bohr’s correspondence principle.

• Find the energy eigenstates and energy levels for a 2d simple harmonic oscillator with H =
p2
x

2m +
p2
y

2m + 1
2mω

2x2 + 1
2mω

2y2 . Find the degeneracies of the lowest 4 energy levels.

4 Heisenberg uncertainty principle (inequality)

• Given an observable A and a unit norm state |ψ〉 , we have the variance of A in the state ψ
(or the square of the standard deviation or simply the square of the uncertainty of A)

(∆A)2 = 〈ψ|(A− 〈A〉)2|ψ〉 = 〈A2〉 − 〈A〉2 (90)
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The uncertainty in A measures the spread/width of the distribution of possible measured values
of A in the state |ψ〉 . It depends both on A and |ψ〉 . If ψ is an eigenstate of A with eigenvalue
a , then the uncertainty of A is zero. We say that A takes a definite value a in an eigenstate.
We say that A has quantum fluctuations in the state ψ if 〈A2〉 6= 〈A〉2 .

• Suppose ψ is a unit norm state, then the Heisenberg uncertainty inequality is ∆x∆p ≥ 1
2~ .

It says that if you prepare a large number of copies of a system in the same state ψ , and make
measurements of position on half of them and momentum on the other half, the product of
standard deviations in the measurements of position and momentum is bounded below by ~/2.

• An extreme case: if ψ is a position eigenstate |x0〉 . In such a state, the uncertainty in x
is zero, a measurement of position always results in the value x0 . However, the uncertainty in
momentum is infinite in a position eigenstate, all values of momentum are equally likely.

• The ground state ψ0 of the SHO is a minimum uncertainty state. ∆x∆p = ~/2 in this state.
Check this statement.

• To show this we define an uncertainty functional U in a unit norm state ψ for a pair of
observables A,B with [A,B] = iC . Later we will specialize to A = x,B = p, C = ~I .

U(ψ) = (∆A)2(∆B)2 = 〈ψ|(A− Ā)2|ψ〉〈ψ|(B − B̄)2|ψ〉 = 〈α|α〉〈β|β〉 (91)

where |α〉 = (A − Ā)|ψ〉 ≡ δA|ψ〉 and |β〉 = (B − B̄)|ψ〉 = δB|ψ〉 . By the Cauchy-Schwarz
inequality,

U ≥ |〈α|β〉|2 = |〈ψ| δA δB |ψ〉|2 (92)

We bring in the commutator and the anticommutator via

δAδB =
1

2
[δA, δB] +

1

2
{ δA, δB } =

1

2
iC +

1

2
{ δA, δB }. (93)

Now C is hermitian as is { δA, δB } . It follows that 1
2〈iC〉 is purely imaginary and 1

2〈{ δA, δB }〉
is real. So the absolute square of the sum is just the sum of the squares of the imaginary and
real parts:

U ≥ | i
2
〈C〉+

1

2
〈{ δA, δB }〉|2 =

1

4
〈C〉2ψ +

1

4
〈ψ|{δA, δB}|ψ〉2. (94)

The second term is ≥ 0. So we get

(∆A)2(∆B)2 = U ≥ 1

4
〈C〉2ψ. (95)

Specializing to A = x,B = p, C = ~I we get the Heisenberg uncertainty inequality ∆x∆p ≥ ~/2.

5 Angular momentum

5.1 Basic properties of angular momentum

• Classically angular momentum L = r× p . Its cartesian components are

Lx = ypz − zpy, Ly = zpx − xpz, Lz = zpy − ypx Cyclic: x→ y → z → x (96)
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We could also write them in terms of the Levi-Civita tensor εijk which is anti-symmetric under
interchange of any pair of indices.

Li = εijkrjpk, ε123 = +1, ε132 = −1, . . . . (97)

• We saw that each component of angular momentum generates a symmetry and is a conserved
quantity (in the sense of expectation values), for a particle in a central potential V (r).

• In QM, the angular momentum operators are

Lx = ŷp̂z − ẑp̂y = −i~
(
y
∂

∂z
− z ∂

∂y

)
, · · · (98)

Note that y and pz commute so it does not matter whether we write ypz or pzy etc. Angular
momentum has the dimensions of ~ . As a vector p̂ = −i~(∂x, ∂y, ∂z) = −i~∇ . So L = −i~r×∇ .

Check that the angular momentum operators Lx, Ly, Lz are hermitian: L†x = Lx etc. This is

because y and pz , for instance, are hermitian and commute. It follows that ~L is also hermitian.

• The square of total angular momentum L2 is defined as the square of the length of the vector
~L = (Lx, Ly, Lz). L2 = L2

x + L2
y + L2

z . L2 is also hermitian.

• Angular momentum commutation relations. Using the commutators of x, y, z, px, py, pz we
show

[Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly cyclic. (99)

The components of angular momentum aren’t simultaneously diagonalizable:

(∆Lx)2(∆Ly)
2 ≥ −1

4
〈[Lx, Ly]〉2 =

~2

4
〈Lz〉2 ⇒ ∆Lx∆Ly ≥

~
2
|〈Lz〉|. (100)

Lx and Ly can’t take definite values in the same state, except if 〈Lz〉 = 0 in that state.

• However, check that [L2, ~L] = 0. In other words, each component of angular momentum
Lx, Ly, Lz commutes with the square of the total angular momentum. E.g., L2 and Lz may be
simultaneously diagonalized, but not L2, Lz and Lx .

• We may also express angular momentum in spherical polar coordinates

z = r cos θ, x = r sin θ cosφ, y = r sin θ sinφ. (101)

Calculate derivatives by the chain rule to get

Lz = −i~ ∂

∂φ
, Lx = i~

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, Ly = i~

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
(102)

For example, xφ = −y, yφ = x, zφ = 0 where subscripts denote partial derivatives. So

− i~∂φ = −i~
(
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
+
∂z

∂φ

∂

∂z

)
= −i~ (−y∂x + x∂y) = Lz. (103)

• We may also express L2 in spherical coordinates

L2ψ = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

]
. (104)
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• It is easy to solve the eigenvalue problem for Lz = −i~∂φ . Lz has the same dimensions as ~ .
So let us write the eigenvalue as ~m where m is dimensionless: Lzf = ~mf . The eigenfunctions
are f(φ) = Aeimφ . What are the eigenvalues m? φ = 0 and φ = 2π represent the same physical
point. We require the wave function to be single-valued, i.e. f(0) = f(2π). This forces m to
be an integer 0,±1,±2, . . . . So the eigenvalues of Lz are integers in units of ~ .

5.2 Eigenvalues of L2 and Lz by ladder operators

• We seek simultaneous eigenstates ψ of L2 and Lz with eigenvalues λ~2 and ~m

L2ψ = ~2λψ, Lzψ = ~mψ (105)

To find the allowed values of λ,m we use the ladder operator method. Define L± = Lx ± iLy .
The virtue of L± is that if ψ is one such simultaneous eigenstate, then so are L±ψ . Indeed, we
check using the commutation relations [L2, L±] = 0 and [Lz, L±] = ±~L± that

L2 (L±ψ) = ~2λ(L±ψ), Lz (L±ψ) = ~(m± 1) (L±ψ) . (106)

So L± raises/lowers the eigenvalue of Lz by ~ while leaving the eigenvalue of L2 unchanged.
However, by positivity of L2

x, L
2
y, L

2
z and L2 = ~L ·~L it follows that the eigenvalues of Lz for fixed

λ cannot get too big or too small. So starting with a common eigenfunction ψ and repeatedly
applying L+ , there must be a state (ψh ) with highest eigenvalue of Lz (say, ~l), which is
annihilated by L+

Lzψh = ~lψh, L+ψh = 0. (107)

But ψh must also be an eigenfunction of L2 . To see how L2 acts on ψh we express it in terms
of L±

L2 = L−L+ + L2
z + ~Lz ⇒ L2ψh =

(
~2l2 + ~2l

)
ψh = ~2l(l + 1)ψh (108)

So if ~l is the largest eigenvalue of Lz , then the corresponding eigenvalue of L2 must be
~2l(l+ 1). But what are the allowed values of l? To find out, we note that there is also a state
with lowest eigenvalue of Lz which is annihilated by L−

Lzψlow = ~l′ψlow, L−ψlow = 0, l′ ≤ l (109)

But ψlow must also be an eigenfunction of L2 . Using

L2 = L+L− + L2
z − ~Lz ⇒ L2ψlow =

(
~2l′2 − ~2l′

)
ψlow = ~2l′(l′ − 1)ψlow (110)

However, raising and lowering does not change the eigenvalue of L2 , so

l(l + 1) = l′(l′ − 1), l ≥ l′. (111)

The solutions are l′ = −l and l′ = l + 1. The latter solution is disallowed since it would imply
l′ > l . Thus l′ = −l . So for fixed λ , i.e., fixed l , the eigenvalues of Lz go in integer steps from
l to −l . But this is possible only if l − (−l) is itself an integer, i.e., if l is half an integer

l = 0,±1

2
,±1,±3

2
,±2 · · · . (112)

And for each such value of l , the possible eigenvalues of Lz are ~(−l,−l + 1, · · · , l − l, l).
However, there is a small problem with the non-integer values of l . We already saw in the last
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section that the eigenfunctions of Lz are Aeimφ with eigenvalues ~m where m is an integer.
If m was half an odd integer, then Φ(φ) 6= Φ(φ + 2π) would not be single-valued. Only the
integer values l = 0, 1, 2, . . . lead to simultaneous eigenfunctions of L2 and Lz . To summarize,
the spectrum of L2 consists of the numbers ~2l(l + 1) where l = 0, 1, 2, . . . . For each such l ,
the spectrum of Lz consists of the numbers ~m where m is an integer satisfying −l ≤ m ≤ l .
So the degeneracy of each eigenvalue of L2 is 2l+ 1. The simultaneous eigenstates are denoted
|lm〉 , they are orthonormal 〈lm|l′m′〉 = δmm′δll′ .

• The Spherical harmonics Ylm(θ, φ) = 〈θφ|lm〉 are the simultaneous eigenfunctions of L2 and
Lz expressed in the spherical polar coordinate basis. We will work out some of them later.

5.3 Rigid Body

• A molecule can be crudely modelled as a rigid body if we are interested in its rotational
spectrum. Consider an isotropic rigid body, (i.e., one whose principal moments of inertia are
equal) e.g., a spherical ball free to rotate about its center, which is held fixed, or a cube shaped

molecule or a tetrahedral molecule. Its rotational kinetic energy is H = L2

2I where I is its
moment of inertia about any axis passing through its center. Classically, its rotational energy is
any positive number, depending on its angular velocity ω = L/I . For an isotropic rigid body,
in quantum mechanics, H , L2 and Lz commute and are simultaneously diagonal in the basis

of spherical harmonics. The spectrum of energies is discrete, Elm = l(l+1)~2

2I where the angular
momentum quantum number l = 0, 1, 2, . . . . The corresponding eigenfunctions are the spherical
harmonics Ylm(θ, φ). The energies are independent of the magnetic quantum number m . This
is because of spherical symmetry. All 2l + 1 states Ylm , for m = −l, . . . , l , irrespective of their
z -component of angular momentum (LzYlm = ~mYlm ) are degenerate in energy. This is due to
the spherical symmetry of the hamiltonian. Lx, Ly and Lz are symmetries of H , they commute
with it. The independence of E on m means the rotational energy of the body does not depend
on its orientation (i.e., independent of the projection of the angular momentum on the z-axis).
In general, symmetries imply degeneracies. And when symmetries are broken, the degeneracy
is lost.

• More generally, the rotational kinetic energy of a rigid body free to rotate about a point is

H =
L2

1
2I1

+
L2

2
2I2

+
L2

3
2I3

where I1, I2, I3 are the principal moments of inertia about the three principal
axes of inertia of the body. For an isotropic body, I1 = I2 = I3 .

• The next simplest case is a top, a rigid body with an axis of symmetry, which we can take as
the third principal axis. Then I1 = I2 = I and the hamiltonian becomes

H =
L2

1 + L2
2

2I
+
L2

3

2I3
=
L2 − L2

3

2I
+
L2

3

2I3
. (113)

Written this way, we see that [H,L2] = 0 and [H,L3] = 0, so the hamiltonian is again diagonal
in the basis of spherical harmonics. The energy spectrum is

Elm =
~2l(l + 1)− ~2m2

2I
+

~2m2

2I3
. (114)

Due to lack of isotropy, energy levels now depend on the magnetic quantum number m . In a
sense, the energy depends on the orientation of the rigid body. The 2l + 1-fold degeneracy of
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energy in the m quantum number is lost. We still have a 2-fold m → −m degeneracy in the
energy spectrum, corresponding to the symmetry under reflection z → −z in the x-y plane.
The isotropic case is obtained by putting I3 = I .

5.4 Coordinate representation of spherical harmonics for l = 1

• In the preceding section we did not require the explicit functional forms of the spherical
harmonics Ylm(θ, φ). But suppose we wanted to know the angular regions where an electron
in the state |lm〉 is likely to be found. Then we need to know Ylm(θ, φ) = 〈θ, φ|lm〉 . As an
illustration, we focus on p-wave states, i.e. those with l = 1, there are three linearly independent
such states. Let us obtain Y1m using the algebraic method of raising and lowering operators. We
already know the φ dependence of Ylm . As it is an eigenfunction of Lz , Ylm(θ, φ) = eimφPlm(θ).
Plm(θ) are called the associated Legendre functions since they satisfy the associated Legendre
differential equation. But we can find them using the raising and lowering operators. We begin
by finding the state with top-most value of m , Yll . By definition, L+Yll = 0, so if we denote
Yll(θ, φ) = ψ(θ, φ) whose φ dependence is known, then

L+ψ = ~eiφ (∂θ + i cot θ∂φ)ψ = 0 ⇒ ψθ + i cot θψφ = 0 ⇒ ψθ − l cot θψ = 0. (115)

We find ψ = Nlle
ilφ sinl θ for a normalization constant Nll . The normalization constant is fixed

by
∫
Y ∗lm(θ, φ)Ylm(θ, φ) sin θdθ dφ = 1.

• In particular, Y11 ∝ eiφ sin θ . The angular probability distribution |Y11|2 ∝ sin2 θ is peaked
around the equator θ = π/2 while the particle is less likely to be found near the poles. To get

the next state, we apply L− = L†+ . Do this!

Y10 ∝ L−eiφ sin θ = −~e−iφ (∂θ − i cot θ∂φ) eiφ sin θ = −2~ cos θ ⇒ Y10 = N10 cos θ. (116)

Thus |Y10|2 ∝ cos2 θ , and the particle is more likely to be found near the poles in this case. We
also notice that Y11 ∝ eiφ sin θ and Y10 ∝ cos θ are orthogonal, as we would expect of eigenstates
of Lz with distinct eigenvalues.

• To get Y1,−1 we can either apply L− to Y10 or find it by solving L−Y1,−1 = 0. Check that
both give the same answer!

5.5 Visualization of angular momentum and location in states Ylm

• We observe that the largest eigenvalue of Lz among states with square of total angular
momentum ~2l(l + 1) > 0 is ~l . But l <

√
l(l + 1) for l > 0. This means in a state of definite

L2 and Lz , measured values of Lz can never equal the (non-zero) total angular momentum.
This is different from the classical situation where all the angular momentum can be pointing
in (say) the z direction. Quantum mechanically there cannot be any simultaneous eigenstate
where the eigenvalues of Lx , Ly are zero and that of Lz and L equal (and non-zero). Such a
state would violate ∆Lx∆Ly ≥ ~

2 |〈Lz〉| .

• Classically, suppose we are in a stationary state of angular momentum, i.e., one where ~L
points in a fixed direction with fixed magnitude over time. For example, we can be in a classical
state where Lz = 105~, Ly = 0, Lx = 0. We can visualize this in terms of a rigid body that is
rotating with constant angular speed about an axis pointing along ẑ . Quantum mechanically,
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the stationary states may be taken as simultaneous eigenstates ψ = Ylm of L2 and Lz . In such
a state we can imagine the angular momentum vector as having length equal to the square-root
of the eigenvalue of L2 , i.e.,

√
~2l(l + 1). Moreover, this vector has projection on the z-axis

of ~m . So we know its angle with the z-axis. But that is as much as we can say. We cannot
unambiguously specify its projections on x or y axes since Lx and Ly do not have definite
values in this state. To visualize the ‘angular momentum vector’ in this state, we can think
of it as the cone of vectors from the origin whose lengths are

√
~2l(l + 1) and projection ~m

on the z-axis. This hand-waving visualization can be a useful aid to memory. There are as
many vectors on the cone with x-component of angular momentum equal to ~mx as −~mx .
So by symmetry we would expect the expectation value of Lx in the state Ylm to vanish, as it
does. It is important to realize that this cone does not tell us where the particle is likely to be
found, it only gives some crude information on the likely values that may be obtained upon a
measurement of various components of angular momentum.

• To visualize where the particle is likely to be found if its angular position is measured in state
Ylm , we must plot the probability density |Ylm(θ, φ)|2 on the surface of a unit sphere in polar
coordinates r = 1, θ, φ . For example, in the S-wave state Y00 = 1√

4π
, this probability density is

constant, indicating that the particle is equally likely to be found at all angular locations. More
generally, Ylm(θ, φ) ∝ eimφPlm(cos θ). So |Ylm|2 ∝ |Plm(θ)|2 . Thus the angular probability
distribution is azimuthally symmetric (independent of φ). For example, |Y10|2 ∝ cos2 θ . So in
this state, the particle is more likely to be found near the north pole (θ = 0) or south pole
(θ = π ), than along the equator θ = π/2. Polar plots of Plm(θ) are given in many text books.

5.6 Matrix elements of L± in the |lm〉 basis

• Let |l,m〉 be the normalized simultaneous eigenstates of L2 and Lz , 〈lm|l′m′〉 = δll′δmm′ .

• We already know that

L2|lm〉 = ~2l(l + 1)|lm〉 and Lz|lm〉 = ~m|lm〉
So 〈lm|L2|l′m′〉 = ~2l(l + 1)δll′δmm′ and 〈lm|Lz|l′m′〉 = ~mδll′δmm′ . (117)

• Moreover, L± = Lx ± iLy raise and lower the value of m by one, so for some dimensionless
constants C±lm we must have

L±|lm〉 = ~C±lm|l,m± 1〉. (118)

• To find C− , we use the identity L2 = L+L− + L2
z − ~Lz to evaluate the diagonal matrix

elements 〈lm|L2|lm〉 in two different ways. We get

~2l(l + 1) = 〈L−lm|L−lm〉+ 〈lm|L2
z − ~Lz|lm〉 = ~2|C−l,m|

2 + ~2m2 − ~2m

⇒ |C−lm|
2 = l(l + 1)−m(m− 1) ⇒ |C−lm|

2 = l(l + 1)−m(m− 1) (119)

Similarly2, using L2 = L−L+ + L2
z + ~Lz we get |C+

lm|
2 = l(l + 1)−m(m+ 1). Thus for some

phases eiφlm , we have

C−lm =
√
l(l + 1)−m(m− 1)e−iφlm and C+

lm =
√
l(l + 1)−m(m+ 1)eiφlm . (121)

2Alternatively, we may use hermiticity L†+ = L− , to get C−lm = (C+
l,m−1)∗ . To see this, we note that

〈l′m′|L−|lm〉 = C−lmδll′δm′,m−1 = 〈L+l
′m′|lm〉 = 〈lm|L+|l′m′〉∗ = C+∗

l′m′δll′δm,m′+1 = C+∗
l,m−1δll′δm′,m−1 (120)

Since these must be equal for all l, l′,m,m′ we have C−lm = (C+
l,m−1)∗ .
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It is possible to absorb these phases into the wave functions and take C± to be real.

C±lm =
√
l(l + 1)−m(m± 1) (122)

Thus the matrix elements of L± are

〈l′m′|L±|lm〉 = ~
√
l(l + 1)−m(m± 1) δl′lδm′,m±1. (123)

Using these we can easily get the matrix elements of Lx and Ly .

5.6.1 E.g.: Matrix representation of angular momenta for l = 1

• Let us illustrate with the l = 1 subspace which is 2l + 1 = 3 dimensional and is spanned
by the orthonormal spherical harmonics Y1m(θ, φ) for m = 1, 0,−1 which we denote |m〉 and
represent by the column vectors

|1〉 =

1
0
0

 , |0〉 =

0
1
0

 , | − 1〉 =

0
0
1

 . (124)

In this basis Lz|m〉 = ~m|m〉 and L2|m〉 = l(l+1)~2|m〉 are represented by the diagonal matrices

Lz = ~

1 0 0
0 0 0
0 0 −1

 and L2 = 2~2

1 0 0
0 1 0
0 0 1

 . (125)

L± have the action L±|m〉 =
√

2−m(m± 1) ~ |m± 1〉 and are adjoints of each other, so L+|1〉 = 0

L+|0〉 =
√

2~|1〉
L+| − 1〉 =

√
2~|0〉

 ⇒ L+ =
√

2~

0 1 0
0 0 1
0 0 0

 and L− =
√

2~

0 0 0
1 0 0
0 1 0

 . (126)

Notice that L± are strictly upper/lower triangular and not hermitian. They are not observables.
But using them we find the matrices for Lx and Ly

Lx =
L+ + L−

2
=

~√
2

0 1 0
1 0 1
0 1 0

 , Ly =
L+ − L−

2i
=

~√
2i

 0 1 0
−1 0 1
0 −1 0

 . (127)

• The eigenvalues of Lz are ~, 0,−~ . Since there is nothing special about the z -direction we
should expect the eigenvalues of Ly and Lz to also be the same. Check if this is so!

• However, Lx is not diagonal in the eigenbasis of Lz . Suppose an atom in the l = 1 state is
in the m = 0 eigenstate |10〉 or Y10(θ, φ) of Lz . A measurement of Lx is made. What are the
probabilities of various outcomes of the measurement?

• Measurement of Lx can result in any one of the eigenvalues ~mx = ~, 0,−~ , after which the
state collapses to the corresponding eigenstate X+, X0, X− , which in this case are (show it!)

X+ =
1

2

 1√
2

1

 , X0 =
1√
2

 1
0
−1

 , X− =
1

2

 1

−
√

2
1

 . (128)
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The measurement postulate further tells us that the probability of each outcome is the absolute

square of the projection of the initial state |0〉 =

0
1
0

 on the final eigenstate. We find

prob(lx = 0) = |〈X0|0〉|2 = 0, prob(lx = ~) = |〈X+|0〉|2 =
1

2
, prob(lx = −~) = |〈X−|0〉|2 =

1

2
. (129)

Interestingly, this means measurement of Lx for a particle in the state Lz = 0 cannot result
in the value zero while the values ±~ occur with equal probability. So if a beam of particles
in the l = 1,m = 0〉 state enters a Stern-Gerlach apparatus with an inhomogeneous magnetic
field component Bx that couples to the Lx component of angular momentum via the magnetic
moment, then two beams will emerge, corresponding to the lx = ±~ values. Different values of
Lx feel different magnetic dipole forces.

6 Spin angular momentum

• Spin was initially discovered (by the work of many physicists, culminating in the work of
Goudsmit and Uhlenbeck) through a detailed study of atomic spectral lines. Certain forbid-
den/additional spectral lines were seen (e.g. where one line was expected, two closely spaced
lines were seen). To account for these, a new ‘spin’ quantum number ms = ±1

2 was introduced,
in addition to the n, l,m quantum numbers used to label the energy levels of the hydrogen atom.
It is interesting to read the translation of a lecture by Goudsmit on the history of the discovery
of electron spin, see http://www.lorentz.leidenuniv.nl/history/spin/goudsmit.html

• Subsequently, a theory of spin was developed (among others by Pauli), wherein it is treated
as another type of angular momentum. The initial analogy was with the spinning of the Earth
about its axis, while orbital angular momentum was compared with the motion of the center
of mass of the Earth around the sun. However, no such mechanical model for the spin of the
electron has been successful. The electron is point-like to current experimental accuracy and
even extended particles like the proton (which are not point-like), have intrinsic spin which has
not been explained by mechanical analogies.

• In classical E & M we learn that a charged particle going round in a loop produces a current
loop which has a magnetic dipole moment. The magnetic moment is proportional to the orbital
angular momentum of the particle. Thus we expect magnetic moments to be proportional to
angular momentum.

• Quantum mechanical spin is regarded as an ‘intrinsic spin’ represented by a vector observable
~S = (Sx, Sy, Sz). Intrinsic means not of ‘r× p ’ origin, i.e., not having to do with movement in
three dimensional space. In fact, a massive particle at rest can have a magnetic moment! This
magnetic moment must necessarily be of non-orbital origin (since ~p = 0 for the particle at rest).
Such a magnetic moment is ascribed to its spin. The spin observables are postulated to satisfy
the same commutation relations as angular momentum

[Si, Sj ] = i~εijkSk (130)

Unlike Li , Si are not expressible in terms of position and momentum, spin is a new degree of
freedom.
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• To describe spin in the quantum theory, we need to represent Si as hermitian operators
acting on some Hilbert space of spin states. In fact, we have already learned how to do this
in the context of orbital angular momentum. S2 = S2

x + S2
y + S2

z and Sz are simultaneously
diagonalizable and and their common eigenbasis is denoted |s,m〉 .

S2|sm〉 = s(s+ 1)~2|sm〉, Sz|sm〉 = ~m|sm〉. (131)

S±|sm〉 = (Sx±iSy)|sm〉 are found to be eigenvectors of S2 with the same eigenvalue s(s+1)~2 ,
but eigenvectors of Sz with eigenvalue raised/lowered by ~ , S±|sm〉 ∝ |s,m ± 1〉 . The largest
and smallest possible values of m must be s and −s and since S+ raises m in steps of 1,
2s = N for some non-negative integer N = 0, 1, 2, . . . . Thus

s = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . and m = −s,−s+ 1, . . . , s− 1, s. (132)

However, unlike for orbital angular momentum where Lz = −i~ ∂
∂φ , Sz is not a differential

operator in the coordinates of the particle. There is no restriction on the allowed values of m
being integral rather than half integral. Indeed, in nature, s is found to take on both integer and
half odd-integer values. s is referred to as the spin of the particle. Unlike the orbital angular
momentum quantum number l , a given type of particle (say electron) has a fixed value of spin
s , irrespective of its state of motion or location.

• Electrons, protons, neutrons, muons, neutrinos, quarks all have spin s = 1
2 . Mesons like pions

and kaons have spin zero, as does the proposed Higgs particle. Rho mesons, photons, gluons
and the weak gauge bosons W±, Z0 have spin 1, Delta baryons have spin 3/2, gravitons would
have spin two. Atoms as a whole can also have non-zero spin arising collectively from the spins
of the electrons protons and neutrons. There are particles with higher spin as well, but we will
focus on spin s = 1

2 , which is relevant to electrons.

• For each value of spin s , we need to find a representation of the spin observables Sx, Sy, Sz as
hermitian operators on some Hilbert space. The relevant Hilbert spaces are 2s+ 1 dimensional.
This representation may be built up from the lowest state |s,−s〉 by repeatedly applying S+ .

6.1 Spin half: Pauli spin matrices and spinor wave functions

Here the Hilbert space of spin states is 2s+ 1 = 2 dimensional and has basis |12 ,
1
2〉 and |12 ,−

1
2〉

which are also denoted | ↑〉 and | ↓〉 . The general spin state of a spin half particle is a| ↑〉+b| ↓〉 .
In this basis,

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
⇒ S2 =

3~2

4

(
1 0
0 1

)
, Sz =

~
2

(
1 0
0 −1

)
(133)

To find the matrix representation of Sx and Sy we recall that

S±|sm〉 = ~
√
s(s+ 1)−m(m± 1) |s,m± 1〉. (134)

Thus S+| ↑〉 = 0, S+| ↓〉 = ~| ↑〉 and

S+ = ~
(

0 1
0 0

)
, S− = ~

(
0 0
1 0

)
⇒ Sx =

S+ + S−
2

=
~
2

(
0 1
1 0

)
, and Sy =

S+ − S−
2i

=
~
2

(
0 −i
i 0

)
.
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The traceless hermitian matrices σi = 2
~Si are called Pauli matrices.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (135)

Check that they satisfy

[σi, σj ] = 2
√
−1εijkσk, and σiσj = δij + iεijkσk. (136)

If Sz is measured in the above general state a| ↑〉+ b| ↓〉 then the possible values obtained are
±1

2~ with probabilities given by the absolute squares of the projections of the normalized initial

state with the corresponding normalized eigenvectors of Sz . These probabilities are |a|2
|a|2+|b2| and

|b2|
|a|2+|b2| . On the other hand, if we measure Sx , the possible values obtained are again ±1

2~ but

with probabilities 1
2 |a + b|2 and 1

2 |a − b|
2 , where we assume the state has been normalized so

that |a|2 + |b|2 = 1.

• The hydrogen atom hamiltonian commutes not just with L2, Lz but also S2 and Sz . All these
operators commute pairwise. So we can label stationary states by their eigenvalues, n, l,m and
also s,ms . Of course s = 1

2 is fixed for electrons and the energy eigenvalues are independent of
l,m,ms . So accounting for the two possible spin projections of an electron, the degeneracy of
the hydrogen energy levels is 2n2 .

7 Addition of angular momenta

7.1 State space and observables for two particle systems

So far we dealt with 1-particle systems (electron in an atom, spin in a magnetic field e.t.c.).
Now suppose we have a system of two particles, each of whose space of quantum states are the
Hilbert spaces H1 and H2 . For example, H1 could be specified by a basis, i.e., H1 is the linear
span of a collection of basis vectors, which may be the energy eigenstates of an SHO if we have
a particle in one dimension. Similarly, we specify H2 as the linear span of a set of basis vectors.
Then the space of states of the combined system is the so-called tensor/direct product Hilbert
space H = H1 ⊗ H2 . If ψn and φm are a basis for H1 and H2 respectively, then a basis for
H1 ⊗ H2 is given by the vectors ψn ⊗ φm . So any state of the combined system is a linear
combination of tensor products of basis states of the individual systems.

• This definition is imposed on us by the superposition principle of quantum mechanics. In
classical mechanics, the state of a system of 2 particles is given by specifying the state of
each particle (x1, p1, x2, p2). Analogously in quantum mechanics we might expect the state
of the system to be specified by giving the states of each particle, say |ψ1〉|φ2〉 . However,
the superposition principle says that these cannot be all the states, since a linear combination
of states is also an allowed state. This directly leads to the conclusion that arbitrary linear
combinations of product states are allowed states of the combined system. Now the tensor
product is merely a notation for writing these product states. The definition of tensor product
Hilbert space is merely kinematical, it does not presuppose any particular interaction between
the particles.
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• E.g., if we have two spin half particles, a basis for their combined spinorial Hilbert space is
given by

| ↑〉 ⊗ | ↑〉 ≡ | ↑↑〉, | ↑〉 ⊗ | ↓〉 ≡ | ↑↓〉, | ↓〉 ⊗ | ↑〉 ≡ | ↓↑〉, | ↓〉 ⊗ | ↓〉 ≡ | ↓↓〉. (137)

We sometimes abbreviate by dropping the ⊗ symbol as above. The dimension of the tensor
product Hilbert space is the product of dimensions.

• Observables for the two particle system are (hermitian) operators acting on the tensor product
Hilbert space. Examples of such operators are tensor products of operators acting on each
particle separately. For example, if ~S1 and ~S2 are the spin operators for each, then we have the
total spin operator

~S = ~S1 ⊗ 1 + 1⊗ ~S2 (138)

The identity operator for the combined system is 1 ⊗ 1. We often drop the ⊗ symbol and
suppress the identity operators and write ~S = ~S1 + ~S2 . The z -component of the first spin is
S1z⊗ 1. The total z -component of spin is Sz = S1z⊗ 1 + 1⊗S2z ≡ S1z +S2z . A tensor product
operator A⊗B acts on a basis state of the tensor product Hilbert space by

(A⊗B)(u⊗ v) = (Au)⊗ (Bv) (139)

The composition of a pair of tensor product operators is given by

(A⊗B)(C ⊗D) = AC ⊗BD (140)

This is what you get if you keep in mind that C acts on the state of the first particle followed
by A , again on the first particle. Similarly, D acts on the state of the second particle followed
by the action of B . For example, the square of total spin works out to be

S2 =
(
~S1 + ~S2

)2
= S2

1 ⊗ 1 + 1⊗ S2
2 + 2~S1

⊗. ~S2. (141)

Make sense of this formula and work out how it acts on the above-mentioned tensor product
states.

• The tensor product carries a natural inner product induced by the inner products on the
individual Hilbert spaces. On basis states, the inner product is

〈u⊗ v|w ⊗ z〉 = 〈u|w〉〈v|z〉. (142)

For example, 〈↑ ⊗ ↑ | ↑ ⊗ ↓〉 = 〈↑ | ↑〉〈↑ | ↓〉 = 0.

7.2 Addition of two spin-half angular momenta

The sum of two spin operators ~S = ~S1 + ~S2 satisfies the same angular momentum algebra as
each of the individual spins. Check that

[Sx, Sy] = [S1x + S2x, S1y + S2y] = i~(S1z + S2z) = i~Sz, e.t.c. (143)

In particular we can carry over all our results on the matrix representation of spin observables
which depend only on these commutation relations. In particular, [S2, Sz] = 0 and we have
raising and lowering operators S± = S1± + S2± which raise or lower the eigenvalue of Sz by ~ .
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We may denote the simultaneous eigenstates of S2 and Sz by |sm〉 and as before we must have
highest/lowest weight states |ss〉, |s,−s〉 that are annihilated by S± . Of course, there could be
more than one highest weight state labelled by different values of s . From each highest weight
state we can build a representation of spin operators by acting repeatedly with S− . Now we
want to know what possible values s can take given that ~S = ~S1 + ~S2 is the sum of two spin
half observables. For each value of s , the allowed values of m will be as before, running from
−s to s in steps of one.

• Since |sm〉 is a state of a two-spin system, it must be expressible as a linear combination of
tensor products of states of single spins. There are four tensor product basis vectors

| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉 (144)

We find that all of these are eigenstates of Sz = S1z +S2z which just adds the z -components of
the two spins. The corresponding values of m are 1, 0, 0,−1. So it would appear that the value
of s is either 1 or 0, as we will see.

• Now S+| ↑↑〉 = 0. So we can build one representation by successively applying S− = S1−+S2−
to | ↑↑〉

S−| ↑↑〉 = ~| ↓↑〉+ ~| ↑↓〉; S− (| ↑↓〉+ | ↓↑〉) = 2~| ↓↓〉, S−| ↓↓〉 = 0. (145)

These three basis states are found to be eigenstates of S2 with eigenvalue 2~2 (show this, using
the formulae S2 = S+S− + S2

z − ~Sz = S−S+ + S2
z + ~Sz ). Thus we have a spin s = 1 three

dimensional ‘triplet’ representation on the states

|11〉 = | ↑↑〉, |10〉 =
1√
2

(| ↑↓〉+ | ↓↑〉) , |1,−1〉 = | ↓↓〉. (146)

The remaining orthogonal state with m = 0,

|00〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) (147)

is annihilated by both S− and S+ and therefore furnishes a 1-dimensional representation of
total spin. It is shown to be an eigenstate of S2 and Sz with eigenvalues 0 and 0. Thus it
corresponds to s = 0,ms = 0 and is called the singlet state |00〉 .
• To summarize, the total spin of a composite system consisting of two spin half particles can
be either s = 0 or s = 1. This is expressed in the formula 1

2 ⊗
1
2 = 1⊕ 0. The four dimensional

Hilbert space of the composite system splits into the direct sum of a one dimensional subspace
spanned by the singlet state with s = 0 and a three dimensional subspace spanned by the
triplet states with s = 1. Notice that the spin singlet state is anti-symmetric under exchange
of particles while the spin triplet states are all symmetric under exchange of particles; this will
be exploited when we discuss the Pauli principle.

• The Hilbert space of the combined system has two interesting bases. The first is the ‘un-
coupled’ basis of tensor product states ↑↑, ↑↓, ↓↑, ↓↓ which are common eigenstates of S1z , S2z ,
S2

1 and S2
2 , which are all simultaneously diagonalizable. (In fact S2

1 and S2
2 are just proportional

to the identity). The un-coupled basis states may be denoted |s1,m1, s2,m2〉 .
• Then there is the ‘coupled’ basis of eigenstates of S2, Sz (and S2

1 and S2
2 ) which we could

denote |s,m, s1, s2〉 . Here s1 = s2 = 1
2 are constant so we usually suppress them. The coupled

basis states consist of the triplet and singlet states.
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• We can express the basis vectors of the coupled basis as linear combinations of the uncoupled
basis vectors and vice versa.

|s m s1 s2〉 =
∑
m1,m2

Cs,mm1,m2
|s1 m1〉 ⊗ |s2 m2〉. (148)

The coefficients in these linear combinations are called Clebsch-Gordan coefficients. We have
obtained a few of them above.

7.3 Addition of two or more angular momenta

• More generally, we can combine two spins or angular momenta l1 and l2 . The result is that
the angular mometum l of the combination takes each value from |l1 − l2| to l1 + l2 in integer
steps. This is expressed in the formula

l1 ⊗ l2 = (l1 + l2)⊕ (l1 + l2 − 1)⊕ · · · ⊕ |l1 − l2|. (149)

For example, if we form a composite system from two spin one particles, the combined system
again behaves like a spin system, but with spin either 2 or 1 or 0. The Clebsch-Gordan
coefficients for combining angular momenta are tabulated in various quantum mechanics books.
To combine three spins, we first combine two of them and then the third and so on.

• This quantum mechanical procedure for finding the resultant spin is to be contrasted with the
vector addition formula for combining angular momenta in classical mechanics. However, there is
some similarity. Classically, the resultant angular momentum ~L = ~L1 + ~L2 can take a maximum
magnitude equal to |~L1| + |~L2| when the angular momenta are parallel and a minimal value
||~L1| − |~L2|| when the angular momenta are anti-parallel. These maximal and minimal values
are analogous to the quantum mechanical result that the maximum angular momentum quantum
number is l1 + l2 and minimal value is |l1 − l2| . Of course, classically every value in between is
also a possibility depending on the relative orientations of the two angular momentum vectors.
Quantum mechanically, only certain intermediate values of l are allowed, in integer steps! The
classical limit is obtained in the limit of large quantum numbers l(l + 1)~2 � ~2, l1, l2 � 1. In
this limit,

√
~2l(l + 1) ≈ ~l→ |~L| e.t.c. Moreover the size of the small integer steps in units of

~ is very small compared to the angular momentum and a continuum of values is approximately
obtained.

• More generally we may combine any number of spins/angular momenta s1 ⊗ s2 ⊗ . . . ⊗ sn .
Then there is a unique (up to normalization) highest weight state (annihilated by S+ ) ψhws
with maximal spin projections Sz|s1, · · · , sn〉 = ~(s1 + · · · + sn)|s1, · · · , sn〉 . Applying S− to
this state produces an eigenstate of Sz with eigenvalue ~(s1 + · · ·+ sn− 1) which is ~ less than
maximal. This is the symmetric state

ψS ∝ |s1 − 1, s2, · · · , sn〉+ |s1, s2 − 1, · · · , sn〉+ · · ·+ |s1, s2, · · · , sn − 1〉 (150)

We may successively apply S− to this to produce a spin s1 + · · ·+ sn representation. However
the space of states with spin projection ~ less than maximal is n dimensional with basis

|s1 − 1, s2, · · · , sn〉, |s1, s2 − 1, · · · , sn〉, . . . , |s1, s2, · · · , sn − 1〉. (151)

Any state ψ in this subspace that is orthogonal to ψS is automatically annihilated by S+ and
furnishes a highest weight state for a new spin s1 + · · ·+ sn − 1 representation. This procedure
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is then repeated. Let us see why S+ψ = 0. Since Sz(S+ψ) = ~(s1 + · · ·+sn)S+ψ , and the space
of states with maximal spin projection is one dimensional we must have for some constant c

S+ψ = cψhws (152)

We will show that c = 0 if ψ ⊥ ψS . Taking an inner product

〈ψhws|S+|ψ〉 = 〈ψhws|cψhws〉 = c ⇒ c = 〈S−ψhws|ψ〉 = 〈ψS |ψ〉 = 0. (153)

The possible resultant spins of a composite system of three spin half particles (e.g. the three
electrons in a Lithium atom) can be worked out by combining two of the spins first and then
the third

1

2
⊗ (

1

2
⊗ 1

2
) =

1

2
⊗ (0⊕ 1) =

1

2
⊕ 1

2
⊗ 1 =

1

2
⊕ 1

2
⊕ 3

2
. (154)

So a system of three spin half particles can behave as a spin half particle in two different ways
and also as a spin 3/2 particle. The ⊗ can be read as ‘and’, and ⊕ as ‘or’, they are the direct
product (tensor product) and direct sum, respectively. So when reading 1

2 ⊗
1
2 we say that if

a system consists of a spin half particle AND another spin half particle, then the composite
system behaves either as a spin zero system OR as a spin one system.

8 Multiparticle systems: bosons & fermions

8.1 Identical and indistinguishable particles

In classical physics we can distinguish a pair of tennis balls since they may not have exactly the
same mass or number of fibres. Classical objects may be identified/labelled by their intrinsic
properties detected by their different interactions with various measuring devices (like light (for
color) or smell or mass). By intrinsic properties we mean charge, mass, shape or inertia tensor
etc, not the position or speed of the particle. Even if the masses, shapes and inertia tensors were
the same to the accuracy of our devices (i.e., the balls seem identical) we could still distinguish
the two tennis balls by keeping track of their historical trajectories (x(t), p(t)), ball A was the
one that left the factory at 10am on 23/4/10 etc while ball B had a slightly different trajectory
(after all we have never found two tennis balls with coincident trajectories even for a short
duration).

• The situation with objects needing a quantum mechanical treatment is somewhat different.
No experiment so far has been able to distinguish one electron from another, they all have the
same mass, charge, spin, magnetic moment and interactions with light, atoms etc. What is
more, the possibility of distinguishing two electrons based on their semi-classical trajectories
may seem to work approximately for some time, but can easily fail. The electron wave packets,
if they come quite close, would overlap, interfere and we would not be able to unambiguously
label the electrons when the wave packets separate.

• This is a particularly severe problem when we are dealing with atoms with several electrons.
The electrons do not have well-defined orbits, their wave functions overlap and it has not been
possible to keep track of which electron is which as time progresses. There are many other
examples of identical particles in nature including photons in a black body cavity, neutrons in
a neutron star, Rubidium atoms in a laser trap etc.
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• Contrast this with the situation with planets in the solar system where we can distinguish
them by their color/mass/temperature/support for life/historical trajectories etc. So quantum
mechanically electrons are identical and indistinguishable. Of course, not all particles are iden-
tical and indistinguishable. We can tell a proton apart from an electron by its mass.

• The state of a multi-particle system is a ray in the tensor product Hilbert space. Let us
consider two identical particles for simplicity. Since the particles are identical, their individual
Hilbert spaces of states can be taken to be the same H1

∼= H2 . If φa is a basis for the individual
Hilbert space, a vector in the tensor product H1 ⊗H2 is of the form

ψ(x1, x2) =
∑
a,b

cab φa(x1) ⊗ φb(x2) (155)

Define the permutation or exchange operator (not to be confused with parity) Pψ(x1, x2) =
ψ(x2, x1) which exchanges the coordinates (and spins if we were keeping track of the spins).
Check that this implies that P is hermitian. To implement the identical and indistinguishable
nature of the particles, we postulate that the vector ψ and the vector Pψ must represent the
same physical state. This implies that

ψ(x1, x2) = eiθψ(x2, x1) (156)

for some phase eiθ . We will find that eiθ = ±1 are the allowed values, corresponding to bosons
and fermions respectively. In particular,

Pψ(x1, x2) = ψ(x2, x1) = e−iθψ(x,x2). (157)

From the definition of P we also see that P 2 = I is the identity. Thus we have

P 2ψ(x1, x2) = ψ(x1, x2) and P 2ψ(x1, x2) = e−2iθψ(x1, x2). (158)

Comparing we find e−2iθ = 1 or eiθ = ±1, which means there are only two possibilities

ψ(x1, x2) = ±ψ(x2, x1) (159)

and we say that wavefunctions of a system of two (though it is true also for more than two)
identical particles must be either symmetric or antisymmetric under exchange. Note that this
applies to all states, not just energy eigenstates!

• In addition we postulate that exchange of particles must be a symmetry of the dynamics,
i.e., classically the forces and energy must not be affected by a permutation of the particles (if
this weren’t true we could distinguish the particles). This means the classical hamiltonian is
symmetric

H(x1, p1;x2, p2) = H(x2, p2;x1, p1) (160)

In the quantum theory this means [P,H] = 0. Thus, P and H are simultaneously diagonal-
izable. Energy eigenstates may therefore be chosen to be eigenstates of the exchange operator
and must be either symmetric or anti-symmetric functions of the coordinates.

• The symmetric and anti-symmetric functions describe different types of particles. Fermionic
particles are those with anti-symmetric wave functions while bosonic particles are those with
symmetric wave functions. Electrons in an atom need to be described by anti-symmetric wave
functions to match the measured atomic spectra and periodic table. They are fermions. Photons
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and many isotopes of alkali metal atoms need to be described by symmetric wave functions to
match their experimental properties such as Bose condensation. They are bosons. Remarkably,
it is found that particles with integer spin s = 0, 1, 2, . . . are bosons and those with half-odd-
integer spin s = 1

2 ,
3
2 , . . . are fermions.

• What is more, [H,P ] = 0 implies that if the initial state is an eigenstate of P , then it will
remain an eigenstate of P under Schrödinger evolution with the same eigenvalue. So a system
of identical bosons remains this way at all times. We may build multi-particle wave functions
by taking products of single particle orbitals and either symmetrizing or anti-symmetrizing for
bosons and fermions respectively.

• Examples of symmetrized and antisymmetrized wave functions for two particles are

ψS(x1, x2) = φa(x1)φb(x2)+φa(x2)φb(x1), ψA(x1, x2) = φa(x1)φb(x2)−φa(x2)φb(x1). (161)

We remark that this anti-symmetric state could also be written as a ‘Slater’ determinant.

ψA(x1, x2) = det

(
φa(x1) φa(x2)
φb(x1) φb(x2)

)
(162)

Written this way, antisymmetry is equivalent to the statement that the determinant changes sign
under a permutation of two columns. This way of writing anti-symmetric states is particularly
useful when there are more than two particles.

• Of course, these are just the simplest examples of (anti-)symmetrized wave functions built out
of a pair of single particle wavefunctions. More generally we could take linear combinations of
(anti-)symmetric wavefunctions to produce new (anti-)symmetric wave functions. E.g. we may
build a fermionic state from four one particle wavefunctions

ψA(x1, x2) = N1 det

(
φa(x1) φa(x2)
φb(x1) φb(x2)

)
+N2 det

(
φc(x1) φc(x2)
φd(x1) φd(x2)

)
(163)

• Symmetric and anti-symmetric wave functions have rather different physical features. For
example, the probability amplitude to find both particles at the same location x1 = x2 = x in
an anti-symmetrized state is zero ψA(x, x) = 0, though it can be non-zero in a symmetrized
state. Alternatively ψA = 0 if φa = φb = φ . This is loosely stated as ‘two identical fermions
(e.g. electrons) cannot occupy the same 1-particle state φ ’. On the other hand, two identical
bosons (e.g. photons) can occupy the same state. We use this while obtaining the distribution
of photons in a black body cavity.

• This property of electrons had been postulated by Pauli (even before the development of
Schrodinger’s equation), in an attempt to explain atomic spectra and the periodic table. Pauli’s
exclusion principle stated that there was at most one electron per state in an atom. The
states could be labelled by the same quantum numbers as appearing in the hydrogen atom
n, l,m and an extra quantum number with two possible values. The latter quantum number
was subsequently identified as the electron spin projection ms . Of course, the hydrogen atom
stationary state wave functions do not account for electron-electron repulsion, and cannot just be
taken over to construct the wave function of a many-electron atom. However, there are ways to
do this approximately. In any case, the Pauli-exclusion principle in the form ‘multi-electron wave
functions must be anti-symmetric’ under exchange of quantum numbers (coordinates, spins) of
any pair of electrons, has stood the test of time.
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• For a system of N identical particles, we define the exchange operators which permute the
quantum numbers of ith and jth particle (coordinates and spin projections)

Pijψ(· · · , xi, · · · , xj , · · · ) = ψ(· · · , xj , · · · , xi, · · · ), for 1 ≤ i, j ≤ N. (164)

Then each Pij must commute with the hamiltonian. Every energy eigenstate ψ(x1, · · ·xn) can
be taken as either symmetric or antisymmetric under every such permutation. Symmetric states
describe bosons and anti-symmetric ones describe fermions.

• For three identical particles we have three exchange operators P12, P23, P31 . Note that P12 =
P21 etc. The action of a permutation operator on a state vector ψ(x1, x2, x3) must produce
a state vector that differs from the original one at most by a phase: Pijψ = eiθijψ . Each
permutation operator Pij squares to the identity PijPij = I , proceeding as before, we find
eiθij = ±1.

• In other words, every state of a system of identical and indistinguishable particles must be an
eigenstate of all the P ′ijs with eigenvalues ±1. Note that the permutation operators pairwise

commute PijPkl = ei(θij+θkl) = PklPij . So they are simultaneously diagonalizable. Now a
question arises whether a quantum mechanical system of identical and indistinguishable particles
can be in a state where some of the Pij ’s have eigenvalue one and some other permutations have
eigenvalue minus one. This is not allowed since if there were such a state where, say, P12ψ = ψ
and P13ψ = −ψ then we could use these eigenvalues to distinguish between particle 2 and
particle 3, violating the indistinguishability. So the only allowed states of identical particles
are those that are symmetric under every exchange and those that are anti-symmetric under
every exchange. Moreover, since permutations of particles must be symmetries of the dynamics,
we must also have [Pij , H] = 0 for all i, j . Thus, the states which are symmetric under every
exchange are preserved under time evolution; they are called systems of bosons. The anti-
symmetric states are also preserved under time evolution and are called systems of fermions.

• An example of a fermionic state of N particles is given by the Slater determinant, which is
constructed using N one particle wave functions (‘orbitals’). For N = 3 let φa, φb, φc be three
one-particle wave functions (‘orbitals’)

ψA(x1, x2, x3) = det

φa(x1) φa(x2) φa(x3)
φb(x1) φb(x2) φb(x3)
φc(x1) φc(x2) φc(x3)

 (165)

To build an example of a bosonic state of three identical particles we only need a single 1-particle
orbital ψS(x1, x2, x3) = φ(x1)φ(x2)φ(x3).

• We may also consider what happens to the state vector of a system of identical particles under
permutations that are not simple exchanges of particles. An example is a cyclic permutation
of the particles. However, every permutation can be built by composing exchanges, so these
new permutations do not contain new information. One finds that wave functions of systems
of fermions are anti-symmetric under odd-permutations, such as pairwise exchanges. Under
even permutations such as P12P23 , wave functions of systems of fermions are unchanged. Wave
functions of systems of bosons are unchanged under all permutations, irrespective of whether
they are even or odd.
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8.2 Two spin half electrons in Helium

Consider a pair of spin half fermions, whose orbital motion is not coupled to the spin degrees of
freedom, e.g. if the hamiltonian operator is the identity in spin space. This is true for the two
electrons in Helium in a non-relativistic treatment where the hamiltonian does not involve any
spin-orbit coupling terms:

H =
p2

1

2m
+

p2
2

2m
− 2e2

4πε0r1
− 2e2

4πε0r2
+

e2

4πε0|~r1 − ~r2|
. (166)

H is symmetric under exchange of the degrees of freedom of the two particles. So it commutes
with the exchange operator and we seek simultaneous eigenstates of H and P . We write the
total wave function as a product of a spatial and a spin part3

ψ(x1,m1;x2,m2) = φ(x1, x2)χ(m1,m2) (167)

φ(x1, x2) is ∝ to the probability amplitude for the first particle to be at x1 and second to be
at x2 irrespective of their spin states. Similarly, χ(m1,m2) is ∝ the probability amplitude for
the spin projection of the first particle to be ~m1 and that of the second particle to be ~m2 ,
irrespective of their positions4. Here m1 and m2 only take the values ±1

2 while x1, x2 are any
points in 3d space. In general,

χ = a ↑↑ +b ↑↓ +c ↓↑ +d ↓↓ where χ

(
1

2
,
1

2

)
= a, χ

(
1

2
,−1

2

)
= b, . . . . (168)

The Pauli principle of anti-symmetrization states that the total wavefunction must be anti-
symmetric under exchange of both coordinate and spin degrees of freedom

ψ(x1,m1;x2,m2) = −ψ(x2,m2;x1,m1) (169)

Now let us look for other operators that commute with both H and P . H ∝ I in spin space,
so it commutes with the combined spin operators of the two particles S2 and Sz as well as
with S2

1 and S2
2 which are each proportional to the identity. All these four spin observables also

commute with P . On the other hand, S1z commutes with H but not with P . So in particular,
P is not diagonal in the uncoupled basis of spin states, but it is diagonal in the coupled basis.

• So we look for energy eigenstates that are simultaneous eigenstates of P , S2 and Sz . Then
there are only two ways to make ψ anti-symmetric: φ and χ are symmetric and anti-symmetric
respectively or vice-versa.

1ψ = φS(x1, x2)χA(m1,m2) or 3ψ = φA(x1, x2)χS(m1,m2) (170)

We have seen that there is only one anti-symmetric 2 particle spin state, the singlet χA =
1√
2

(↑↓ − ↓↑) while there are a triplet of symmetric spin states χS . In the case of Helium, the

spin singlet states are called parahelium and the spin triplet ones orthohelium. Orthohelium
states are triply degenerate since the hamiltonian is diagonal in spin space.

3If the orbital and spin degrees of freedom were coupled, we would need linear combinations of such product
wave functions

4If the spin and coordinate degrees of freedom were coupled, the amplitudes for spin projections could depend
on position.
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• Often we may approximate φ by an (anti-)symmetrized combination of single particle wave
functions φ1 and φ2 (in general we will need linear combinations of these):

φA(x1, x2) =
1√
2

(φ1(x1)φ2(x2)− φ1(x2)φ2(x1)) and φS(x1, x2) =
1√
2

(φ1(x1)φ2(x2) + φ1(x2)φ2(x1))

In the Helium atom, these two single particle wave functions φ1, φ2 could be taken as two
stationary state wavefunctions of a Hydrogenic atom with nuclear charge Z = 25. By making
different choices for φ1 and φ2 we may search for a state ψ which minimizes the expectation
value of the Helium hamiltonian. It turns out that the ground state of the Helium atom is a spin
singlet (parahelium) state φSχA where φ1 and φ2 are both approximately ground state wave
functions of hydrogenic atoms. This is why we say Helium has the electronic configuration 1s2 .
The first excited state is a triplet of degenerate orthohelium states etc. To find the eigenfunctions
(only φ(r1, r2) remains to be found) we must solve the Schrodinger eigenvalue problem. This is
quite hard and one resorts to approximations such as perturbation theory and the variational
method. In both approaches, one needs to calculate the expectation value of the the helium
hamiltonian. The variational principle states that the ground state energy is the minimal value
of 〈ψ|H|ψ〉 among all unit norm states.

8.3 Coulomb and exchange interactions

To find the ground state of helium, we need to minimize the expectation value of H among all
anti-symmetric two particle states. The symmetry /antisymmetry of φS,A imply some interesting
qualitative features for the expectation value of the interaction energy arising from electrostatic
repulsion of electrons. The interaction part of the helium hamiltonian can be written

VI = G(r1 − r2) =
e2

4πε0|r1 − r2|
(171)

Since electrons are identical, G(r1 − r2) = G(r2 − r1). As discussed in the last section, we are
interested in spatial wave functions that are built from a pair of (normalized) one-particle wave
functions

φS,A =
1√
2

[φa(r1)φb(r2)± φa(r2)φb(r1)] (172)

Let us calculate the expectation value of VI in the states φS,A Show that you get

〈VI〉 =

∫
d3r1d

3r2G(r1−r2)
[
|φa(r1)|2|φb(r2)|2 ±< φ∗a(r1)φ∗b(r2)φa(r2)φb(r1)

]
= VC±VE (173)

The first term VC is called the Coulomb (or direct) interaction energy while the second term
VE is the exchange interaction energy. Of course, both arise from the Coulomb repulsion of
electrons. While the direct Coulomb interaction can be classically interpreted as the energy of a
pair of charge clouds, the exchange term has no such simple classical interpretation. Indeed, it
is a quantum mechanical effect due to the identical nature of particles and (anti-)symmetry of
wave functions. Moreover, the exchange interaction contributes with a different sign according
as the spatial wave function is symmetric or anti-symmetric (spin singlet or spin triplet state).
The Coulomb energy VC is clearly positive. In cases where the exchange term is also positive

5If we ignore the electron-electron repulsion, each electron is in a hydrogenic atom with Z = 2.
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VE ≥ 0 (as is the case for Helium) we can conclude that the interaction energy 〈VI〉 is greater
for φS than for φA . So (other things being equal) the spin singlet states 1χA will have a higher
energy than the spin triplet states 3χS . This is seen in Helium, where typically the spin triplet
orthohelium states have a lower energy than the corresponding spin singlet paraheluim states
constructed from the same pair of single particle states φa, φb . There is one notable exception
to this rule: the ground state of helium is a spin singlet parahelium state with φa = φb . There
is no anti-symmetric wave function that can be constructed if φa = φb .

8.4 Electronic configuration of light elements and periodic table

• Now let us briefly apply the ideas of identical and indistinguishable particles and Pauli’s
principle to the n-electrons in an atom, governed by the hamiltonian

H =
N∑
i=1

(
p2
i

2m
− Ze2

4πεo|~ri|

)
+

∑
1≤i<j≤N

e2

4πεo|~ri − ~rj |
(174)

To determine and understand the ground (and excited states) of the atom is a very challeng-
ing problem, which occupied and continues to occupy many physicists and chemists. To find
the ground state, we may (as a first approximation) ignore the inter-electron repulsion. In
this approximation, it would seem that each electron ‘sees’ only the nucleus in a hydrogenic
atom with nuclear charge Z . But there is a crucial difference. The N -electron wave function
ψ(~r1,m1; · · · , ~rN ,mN ) depends on the positions xi and spin projections mi of each of the elec-
trons. By Pauli’s principle, it must be antisymmetric under exchange of any pair of electrons.
A simple way of constructing such an antisymmetric wave function is to choose n one-particle
wave functions or orbitals φ1, · · · , φn and form their Slater determinant, e.g.,

ψ(~r1, ~r2, ~r3) = Adet

φ1(r1) φ1(r2) φ1(r3)
φ2(r1) φ2(r2) φ2(r3)
φ3(r1) φ3(r2) φ3(r3)

 (175)

We suppress the spin projections mi so ri refers to ~ri,mi . Now the orbitals must be chosen care-
fully to ensure that the energy is minimized (this is the statement of the variational principle).
An example of an orbital is the ground state wave function of hydrogen.

φ1(r) = 〈r|n = 1, l = 0,ml = 0, s =
1

2
,ms =

1

2
〉 ∝ e−r/ao

(
1
0

)
(176)

We could equally well have chosen ms = −1
2 . The ground state electronic configuration of

hydrogen is called 1s1 , one electron in the n = 1 shell with zero angular momentum (s = 0).
For Helium, we select a second hydrogenic orbital with as little energy as possible |φ2〉 = |n =
1, l = 0,ml = 0, s = 1

2 ,ms = −1
2〉 , different from φ1 to implement Pauli’s principle. φ1 and φ2

are anti-symmetrized via a 2× 2 Slater determinant, resulting in

ψ = φn=1,l=0,m=0(r1)φn=1,l=0,m=0(r2)
1√
2

(↑↓ − ↓↑) ∼ e−(r1+r2)/a(↑↓ − ↓↑). (177)

This wave function is symmetric under exchange of spatial variables but anti-symmetric under
exchange of spins, it is the singlet spin-zero state obtained from combining two spin halves. It
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is called para helium. The electronic configuration of Helium is 1s2 , two S -wave electrons in
the K(n = 1) shell. Helium has a filled K -shell.

• For Lithium, we could select the next orbital as |φ3〉 = |n = 2, l = 0,ml = 0,ms = 1
2〉 resulting

in 1s22s1 . Proceeding in this way, we get 1s22s22p6 for Neon and 1s22s22p63s23p6 for Argon.
But the configurations of potassium Ne 4s1 and magnesium Ne 4s2 are somewhat anomalous,
the 4s shell is filled before the 3d shell, as it is energetically favourable to do so, when one
includes the effect of inter-electron repulsion. Let us crudely indicate why. In general, the n = 4
shell has a higher energy than the n = 3 shell, since the hydrogenic energies are E ∼ − 1

n2 .
On the other hand, in a higher angular momentum orbital (e.g. l = 2 d-orbital), the electron
probability density is concentrated farther from the nucleus than in a lower angular momentum
orbital (say s-orbital, l = 0). This is seen from the ψ ∼ rl behaviour of hydrogenic wave
functions, they are more strongly suppressed for small r if l is larger. In a multi-electron atom,
like potassium, the nuclear charge is partly screened by the inner shell electrons (‘Neon core’),
and it is energetically favourable for the valence electron of Potassium to be more tightly bound
to the nucleus by occupying the 4s orbital rather than the 3d orbital. For further discussion of
the periodic table, see the books by Griffiths, Liboff, Schiff, Heitler etc mentioned in the list of
reference books and the books cited therein.
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