
Problem set 1: Classical Mechanics: 2nd module
Refresher course on classical mechanics and electromagnetism

Sponsored by the three Indian Academies of Sciences & conducted at
Sri Dharmasthala Manjunatheshwara College, Ujire, Karnataka, Dec 8-20, 2014

1. Derive a conserved energy for Newton’s equation for three degrees of freedom mẍi = fi where
i = 1, 2, 3 or mr̈ = f where the cartesian components of the force are fi = − ∂V

∂xi
. Proceed by

finding a suitable integrating factor.

2. Recall that for motion of a particle of mass m on a line, the solutions x(t) of Newton’s equation
with energy E and initial position x0 was reduced to the integral

t − t0 = ±

∫ x

x0

dy√
2
m (E − V(y))

(1)

Consider a simple harmonic oscillator potential V(x) = 1
2 kx2 for which E ≥ 0 and let ω =

√
k
m .

(a) Evaluate the integral (use
∫

du√
1−u2

= arcsin u) and solve for the trajectories with given E, x0 .
Show that you get

x(t) = ±

√
2E
k

sin

ω(t − t0) ± arcsin


√

k
2E

x0

 . (2)

The upper signs correspond to one solution and the lower signs to another solution.

(b) Specialize to the case where the particle starts from the equilibrium position at t0 = 0 and
simplify the formula for x(t) . Also find the momentum p(t) .

(c) Show that x(t) satisfies the ‘initial conditions’ x(0) = 0 and 1
2 mẋ2 + 1

2 kx2 = E .

(d) For E > 0, indicate pictorially (in configuration space) how the two solutions obtained in the
previous question differ.

(e) On the x- p phase plane, draw a phase portrait for the simple harmonic oscillator indicating at
least two qualitatively different trajectories and the arrow of time. Indicate the initial portions
of the trajectories corresponding to the two solutions obtained above.

3. Practice with polar coordinates. Consider a particle moving on the x, y plane z = 0 in a central
potential V(r) . The Lagrangian is L = 1

2 m(ẋ2 + ẏ2) − V(r) . Define plane polar coordinates for the
particle’s location via x = r cos φ, y = r sin φ . Abbreviate sin φ = s, cos φ = c . Recall that the
unit vector in the radial direction is r̂ = cx̂ + sŷ and that linear momentum is p = mẋx̂ + mẏŷ .
The Euler-Lagrange equations in polar coordinates were found to be mr̈ = mrφ̇2 − V ′(r) and
mrφ̈ = −2mṙφ̇ .

(a) Show that ṙ = cẋ + sẏ

(b) Show that φ̇ = 1
r2 (xẏ − yẋ) .

(c) Show that the momentum pr = mṙ conjugate to r , is just the radial component of linear
momentum p · r̂ .
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(d) Show that the momentum pφ = mr2φ̇ conjugate to φ is the z-component of angular momen-
tum L = r × p by explicitly calculating the cross product.

(e) Draw the unit vector in the direction of increasing φ , called φ̂ , in a diagram. Express φ̂ as a
linear combination of x̂, ŷ , using the diagram and an appropriate triangle. Choose 0 < φ <

π/2. Check that r̂ · φ̂ = 0.

(f) Suppose we define the angular velocity as ~ω = φ̇ẑ and a fictitious force ~Fc = −2~ω × ~p .
Show that the φ̂ component of ~Fc is what appears on the rhs of the Euler-Lagrange equation
mrφ̈ = −2mṙφ̇ .

(g) x̂, ŷ are constant unit vectors, in the sense that they point in the same direction everywhere on
configuration space and also at every point along a trajectory: dx̂

dt =
dŷ
dt = 0. But r̂, φ̂ change

direction from place to place. Show that

dφ̂
dt

= −φ̇r̂ and
dr̂
dt

= φ̇φ̂ (3)

4. Consider a particle whose dynamics is specified by the Lagrangian L(q, q̇) = 1
2 mq̇2 + b(q)q̇ . Here

b(q) is some differentiable function of q .

(a) Find the momentum conjugate to q and the equation of motion. What sort of motion does
the Lagrangian describe?

(b) Explain the nature of this particle by examining the principle of extremal action S =
∫ t1

t0
L dt

for this Lagrangian. Can you relate this action to a more familiar one, how do they differ?

5. Recall that the general solution of ẍ = −ω2x is x(t) = a cosωt + b sinωt where a, b are constants
of integration. Find the unique classical trajectory connecting x(ti) = xi and x(t f ) = x f assuming
ω ∆t , nπ for any integer n . Here ∆t = t f − ti . You may use the abbreviations ci = cosωti ,
s f = sinωt f etc.

6. Consider a particle of mass m in the potential V(x) = 1
2 mω2x2 . Suppose x(t) is a trajectory

between xi(ti) and x f (t f ) and let x(t) + δx(t) be a neighboring path with δx(ti) = δx(t f ) = 0.

(a) Write the classical action of the path x + δx as a quadratic Taylor polynomial in δx . Show
that you get the following expression. What can you say about S 1 ?

S [x + δx] = S 0 + S 1 + S 2 = S [x]−
∫ t f

ti
(mẍ + mω2x) δx dt +

∫ t f

ti

[
1
2

m(δẋ)2 −
1
2

mω2(δx)2
]

dt

(b) For what values of κ is x(t) + δx(t) a legitimate neighboring path for the variation

δx(t) = ε sin κ(t − ti) ? (4)

(c) Evaluate S 2[δx] for all the allowed values of κ .

(d) Take ∆t = t f − ti = 10s and ω = 1 Hz. Find a path that can be made arbitrarily close to the
trajectory x(t) , whose action is less than that of x(t) .

(e) Take ∆t = t f − ti = 10s and ω = 1 Hz. Find a path that can be made arbitrarily close to the
trajectory x(t) , whose action is more than that of x(t) .

(f) What sort of an extremum of action is the classical trajectory?
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