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1 Classical Mechanics: module 2 topics

Twelve 90 min meetings (lectures + tutorials): Phase space & portraits, Hamiltonian formulation, Small oscilla-
tions, normal modes, Poisson brackets & canonical transformations, Rigid body motion.

2 Books on Classical Mecahnics

1. Kittel, Knight, Ruderman, Helmholz and Moyer, Mechanics (Berkeley Physics Course Vol 1).

2. Kleppner and Kolenkov, An Introduction to Mechanics

3. A. P. French, Newtonian Mechanics.

4. Kibble and Berkshire, Classical Mechanics.

5. Hand and Finch, Analytical Mechanics.

6. Feynman, Leighton and Sands, Feynman lectures on physics.

7. K. R. Symon, Mechanics.

8. Goldstein, Poole and Safko, Classical Mechanics.

9. S. G. Rajeev, Advanced Mechanics.

10. Landau and Lifshitz, Vol 1, Mechanics

3 Review of Newtonian and Lagrangian mechanics of point particles

3.1 Configuration space, Newton’s laws, phase space

• A point particle moving along a wire in the shape of a line or circle has one degree of freedom,
namely its position (coordinate) along the wire. A point particle moving in a central force field
has three degrees of freedom, we need three coordinates to specify the location of the particle.
The Earth-moon system considered in isolation has six degrees of freedom. The number of
degrees of freedom does not depend on the nature of forces. A rigid body like a duster has 6
degrees of freedom, three to locate its center of mass and three angles to orient it about the
center of mass. A point-like molecule in the air has three degrees of freedom, e.g., its cartesian
coordinates with respect to a chosen set of axes. N such molecules have 3N degrees of freedom.
A fluid in a container has a very large number of degrees of freedom, say the locations of the
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molecules, it is often modeled as a continuum, as a system with infinitely many degrees of
freedom.

• An instantaneous configuration of the earth-moon system is any possible location of the earth
and moon. The set of all instantaneous configurations of a mechanical system is called its con-
figuration space Q . For a particle on a plane, the configuration space is R2 , two-dimensional
Euclidean space. For a pair of point particles moving in space, Q is the space R6 with coor-
dinates given (say) by the cartesian components of the radius vectors of each of the particles
ri1, r

j
2 for i, j = 1, 2, 3. The number of degrees of freedom is the dimension of the configuration

space.

• The zeroth law of classical mechanics can be regarded as saying that the trajectory r(t) of
a particle is a (twice) differentiable function of time. This is a law that applies to planets,
pendulums etc. But it fails for Brownian motion (movement of pollen grains in water). It also
fails for electrons in an atom treated quantum mechanically. Newton formulated three laws of
classical mechanics in the Principia.

• Newton’s 1st law says that “Every body persists in its state of being at rest or of moving uni-
formly straight forward, except insofar as it is compelled to change its state by force impressed.”
[Isaac Newton, The Principia, A new translation by I.B. Cohen and A. Whitman, University of
California press, Berkeley 1999.].

• The departure from rest or straight line motion is caused by forces. Newton’s 2nd law says
that the rate of change of momentum is equal to the impressed force, and is in the direction
in which the force acts. For a single particle, the trajectory r(t) = (x1, x2, x3) = (x, y, z) in
cartesian coordinates, satisfies

mr̈ = F or ṗ = F, or mẍi = F i. (1)

Here the momentum p = mv = mṙ . The trajectory r(t) is a curve on Q parameterized by time.
Velocities ṙ(t) are tangent vectors to the trajectory. The form of Newton’s equation changes in
curvilinear coordinates, as we will see. Many interesting forces (such as gravity) arise as negative
gradients of potential functions, F = −∇V (r). Force points in the direction of greatest decrease
in potential energy

F = −∇V = −∂V
∂x

x̂+
∂V

∂y
ŷ +

∂V

∂z
ẑ (2)

E.g. V = mgz for the gravitational potential energy and so F = −mgẑ points downwards. For
conservative forces, Newton’s second law is

ṗ = −∇V or mẍi = −∂V
∂xi

. (3)

For such ‘conservative’ forces, check that energy E = 1
2mṙ2+V (r) is conserved along trajectories

Ė = 0.

• One may wonder how this formula for energy arose from Newton’s equation. Let us consider
one degree of freedom. We wish to integrate mẍ = −dV

dx with respect to time in order to solve
the equation of motion. To do so we notice that ẋ is an integrating factor. For, multiplying the
equation by ẋ , both sides become total time derivatives:

mẍẋ = −dV
dx

dx

dt
or

1

2
m
dẋ2

dt
= −dV

dt
or

d

dt

(
1

2
mẋ2 + V

)
=
dE

dt
= 0. (4)
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So E(t) = E(0) takes the same value as it initially had.

• Being 2nd order in time, Newton’s equation requires both the initial position r and veloc-
ity/momentum ṙ or p as initial conditions. Knowledge of current position and momentum
determines the trajectory via Newton’s 2nd law. The state of the particle is specified by giv-
ing its instantaneous position and momentum. The set of possible instantaneous states of the
particle is called its phase space M . For a particle moving on the real line, the phase space
is R2 parametrized by the pair of coordinates (x, p). For a particle moving in 3D space, its
configuration space is R3 and its phase space is R6 (locations and momenta).

• The path of the particle r(t) (satisfying Newton’s equation and initial conditions) in configu-
ration space is called its trajectory. Also of interest is the trajectory in phase space (~x(t), ~p(t)).
A phase portrait is a sketch of trajectories on phase space. Trajectories are oriented by arrows
specifying forward time evolution.

• Consider the phase plane trajectories for a free particle with one degree of freedom. Since
energy is conserved, phase space trajectories must lie inside level sets of energy E = p2/2m . But
in general, an energy level set1 is a union of trajectories. For the free particle, the energy-E0

level set is (in general) a pair of horizontal straight lines of fixed p = ±
√

2mE and arbitrary x .
Trajectories come with a direction, the arrow of time. Draw the phase portrait.

• Newton’s 3rd law says that to every ‘action’ there is always opposed an equal reaction. The
sun attracts the Earth with a force equal in magnitude and opposite in direction to the force
exerted by the Earth on the sun.

3.2 Energy, Angular momentum, conserved quantities, dynamical variables

• The energy of a particle moving in 3d space (say under the gravitational force) is a sum of
kinetic and potential energies

E = T + V =
1

2
m(ẋ2 + ẏ2 + ż2) + V (x, y, z) =

1

2m

(
p2
x + p2

y + p2
z

)
+ V (x, y, z) (5)

ẋ = dx
dt is the x-component of velocity. We often think of energy as a function of coordinates

and momenta E(x, y, z, px, py, pz). So energy is a function on the phase space.

• Newton’s equation implies that the energy is a constant of motion if the forces are conservative
(expressible as the gradient of a potential). We say the energy is conserved in time/is a conserved
quantity.

Ė = m
∑
i

ẋiẍi +
∑
i

∂V

∂xi
ẋi = 0. (6)

• Conserved quantities are useful. They help us solve/understand Newton’s equation for the
trajectory. E.g., for one degree of freedom, we may integrate once and get an (implicit) expression
for x(t):

E =
1

2
mẋ2 + V (x) ⇒ dx

dt
= ±

√
2

m
(E − V (x)) ⇒ t− t0 = ±

∫ x

x0

dx′√
2
m (E − V (x′))

(7)

1The E0 -level set of a real valued function E(x, p) is the set of points where the function takes a fixed value
E0 . If the set of points is a curve, we call it a level curve. Level curves of the height function over a hilly region
are called level contours, and are drawn in maps.
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In effect we have solved Newton’s second order equation of motion in two steps. Energy is the
constant of integration in the first step and x0 is the second constant of integration. Our answer
expresses t as a function of x . We must invert it to find trajectories x(t) with energy E and
initial location x0 at t0 . Interestingly, there is often more than one trajectory with fixed energy
and initial location, corresponding to the ± signs. This is to be expected, since specification of
energy allows two possible initial velocities in general v0 = v(t0) = ±

√
(2/m)(E − V (x0)) (if

the particle is at a turning point of the potential E = V (x0), initially, then v0 = 0 and the
particle has only one way to go, ‘down hill’). So specification of energy and initial location is,
in general, not a complete specification of the instantaneous state of the particle.

• If there is no force, then each of the components of momentum is conserved, since ṗ = F = 0
(this is Newton’s first law). If the force only acts downwards, then the horizontal components
of momentum px, py are conserved.

• The angular momentum (or moment of momentum) of a particle about a fixed point (origin)
is ~L = ~r×~p , where ~r is the position vector of the particle from the chosen origin. In components

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx. (8)

• Newton’s force law then implies that the rate of change of angular momentum is the torque
(or moment of force):

L̇ = ṙ× p + r× ṗ =
1

m
p× p + r× F = r× F ≡ ~τ ≡ k. (9)

E.g. For a projectile moving under the vertical gravitational force, the torque must be in the
horizontal plane. So the vertical component of angular momentum Lz = xpy − ypx must be
conserved. Since px and py are also conserved, we conclude that the trajectory (x, y, z)(t) must
be such that its projection on the horizontal plane is a straight line Lz = xpy − ypx . Of course
we knew this and more, the trajectory of a projectile is a parabola over the x-y plane. Again,
knowledge of conserved quantities allowed us to clarify the nature of the trajectory.

• The components of position, momentum, angular momentum l = r × p and Energy E =
p2

2m + V (r) are interesting physical quantities associated with the dynamics of a particle. They
are examples of dynamical variables or observables. In general, a dynamical variable is a smooth
real function on phase space. For a single particle dynamical variables may be regarded as
functions f(r,p). The potential V (r) is a function on configuration space and a function
on phase space. xi are called coordinate functions on configuration space. xi, pj are called
coordinate functions on phase space. In general, dynamical variables change along the trajectory.
Conserved quantities are dynamical variables that are constant along every trajectory. Of course,
the value of a conserved quantity may differ from trajectory to trajectory. For example, energy
is a conserved quantity for free particle motion. But the value of energy in general differs from
trajectory to trajectory.

3.3 Lagrangian formulation and principle of extremal action

• The principle of extremal action provides a powerful reformulation of Newton’s 2nd law,
especially for systems with conservative forces. It leads to Lagrange’s equations of motion,
which are equivalent to Newton’s 2nd law. One advantage of Lagrange’s equations is that they
retain the same form in all systems of coordinates on configuration space.
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• The idea of the action principle is as follows. A static solution (time independent trajectory) of
Newton’s equation for a particle in a potential mẍ = −V ′(x) occurs when the particle is located
at an extremum of the potential. The action principle gives a way of identifying (possibly)
time-dependent trajectories as extrema of an action function. However, unlike the potential,
the action is not a function on configuration space. It is a function on the space of paths on
configuration space, it is called a functional. Suppose qi(t) for ti ≤ t ≤ tf is a path on Q .
It is common to use qi (instead of xi ) for coordinates on configuration space. qi need not
be cartesian coordinates of particles, any system of coordinates will work. Then the action is
typically a functional of the form

S[q] =

∫ tf

ti

L(qi, q̇i) dt. (10)

Here L(qi, q̇i) is called the Lagrangian of the system, a function of coordinates and velocities.
Geometrically, qi(t) is a path on configuration space. At any instant, qi(t) is a point on
configuration space and q̇i(t) is a tangent vector to the curve at that point. For a suitable L
(usually the difference between kinetic and potential energies, L = T−V ) Newtonian trajectories
are extrema of S .

• In other words, we consider the problem of determining the classical trajectory that a particle
must take if it is at qi at ti and qf at tf . Instead of specifying the initial velocity, we give
the initial and final positions at these times. Which among all the paths that connect these
points solve Newton’s equation? The action (variational) principle says that classical trajectories
are extrema of S . Note that unlike the initial value problem for Newton’s equations, where
qj(ti), q̇

j(ti) are specified, this initial-final value problem (where qj(ti) and qj(tf )) are specified,
may not have a unique solution. The action may have more than one extremum. Give an
example!

• Aside: Note that specification of initial and final locations (and times) as well as initial
velocity, would be an over-specification of the problem. In general, there would be no trajectory
that satisfies these conditions. This goes back to the fact that Newton’s equations are second
order in time, they admit two sets of initial conditions.

• To understand this idea, we need to determine the conditions for S to be extremal. These
conditions are called Euler-Lagrange equations. In the static case, the condition for V (x) to be
extremal is that its change under an infinitesimal shift δx of x must vanish to first order in δx ,
this turns out to be the condition V ′(x) = 0.

• The Euler-Lagrange equations are got by computing the infinitesimal change in action δS
under a small change in path qi(t)→ qi(t) + δqi(t) while holding the initial and final locations

qi(ti), q
i(tf ) unchanged. Assuming the variation in the path is such that dδq(t)

dt = δq̇ , we get

δS =

n∑
i=1

∫ tf

ti

dt′
{
∂L

∂qi
δqi(t′) +

∂L

∂q̇i
δq̇i(t′)

}
+O(δq)2

=

∫ tf

ti

δqi(t′)

(
∂L

∂qi
− d

dt′
∂L

∂q̇i

)
dt′ + δqi(tf )

∂L

∂q̇i(tf )
− δqi(ti)

∂L

∂qi(tf )
+O(δq)2 (11)

We integrated by parts to isolate the coefficient of δq . The last two ‘boundary terms’ are zero
due to the initial and final conditions and so the condition δS = 0 can be reduced to a condition
that must hold at each time, since δqi(t′) are arbitrary at each intermediate time. So choosing,
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roughly, δqi(t′) = 0 except for a specific time t′ = t we get the Euler-Lagrange (EL) (or just
Lagranges’s) equations

∂L

∂qi(t)
− d

dt

∂L

∂q̇i(t)
= 0, i = 1, 2, . . . n. (12)

• Now let us see how the principle of extremal action implies Newton’s equation of motion for a
particle in a potential, by a suitable choice of L . Comparing mq̈ = −V ′(q) with the EL equation
d
dt
∂L
∂q̇ = ∂L

∂q (both now in cartesian coordinates) we notice that if we choose L = 1
2mq̇

2 − V (q),
then

∂L

∂q̇
= mq̇ and

∂L

∂q
= −V ′(q) (13)

and the EL equation reduces to Newton’s equation. The Lagrangian scheme has the advantage
of generating all the equations of motion from a single function. Moreover, the Euler-Lagrange
equations (written in terms of L) may be literally carried over to any coordinate system, so qi
need not be Cartesian coordinates and are often called generalized coordinates. There are as
many generalized coordinates qi as there are degrees of freedom. So for a pair of particles in a
room, there would be six generalized coordinates q1, · · · , q6 .

• The example of a harmonic oscillator (particle connected to a spring of force constant k ).
Here the restoring force −kx arises from a potential V (x) = 1

2kx
2 , where x is the extension of

the spring. So,

L =
1

2
mẋ2 − 1

2
kx2 (14)

and Lagrange’s equation d(mẋ)
dt = −kx reproduces Newton’s equation.

3.4 Non-uniqueness of Lagrangian

• A Lagrangian for a given system of equations is not uniquely defined. For instance, we may
add a constant to L(q, q̇, t) without affecting the EL equations, this is like changing the zero
of potential energy. We may also multiply the Lagrangian by a constant. Another source of
non-uniqueness arises from the freedom to add the total time derivative of any (differentiable)
function F (q, t) to the Lagrangian. The change in the action is

Lnew = Lold + Ḟ ⇒ Snew = Sold +

∫ tf

ti

dF

dt
dt = Sold + F (q(tf ), tf )− F (q(ti), ti) (15)

But this quantity involving F on the rhs has zero variation since ti, tf , q(ti), q(tf ) are all held
fixed as the path is varied. So δSold = δSnew . So the addition of Ḟ to L does not affect the EL
equations. Notice that we could not allow F to depend on q̇ since δq̇(ti), δq̇(tf ) 6= 0 in general
and such an F would modify the EL equations. There is no restriction on the initial and final
velocities of the perturbed paths.

3.5 Conjugate momentum and cyclic coordinates

• It is important to bear in mind that the Lagrangian L(q, q̇) is a function of the coordinates q
and velocities q̇ , and that the momentum p is a derived concept. The momentum pi conjugate
to the coordinate qi is defined as

pi =
∂L

∂q̇i
(16)
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In general conjugate momenta do not have the dimensions MLT−1 , just as generalized coordi-
nates qi do not necessarily have dimensions of length. Indeed, an angle coordinate is dimension-
less. Conjugate momentum is a useful concept. The momentum pj conjugate to a coordinate
qj that does not appear in the Lagrangian is automatically conserved.

d

dt

∂L

∂q̇j(t)
=

∂L

∂qj(t)
= 0. (17)

Such a coordinate is called a cyclic coordinate. For a free particle moving on a line, L = 1
2mẋ

2

and x is a cyclic coordinate. So its conjugate momentum px = mẋ is conserved ṗx = 0.

• Not every conserved quantity may arise as the momentum conjugate to a cyclic coordinate.
For example, if we use cartesian coordinates for the particle in a central potential on a plane,
L = 1

2m(ẋ2 + ẏ2)− V (
√
x2 + y2), then neither coordinate is cyclic and neither of the momenta

(px = mẋ, py = mẏ ) are conserved. But as we see below the momentum conjugate to the cyclic
angular coordinate is conserved. So some physical insight/cleverness/luck may be needed in
choosing coordinate systems in which one or more coordinate is cyclic.

• For a particle moving on a plane, in polar coordinates, x = r cosφ and y = r sinφ . Then the
components of velocity are

v = (ẋ, ẏ) where ẋ = ṙ cosφ− r sinφ φ̇, ẏ = ṙ sinφ+ r cosφ φ̇. (18)

So ẋ2 + ẏ2 = ṙ2 + r2φ̇2 and the Lagrangian for a central potential V (r) is

L = T − V =
m

2
(ṙ2 + r2φ̇2)− V (r) (19)

The momenta conjugate to (r, φ) are

pr =
∂L

∂ṙ
= mṙ, pφ =

∂L

∂φ̇
= mr2φ̇ (20)

They coincide with the radial component of linear momentum and the z component of angular
momentum. Moreover, the first of Lagrange’s equations is

ṗr = mr̈ =
∂L

∂r
= mrφ̇2 − V ′(r). (21)

This is the balance of radial acceleration, centripetal ‘force’ and central force. On the other
hand,

ṗφ =
d

dt
(mr2φ̇) =

∂L

∂φ
= 0 ⇒ mrφ̈ = −2mṙφ̇. (22)

This states the conservation of angular momentum, and involves the so-called Coriolis term
on the rhs when written out. Note that Newton’s equations do not take the same form in all
systems of coordinates. There is no force in the φ̂ direction, yet the naive ‘angular acceleration’
mφ̈ is non-zero. On the other hand, Lagrange’s equations d

dt
∂L
∂q̇i

= ∂L
∂qi

are valid in all systems
of coordinates. So q could be a Cartesian or polar coordinate for instance.
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3.6 Hamiltonian and its conservation

• Besides the momenta conjugate to cyclic coordinates, the Lagrangian formulation leads auto-
matically to another conserved quantity, the hamiltonian. For a moment suppose the Lagrangian
depends explicitly on time L = L(q(t), q̇(t), t). Then

dL

dt
=
∂L

∂q
q̇ +

∂L

∂q̇
q̈ +

∂L

∂t
= ṗq̇ + pq̈ +

∂L

∂t
=
d(pq̇)

dt
+
∂L

∂t
⇒ d(pq̇ − L)

dt
= −∂L

∂t
. (23)

So if we define the hamiltonian H = pq̇ − L , then Ḣ = −∂L
∂t . So if the Lagrangian does not

depend explicitly on time, then H is conserved.

• For many of the systems we study, the hamiltonian coincides with energy E = T + V . This
is always the case if the Lagrangian L = T − V is such that the kinetic energy is quadratic
in velocities and the potential energy V (q) depends only on coordinates. For example, if L =
1
2m
∑

i q̇
2
i − V (q), then the conjugate momenta are pi = mq̇i and

H = piq̇i − L = m
∑
i

q̇2
i −

1

2
m
∑
i

q̇2
i + V (q) =

1

2
mq̇2

i + V (q) = T + V. (24)

3.7 From symmetries to conserved quantities: Noether’s theorem on invariant variational
principles

• Newton/Lagrange equations of classical mechanics have been formulated as conditions for the
action S =

∫
Ldt to be extremal. Many concepts (such as symmetries) may be formulated more

simply in terms of the action/Lagrangian than in terms of the equations of motion.

• If a coordinate qj is absent in the Lagrangian (qj is a cyclic coordinate), then the correspond-
ing conjugate momentum pj = ∂L

∂q̇j
is conserved in time. This follows from Lagrange’s equation

ṗj = ∂L
∂qj

. If the Lagrangian is independent of a coordinate, then in particular, it is unchanged

when this coordinate is varied δL = 0 under qj → qj + δqj . We say that translations of qj are
a symmetry of the Lagrangian. This relation between symmetries and conserved quantities is
deeper, it goes beyond mere translations of a coordinate.

• A transformation of coordinates qi → q̃i is a symmetry of the equations of motion (eom) if it
leaves them unaltered: i.e., the eom for q̃ is the same as that for q . Symmetries usually allow
us to produce new solutions from known ones. For example, the free particle equation mq̈ = 0
is left unchanged by a translation of the coordinate q → q̃ = q + a for any constant length a .
Now q = 0 is one static solution. We may use the symmetry under translations to produce other
static solutions, namely q = a for any a , i.e., the particle is at rest at location with coordinate a
rather than at the origin. Incidentally, the momentum of a free particle is conserved in time. We
will see that such symmetries are associated with conserved quantities. On the other hand, the
equation of motion of a particle attached to a spring mq̈ = −kq is non-trivially modified by a
translation of the coordinate q → q̃ = q+a since q̃ satisfies a different equation m¨̃q = −kq̃+ka .
Moreover, p = mq̇ is not (in general) conserved for a particle executing simple harmonic motion,
the momentum is zero at the turning points and maximal at the point of equilibrium.

• It is important to note that not every transformation of q qualifies as a symmetry of the
equations of motion. We have already argued that every transformation of coordinates leaves
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the form of Lagrange’s equations invariant. So here, when we say ‘leaves the eom invariant’,
we aren’t referring to the form of Lagranges equations i.e., ∂

∂t
∂L
∂q̇ = ∂L

∂q but to the differential
equations written out explicitly (without any Lagrange function present).

• A symmetry of the Lagrangian is a transformation that leaves L unchanged. E.g. the
free particle L = 1

2mq̇
2 is unchanged under the shift q → q + a . It follows that the action

S[q] =
∫ t2
t1

1
2mq̇

2 dt is unchanged under the shift q → q + a . Since the eom are the conditions
for S to be stationary, a symmetry of the Lagrangian must also be a symmetry of Lagrange’s
equations. Noether’s theorem constructs a conserved quantity associated to each infinitesimal
symmetry of the Lagrangian2. Let us see how. Suppose the infinitesimal change qi → qi + δqi

leaves the Lagrangian unchanged to linear order in δq . Then it is automatically an infinitesimal
symmetry of the action. Let us explicitly calculate the first variation of the action for paths
between the times t1 and t2 , S[q + δq] = S[q] + δS[q] . Up to terms of order (δq)2 we get

δS =

∫ t2

t1

[
δqi

∂L

∂qi
+ δq̇i

∂L

∂q̇i

]
dt =

∫ t2

t1

[
δqi

∂L

∂qi
+
d

dt

(
δqi

∂L

∂q̇i

)
− δqi d

dt

∂L

∂q̇i

]
dt

= δqi(t2)
∂L

∂q̇i
(t2)− δqi(t2)

∂L

∂q̇i
(t1) +

∫ t2

t1

δqi
[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
dt (25)

So far, this is true for any path and for any infinitesimal change δqi . Let us now specialize to
infinitesimal changes about a trajectory, so that qi(t) satisfies Lagrange’s equations and the last
term vanishes. Further more, we assume that the transformation is an infinitesimal symmetry
of the Lagrangian, so that δS = 0:

0 = δS = δqi(t2)
∂L

∂q̇i
(t2)− δqi(t2)

∂L

∂q̇i
(t1). (26)

Since t1, t2 are arbitrary, the quantity δqi ∂L
∂q̇i

must be constant along a trajectory. In other
words, an infinitesimal symmetry q → q + δq of the Lagrangian implies that the quantity
Q = pi(t)δq

i(t) = ~p · δ~q is a constant of the motion, i.e. the dynamical variable Q has the same
value at all points along a trajectory. Q is called a Noether conserved ‘charge’ by analogy with
the conservation of electric charge.

• E.g. 1: We already saw that the free particle Lagrangian is translation invariant with δqi = ai

where ai are the components of an arbitrary infinitesimal vector. It follows that Q = aipi =
~p · ~a is a conserved quantity. In other words, the component of momentum in any direction is
conserved.

• E.g. 2: Now consider a particle in a central potential V (q2) so that the Lagrangian is

L(q, q̇) =
1

2
mq̇ · q̇− V (q · q) (27)

Let us first show that L is invariant under rotations of three dimensional space ~q → R~q where
R is any (special) orthogonal rotation matrix (RtR = I, detR = 1). Recall that the dot product
is defined as a · b = atb for any column vectors a,b and that (Ra)t = atRt for any matrix R
and t denotes transposition. Thus

L(Rq, Rq̇) =
1

2
mq̇RtRq̇− V (qtRtRq) =

1

2
mq̇tq̇− V (qtq) = L(q, q̇). (28)

2There is a generalization to the case where the Lagrangian changes by a total time derivative.
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So the Lagrangian is invariant under rotations. Noether’s theorem, however, refers to infinitesi-
mal transformations, rotations in this case. So let us find a formula for an infinitesimal rotation.

• Suppose we make an infinitesimal rotation of the vector q about the axis n̂ by a small angle θ
counter-clockwise. Then the vector q sweeps out a sector of a cone. Suppose q makes an angle
φ with respect n̂ , so that the opening angle of the cone is φ . Then the rotated vector q̃ also
makes an angle φ with respect to the axis n̂ . Let δq = q̃− q be the infinitesimal change in q .
By looking at the base of this cone, we find that it is a sector of a circle with radius q sinφ and
opening angle θ . So we find that |δq| = θq sinφ . Moreover δq points in the direction of n̂× q .
Thus, under a counter-clockwise rotation about the axis n̂ by a small angle θ , the change in q
is

δq = θ n̂× q and δq̇ = θ n̂× q̇ (29)

In particular, we see that δq and δq̇ are orthogonal to q and q̇ respectively.

• Now let us check that the Lagrangian is invariant under infinitesimal rotations:

L(q + δq, q̇ + δq̇) ≈ 1

2
mq̇2 +

1

2
mq̇ · δq̇ +

1

2
mδq̇ · q̇− V (q2 + q · δq + δq · q) = L(q, q̇) (30)

The last equality follows on account of the orthogonality properties just mentioned. Thus the
Lagrangian (and action) are invariant under infinitesimal rotations. The resulting conserved
quantity from Noether’s theorem is

Q = ~p · θ (n̂× ~q) = θ n̂ · (~q × ~p) = θ ~L · n̂. (31)

Since Q is conserved for any small angle θ and for any axis of rotation n̂ , we conclude that
the component of angular momentum in any direction is conserved. So the angular momentum

vector is a constant of motion d~L
dt = 0, a fact we are familiar with from the Kepler problem for

the 1/r central potential. We also knew this since the torque ~r × ~F on such a particle about
the force centre vanishes: the moment arm and force both point radially.

3.8 Coordinate invariance of the form of Lagrange’s equations

• Lagrange’s equations d
dt
∂L
∂q̇i

= ∂L
∂qi

take the same form in all systems of coordinates on Q . This

is because in deriving them from the action variational principle, qi could be any coordinates,
we did not assume that they were Cartesian.

• Let us further illustrate the coordinate invariance of the form of Lagrange’s equations and the
non-invariance of the form of Newton’s equations. Consider a free particle on the positive half
line q > 0 with Lagrangian L(q, q̇) = 1

2mq̇
2 . In this case Lagrange’s equation reduces to q̈ = 0.

Now let us choose a different coordinate system on configuration space, defined by Q = q2 . If
Newton’s equation F = mr̈ were coordinate invariant then we would guess that the equation
of motion for Q must be mQ̈ = 0 since there is no force. But this is not the correct equation
of motion. The correct equation of motion may be obtained by making the change of variable
q → Q in q̈ = 0. Using Q̇ = 2qq̇ and Q̈ = 2qq̈ + 2q̇2 one arrives at

2QQ̈− Q̇2 = 0. (32)

This is the equation of motion written in terms of Q . Notice that it doesn’t have the same form
as Newton’s equation for q .

11



• On the other hand, let us find the Lagrangian as a function of Q and Q̇ and the resulting
Lagrange equations to see if they give the correct result found above. First we express the
Lagrange function in terms of the new coordinate

L(q, q̇) =
1

2
mq̇2 =

mQ̇2

8Q
= L̃(Q, Q̇). (33)

If the form of Lagrange’s equations are the same in the Q coordinate system we must have

d

dt

∂L

∂Q̇
=
∂L

∂Q
or

mQ̈

4Q
− mQ̇2

4Q2
= −mQ̇

2

8Q2
(34)

Simplifying, we see that Lagrange’s equation agrees with the transformed version of Newton’s
equation 2QQ̈−Q̇2 = 0. So we verified that Lagrange’s equations take the same form in both the
q and Q coordinates. As mentioned above, this is generally true for any choice of coordinates
on configuration space.

• It may be noted that the differential equations q̈ = 0 and 2Q̈
Q = Q̇2

Q2 are not of the same form,
though they are equivalent. What we found is that the eom, when expressed in terms of the

respective Lagrange functions take the same form: d
dt
∂L
∂q̇ = ∂L

∂q and d
dt
∂L̃
∂Q̇

= ∂L̃
∂Q .

4 Hamiltonian formalism of mechanics

4.1 Hamilton’s equations

• We introduced the hamiltonian H = piq̇
i−L(q, q̇) as an interesting conserved quantity implied

by Lagrange’s equations. Here pi = ∂L
∂q̇i

. To understand H better, let us compute its differential
using Lagrange’s equations

dH = pidq̇
i + q̇idpi −

∂L

∂qi
dqi − ∂L

∂q̇i
dq̇i = pidq̇

i + q̇idpi − ṗidqi − pidq̇i = −ṗidqi + q̇idpi (35)

This reveals that the independent variables in H are the generalized coordinates qi and the
generalized momenta pi , the terms involving the differentials of velocities cancelled out. So we
should think of H as H(q, p). Now by the definition of partial derivatives,

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi. (36)

Comparing, we find that the time derivatives of coordinates and momenta may be expressed in
terms of partial derivatives of the Hamiltonian

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
(37)

• These are a system of 2n first order ordinary differential equations, for a system with n
degrees of freedom. They are called Hamilton’s equations. There are twice as many of them
compared to Newton’s or Lagrange’s equations, which are second order in time. Hamilton’s
equations treat position and momentum on a more equal footing, except for a sign. They give
us yet another way of expressing the equations of time evolution.
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• We regard the hamiltonian H(q, p) as a function on phase space, i.e., as a function of positions
and momenta (the current state of the system) rather than positions and velocities. The solution
of Hamilton’s equations give q(t) and p(t), i.e., the trajectory on phase space. To find it we
need to specify the initial state of the system i.e., q(0) and p(0).

• To express H as a function on phase space, we must express H = piq̇
i−L(qi, q̇i) as a function

of qj and pj . This is done by eliminating velocities q̇i in favor of q, p using the definition of
conjugate momenta pj = ∂L

∂q̇j
.

• E.g. particle in a 1D potential. Then L = 1
2mq̇

2 − V (q) and p = mq̇ so q̇ = p/m . Then

H = pq̇−L = pp/m− p2/2m+V (q) = p2/2m+V (q). Hamilton’s equations are q̇ = ∂H
∂p = p/m

which recovers the definition of conjugate momentum and ṗ = −∂H
∂q = −V ′(q) which is Newton’s

second law.

• If the Lagrangian is explicitly time dependent, then the hamiltonian is not conserved. Even
so, the eq. of motion may be expressed in terms of the hamiltonian. The differential of the
hamiltonian is

dH = q̇dp− ṗdq − ∂L

∂t
dt and dH =

∂H

∂q
dq +

∂H

∂p
dp+

∂H

∂t
dt. (38)

Comparing, we get

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
and

∂H

∂t
= −∂L

∂t
. (39)

So even for a time-dependent H , hamilton’s equations for coordinates and momenta take the
same form.

• One of the main advantages of the Hamiltonian formalism (like the Lagrangian one) over the
Newtonian one is that Hamilton’s equations take the same form in all systems of coordinates
on configuration space. By contrast, Newton’s equations mẍi = Fi look quite different in
curvilinear coordinates, as we have seen. Let us illustrate this assertion with the example of a
particle free to move on a plane in a central potential. Newton’s equations are then mẍ = −∂V

∂x

and mÿ = −∂V
∂y and the conserved energy is E = T = m

2 (ẋ2 + ẏ2) + V (
√
x2 + y2). The

coordinates are x, y and the Lagrangian is L = 1
2m(ẋ2 + ẏ2) − V (

√
x2 + y2). The conjugate

momenta px = mẋ and py = mẏ are just the components of linear momentum in the x, y
directions.

• Let us transform to polar coordinates x = r cosφ and y = r sinφ . Then the components of
velocity are

v = (ẋ, ẏ) where ẋ = ṙ cosφ− r sinφ φ̇, ẏ = ṙ sinφ+ r cosφ φ̇. (40)

So ẋ2 + ẏ2 = ṙ2 + r2φ̇2 and the Lagrangian is

L = T =
m

2

(
ṙ2 + r2φ̇2

)
− V (r). (41)

The momenta conjugate to (r, φ) are

pr =
∂L

∂ṙ
= mṙ, pφ =

∂L

∂φ̇
= mr2φ̇ (42)
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They coincide with the radial component of linear momentum and the ‘z-component’ of angular
momentum, as we have seen in the assignment.

• Though we call pφ the momentum conjugate to φ , it does not have dimensions of momentum,
it actually has dimensions of angular momentum. In the same way we refer to r, φ as coordinates,
though they don’t both have dimensions of length. But in general the product a coordinate and
its conjugate momentum always has dimensions of action or angular momentum.

• The hamiltonian is now expressed in polar coordinates and momenta by eliminating velocities

H = pφφ̇+ prṙ − L =
p2
r

2m
+

p2
φ

2mr2
+ V (r). (43)

• Now Newton’s equations mẍ = −∂xV ;mÿ = −∂yV can be expressed in polar coordinates,
indeed we had found

mr̈ = mrφ̇2 − V ′(r) and mrφ̈ = −2mṙφ̇. (44)

Notice that Newton’s equations in polar coordinates have a different form than in cartesian
coordinates. If we had naively regarded mr̈ as an acceleration and observed that there is no
force on the particle, we would have got a wrong equation. Though there is no force on the
particle, neither r̈ nor φ̈ is zero. Of course, we sometimes say that mrφ̇2 is a centripetal force,
but this is not an external force like gravity, it is just another term in the acceleration due to
the curvilinear coordinates.

• On the other hand, let us write down Hamilton’s equations, which we claimed take the same
form in all coordinate systems

φ̇ =
∂H

∂pφ
=

pφ
mr2

, ṙ =
∂H

∂pr
=
pr
m
, ṗφ = −∂H

∂φ
= 0, ṗr = −∂H

∂r
=

p2
φ

mr3
− V ′(r). (45)

• Let us check if these equations agree with Newton’s equations. The first two of Hamilton’s
equations just reproduce the definitions of pr and pφ . The third says that the angular mo-
mentum pφ = Lz is conserved. The last one along with the first two is equivalent to Newton’s
equation mr̈ = mrφ̇2− V ′(r) for the balance of radial acceleration, centrifugal acceleration and
central force.

• The coordinate φ does not appear in the hamiltonian, it is a cyclic coordinate. So the
conjugate momentum (angular momentum pφ ) is conserved. This was not quite obvious from
Newton’s equations, though we knew it. In general the momentum p conjugate to any cyclic
coordinate q is conserved since ṗ = −∂H

∂q = 0.

4.2 Hamiltonian from Legendre transform of Lagrangian

• The Legendre transform gives a way of summarizing the passage from Lagrangian to Hamil-
tonian. Notice that the definition of conjugate momentum p = ∂L

∂q̇ is the condition for pq̇−L to
be extremal with respect to small variations in q̇ . Moreover, the extremal value of this function
is the hamiltonian H(q, p). Thus, we may write

H(q, p) = extq̇
[
piq̇

i − L(q, q̇)
]

(46)
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The extremization is carried out with respect to all the generalized velocities. The key step in
the Legendre transform is to solve for the velocities in terms of the momenta and coordinates
using pi = ∂L

∂q̇i
. This is not always possible. It could happen that there is none or more than

one solution q̇ for given q, p . Then H would not be a single-valued function of coordinates and
momenta. A condition that guarantees that the Legendre transform exists as a single-valued
function is convexity (or concavity) of the Lagrangian as a twice differentiable function of q̇ .

L is convex provided the 2nd derivative ∂2L
∂q̇2 is positive everywhere on configuration space Q .

This condition is satisfied by L = 1
2mq̇

2 if m > 0. Here pq̇ − L = pq̇ − 1
2mq̇

2 is a quadratic
function of q̇ and has a unique extremum (in fact a maximum) for any p .

• On the other hand, let us attempt to compute the Legendre transform of L = 1
4 q̇

4− 1
2 q̇

2 . We
expect to run into trouble. Indeed, there is often more than one solution (typically 1, 2 or 3) q̇
for a given p when we try to solve for q̇ in p = ∂L

∂q̇ = q̇3− q̇ . In this case, the Legendre transform
H is not single-valued on some parts of phase space (a range of momenta around zero).

• When the Legendre transform is defined, the Lagrangian can be re-obtained from H(q, p) by
an (inverse) Legendre transform

L(q, q̇) = extp [pq̇ −H(q, p)] . (47)

How do we get this? Recall the definition H(q, p) = pq̇−L(q, q̇), so L(q, q̇) = pq̇−H(q, p). Now
on the rhs, we see three variables p, q, q̇ while on the lhs we only have q, q̇ . So we must say how
to express q̇ in terms of q, p . This is provided by the first of Hamilton’s equations q̇ = ∂H(q,p)

∂p .
Now we notice that this first Hamilton equation is the condition for pq̇ −H to be extremal in
p . Moreover, the value of this function at its extremum is just the Lagrangian. Thus we have
L(q, q̇) = extp [pq̇ −H(q, p)].

4.3 Non-uniqueness of Hamiltonian

Just as there are many Lagrangians whose Euler-Lagrange equations give the same Newton’s
second law equation, there are in general many hamiltonians that lead to the same 2nd order
equation for the coordinates. Of course, the hamiltonian is defined up to an additive con-
stant. But there is further freedom. Recall that we could add the total time derivative of
a function of coordinates and time to the Lagrangian, without changing the dynamics. Sim-
ply Legendre transforming this modified Lagrangian will lead to a modified Hamiltonian which
corresponds the same Newton equation. For example, consider a free particle in 1d. For any
differentiable function b(q) show that the EL equation for L = 1

2mq̇
2 + b(q)q̇ is simply mq̈ = 0.

The corresponding conjugate momentum is p = mq̇ + b(q). The Hamiltonian after Legendre
transformation is H = (p− b(q))2/2m . Show that Hamilton’s equations q̇ = (p− b(q))/m and
ṗ = b′(q)(p−b(q))/m reduce to the free particle equation of motion mq̈ = 0 for any differentiable
function b(q).

4.4 Poisson brackets

• Consider a particle (or system of particles) with configuration space Rn with generalized
coordinates qi and generalized momenta pi = ∂L

∂q̇i
. To motivate the idea of Poisson brackets,

let us use Hamilton’s equations ( q̇i = ∂H
∂pi

and ṗi = −∂H
∂qi

) to find the time evolution of any
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dynamical variable f(q, p; t). f is in general a function on phase space, which could depend
explicitly on time.

df

dt
=
∂f

∂t
+

n∑
i=1

(
∂f

∂qi
dqi

dt
+
∂f

∂pi

dpi
dt

)
=
∂f

∂t
+

n∑
i=1

(
∂f

∂qi
∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
=
∂f

∂t
+ {f,H}. (48)

Here we introduced Poisson’s bracket of f with the hamiltonian. More generally, the p.b. of
two dynamical variables evaluated at the same time t gives another dynamical variable at the
same time, defined as3

{f, g} =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (49)

So the time derivative of any observable is given by its Poisson bracket with the hamiltonian
(aside from any explicit time-dependence). From here on, we will restrict to observables that
are not explicitly time-dependent (i.e. depend on time only via q(t) and p(t)), unless otherwise
stated. Hamilton’s equations for time evolution may now be written

q̇i = {qi, H} and ṗj = {pj , H}. (50)

If H isn’t explicitly dependent on time, then time does not appear explicitly on the RHS of
hamilton’s equations. In this case, we say that the ODEs for q and p are an autonomous system.

• One advantage of Poisson brackets is that the time evolution of any observable f(q, p) is given
by an equation of the same sort ḟ = {f,H} . We say that the hamiltonian generates infinitesimal
time evolution via the Poisson bracket, since f(t+ δt) ≈ f(t) + (δt){f,H} .

f(q(t+ δt), p(t+ δt)) = f(q(t), p(t)) + (δt) {f,H}+O((δt)2). (51)

• If {f, g} = 0 we say that f ‘Poisson commutes’ with g . In particular, f is a constant of
motion iff it Poisson commutes with the hamiltonian, ḟ = 0⇔ {f,H} = 0. We begin to see the
utility of the Poisson bracket in the study of conserved quantities.

• The Poisson bracket has some notable properties. The p.b. of any dynamical variable with a
constant is zero. The Poisson bracket is linear in each entry. Verify that {f, cg} = c{f, g} and
{f, g + h} = {f, g}+ {f, h} etc. where c is a real constant.

• The Poisson bracket is anti-symmetric in the dynamical variables {f, g} = −{g, f} . In
particular, the p.b. of any observable with itself vanishes {h, h} = 0. A special case of this
encodes the conservation of energy. Assuming H isn’t explicitly dependent on time,

dH

dt
= {H,H} = 0. (52)

• Since the above formula for the p.b. involves only first order derivatives of f , the p.b. satisfies
the Leibnitz/product rule of differential calculus. Check that

{fg, h} = f{g, h}+ {f, h}g and {f, gh} = {f, g}h+ g{f, h}. (53)

In the Poisson bracket {f, g} we refer to f as the function in the first slot or entry and g as
occupying the second. Anti-symmetry ensures that the Leibnitz rule applies to the second entry
as well. We say that the p.b. is a derivation in either entry.

3Some authors (e.g. Landau & Lifshitz) define the p.b. with an overall minus sign relative to our definition.
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• The fundamental Poisson brackets are between the basic dynamical variables, namely
coordinates and momenta. The above formulae give for one degree of freedom

{q, p} = 1 or {p, q} = −1, while {q, q} = 0 and {p, p} = 0. (54)

The last two equations are in fact trivial consequences of the anti-symmetry of the p.b. For
n-degrees of freedom we have the fundamental p.b. among the coordinates and momenta

{qi, pj} = δij , and {qi, qj} = {pi, pj} = 0 for 1 ≤ i, j ≤ n. (55)

These are sometimes called the canonical (‘standard’) equal-time Poisson bracket relations be-
tween coordinates and conjugate momenta. The noun canon and the adjective canonical refer
to something that is standard or conventional.

• Poisson tensor: It is convenient to introduce a compact notation for the fundamental p.b.
between coordinates and momenta. These may be encoded in the Poisson tensor rij . Let us
combine the coordinates and momenta into a 2n-component ‘grand’ coordinate ξ on phase
space. We regard ξ as a coordinate on phase space and write its components with upper indices:

~ξ = (ξ1, ξ2 · · · , ξn, ξn+1, · · · , ξ2n) = (~q, ~p) = (q1, · · · , qn, p1, · · · , pn) (56)

Then check the fundamental Poisson bracket relations may be expressed in terms of ξi

{ξi, ξj} = rij where rrow column =

(
0 I
−I 0

)
. (57)

Here r is a 2n× 2n block matrix with n×n blocks consisting of the identity and zero matrices
as indicated. The constant matrix rij is sometimes called the Poisson ‘tensor’ of the canonical
p.b. relations.

• The p.b. of any pair of observables may now be written in terms of the ‘fundamental’ p.b.
between coordinates and momenta. Show that

{f, g} =

n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
=

2n∑
i,j=1

∂f

∂ξi
∂g

∂ξj
{ξi, ξj} =

2n∑
i,j=1

rij∂if∂jg. (58)

Here ∂i = ∂
∂ξi

. Various properties of the canonical Poisson brackets are encoded in the Poisson

tensor. Of particular importance to us is the anti-symmetry of rij (equivalent to antisymmetry
of the p.b.) and the constancy of the components rij .

• Poisson’s theorem: Perhaps the most remarkable feature of the Poisson bracket is that it
can be used to produce new conserved quantities from a pair of existing ones. Poisson’s theorem
states that if f and g are conserved, then so is {f, g} . Let us first illustrate this with a couple
of examples. For a free particle moving on a plane we know that px and py are both conserved.
Their Poisson bracket is {px, py} = 0, which is of course a trivially conserved quantity. As a
second example, consider a particle moving in three dimensions under the influence of a central
potential. We know that Lx = ypz − zpy and Ly = zpx − xpz are both conserved. We compute
{Lx, Ly} by using bi-linearity, the Leibnitz rule and other properties of the p.b. and find
{Lx, Ly} = Lz . And indeed, we know that Lz is also a conserved quantity. Similarly we check
that

{Lx, Ly} = Lz, {Ly, Lz} = Lx and {Lz, Lz} = Ly. (59)
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• Jacobi identity: More generally, Poisson’s theorem is a consequence of the Jacobi identity.
For any three dynamical variables f, g and h , the following cyclic sum of ‘double’ Poisson
brackets vanishes:

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0. (60)

Using anti-symmetry we could write the Jacobi identity also as

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0. (61)

Before we prove the Jacobi identity, let us use it to establish Poisson’s theorem. Suppose
f, g are conserved so that each of them Poisson commutes with the hamiltonian h = H , i.e.,
{f, h} = {g, h} = 0. Then the Jacobi identity implies that

{{f, g}, H} = 0 ⇒ d

dt
{f, g} = 0. (62)

So the p.b. of two conserved quantities is again a conserved quantity.

• Proof of Jacobi identity: Let us now prove the Jacobi identity. We wish to evaluate the
cyclic sum

J = {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}. (63)

We use the Poisson tensor and the Leibnitz rule to write the first term of J as

{{f, g}, h} =
(
figjr

ij
)
k
hlr

kl = [fikgjhl + figjkhl] r
ijrkl (64)

Here we used subscripts on f, g to denote partial differentiation, ∂f
∂ξi
≡ fi . Adding its cyclic

permutations,

J = [fikgjhl + figjkhl + gikhjfl + gihjkfl + hikfjgl + hifjkgl] r
ijrkl. (65)

If J has to vanish for any smooth functions f, g, h on phase space, then the terms involving 2nd
derivatives of f must mutually cancel as must those involving 2nd derivatives of g or h . So let
us consider the two terms involving second derivatives of f , and call the sum Jf . We find

Jf = fikgjhlr
ijrkl + fjkglhir

ijrkl = fikgjhlr
ijrkl + fikglhjr

jirkl

= fikgjhlr
ijrkl + fikgjhlr

lirkj = fikgjhlr
ijrkl + fkigjhlr

lkrij

= fikgjhlr
ijrkl − fikgjhlrijrkl = 0. (66)

We relabeled indices of summation i ↔ j , j ↔ l and i ↔ k in the three successive equalities

and finally used the equality of mixed partial derivatives ∂2f
∂ξiξk

= ∂2f
∂ξkξi

(variously called Young’s

or Schwarz’ or Clairaut’s Theorem) and antisymmetry of the Poisson tensor rkl = −rlk . Thus
we have shown that Jf = 0 and by cyclic symmetry, Jg = Jh = 0. Thus J = 0 and the Jacobi
identity has been established. As a corollary we obtain Poisson’s theorem on conservation of
p.b. of conserved quantities.

• Unequal-time Poisson brackets: It may be noted that unequal-time Poisson brackets
contain dynamical information and depend on the hamiltonian. Equal-time Poisson brack-
ets do not depend on the hamiltonian and are in a sense kinematical. Unequal time p.b.
{f(q(0), p(0)), g(q(t), p(t))} may be reduced to equal time p.b. by solving the equations of
motion and expressing g(q(t), p(t)) in terms of initial values q(0) and p(0). For example, find
{q(0), q(t)} for a free particle moving on a line.
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5 Oscillations

5.1 Double pendulum: Lagrangian and Hamiltonian

Figure 1: Double pendulum with two bobs of masses m1,m2 suspended from a fixed support with
massless rods of length l1, l2 . The respective counterclockwise deflection angles are θ1, θ2 .

• The double pendulum is a system with a minimal number of degrees of freedom that displays
both regular and chaotic dynamics in various energy regimes. It is an interesting and non-trivial
model system to study. As a general rule of thumb, if a system admits more conserved quantities,
then the dynamics is more constrained and may display more regularity (the best possibility is
integrability). A system with 2 degrees of freedom has a 4d phase space. In the absence of any
conserved quantity, the trajectory could explore the whole of phase space. If energy is conserved,
the trajectory must lie on a 3d constant energy sub-manifold of phase space, determined by initial
conditions. If there is another conserved quantity Q functionally independent of energy, then
trajectories must lie on the intersection of a constant E and constant Q sub-manifold, which is
in general a 2D surface in phase space. We see that the presence of more conserved quantities
restricts the dynamics.

• We consider a double pendulum with ‘lower’ bob of mass m2 suspended by a massless rod of
length l2 from an ‘upper’ bob of mass m1 which is in turn suspended from a fixed pivot by a
massless rod of length l1 (see figure 1). The system has 2 degrees of freedom, it is free to move
in a vertical plane subject to gravity. The rods make angles θ1, θ2 counterclockwise relative to
the downward vertical. The cartesian coordinates of the two bobs are

r1 = (x1, y1) where x1 = l1 sin θ1 and y1 = −l1 cos θ1, and
r2 = (x2, y2) where x2 = l1 sin θ1 + l2 sin θ2 and y2 = −l1 cos θ1 − l2 cos θ2. (67)

• Assuming the potential energy vanishes at the height of the pivot, the potential and kinetic
energies are

V = −m1gl1 cos θ1 −m2g(l1 cos θ1 + l2 cos θ2) and

T =
m1

2

(
ẋ2

1 + ẏ2
1

)
+
m2

2

(
ẋ2

2 + ẏ2
2

)
=
m1

2
l21θ̇

2
1 +

m2

2

[
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2c12θ̇1θ̇2

]
. (68)

Here we abbreviate s12 = sin(θ1 − θ2) and c12 = cos(θ1 − θ2). To simplify things, we take bobs
of equal masses m and rods of equal length l . In this case, |V | ≤ 3mgl while 0 ≤ T <∞ .

• The configuration space of the double pendulum is a torus T2 = S1 × S1 with coordinates
θ1 ∈ S1, θ2 ∈ S1 . The Lagrangian is

L = T − V =
1

2
ml2

[
2θ̇2

1 + θ̇2
2 + 2c12θ̇1θ̇2

]
+mgl [2 cos θ1 + cos θ2] . (69)
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The momenta conjugate to θ1, θ2 are

p1 =
∂L

∂θ1
= ml2

[
2θ̇1 + c12θ̇2

]
and p2 =

∂L

∂θ2
= ml2

[
θ̇2 + c12θ̇1

]
. (70)

The conjugate momenta do not coincide with the angular momenta of the two bobs, though
their sum coincides with the total angular momentum of the pendulum. The angular momenta
are

L1 = mr1 × ṙ1 = ml2θ̇1 ẑ and L2 = mr2 × ṙ2 = ml2
[
θ̇1 + θ̇2 + c12

(
θ̇1 + θ̇2

)]
ẑ (71)

L = L1 + L2 = (p1 + p2)ẑ . We will use the conjugate momenta p1, p2 rather than the angular
momenta.

• The ‘generalized forces’ are

∂L

∂θ1
= −ml

[
2g sin θ1 + ls12 θ̇1θ̇2

]
and

∂L

∂θ2
= ml

[
ls12 θ̇1θ̇2 − g sin θ2

]
. (72)

Lagrange’s equations of motion are a pair of second order non-linear ODEs

2θ̈1 + c12 θ̈2 + s12 θ̇
2
2 + 2ω2 sin θ1 = 0 and θ̈2 + c12 θ̈1 − s12 θ̇

2
1 + ω2 sin θ2 = 0. (73)

They involve only one material parameter ω2 = g/l . Upon expressing the generalized coordi-
nates in terms of momenta,

θ̇1 =
p1 − c12p2

ml2(1 + s2
12)

and θ̇2 =
2p2 − c12p1

ml2(1 + s2
12)

(74)

we find the conserved hamiltonian H = p1θ̇1 + p2θ̇2 − L = T + V

H =
1

2ml2(1 + s2
12)

[
p2

1 + 2p2
2 − 2c12p1p2

]
−mgl[2 cos θ1 + cos θ2]. (75)

The conserved energy may also be expressed in terms of coordinates and velocities:

E =
1

2
ml2

[
2θ̇2

1 + θ̇2
2 + 2c12θ̇1θ̇2

]
−mgl[2 cos θ1 + cos θ2]. (76)

The phase space of the double pendulum is four dimensional, with coordinates θ1 ∈ S1, θ2 ∈
S1, p1, p2 ∈ R . The phase space is the cartesian product of a torus and a plane T2 × R2

• Besides energy, the double pendulum does not possess any obvious conserved quantity. How-
ever, when the energy is very large, most of it is kinetic since the gravitational potential energy
is bounded between ±3mgl . For example, the two bobs could just go round very fast in uni-
form circular motion. So in the limit of high energies (E � 3mgl) we should be able to ignore
the gravitational force, and the torque it imparts. As a consequence, total angular momentum
L = L1 + L2 should be conserved at asymptotically high energies. We already know that

L = L1 + L2 = ml2
[
2θ̇1 + θ̇2 + 2c12(θ̇1 + θ̇2)

]
ẑ = (p1 + p2)ẑ (77)

This expression for the conserved total angular momentum may also be obtained using Noether’s
theorem. The Lagrangian ignoring gravity

L = T =
1

2
ml2

[
2θ̇2

1 + θ̇2
2 + 2 cos(θ1 − θ2)θ̇1θ̇2

]
(78)
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is invariant under (infinitesimal) rotations θ1 → θ1 + δφ, θ2 → θ2 + δφ . Noether’s theorem
guarantees conservation of

p1 δθ1 + p2 δθ2 = δφ ml2[2θ̇1 + c12θ̇2] + δφ ml2[θ̇2 + c12θ̇1] (79)

Since δφ is arbitrary, we may omit it and get an expression for the conserved angular momentum

L = (p1 + p2)ẑ = ml2
[
(2 + c12)θ̇1 + (1 + c12)θ̇2

]
ẑ (80)

Numerical solutions of the equations of motion of the double pendulum show that L fluctuates
around a mean value. As the energy increases, the fluctuations in L get smaller, and in the
limit of infinite energy, angular momentum is exactly conserved just as for the simple pendulum
(see fig.2).

Figure 2: Angular momentum vs time for simple pendulum rotational motion () m = l = g = 1 and low and
high energies.

5.2 Small oscillations of a double pendulum: normal modes

• In general, it has not been possible to solve the equations of motion of a double pendulum
in closed form due to their non-linearities (not even with elliptic functions! The motion is
chaotic!). However, if the deflection angles are always small, we may linearize the equations of
motion and solve them. The motion reduces to the integrable dynamics of a pair of coupled
harmonic oscillators. Let us see why.

• If both |θ1|, |θ2| � 1 we may approximate the trigonometric functions cos and sin by their
quadratic Taylor polynomials in the kinetic and potential energies, so that the resulting equations
of motion become linear. The Lagrangian becomes

L =
1

2
ml2

[
2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2

]
+mgl

[
3− θ2

1 −
1

2
θ2

2

]
= T − V. (81)

We omit the constant 3mgl from the Lagrangian: it doesn’t affect the eom. The conjugate
momenta are

p1 = ml2
(

2θ̇1 + θ̇2

)
and p2 = ml2

(
θ̇1 + θ̇2

)
. (82)

and

θ̇1 =
p1 − p2

ml2
and θ̇2 =

2p2 − p1

ml2
. (83)

The equations of motion depend only on one physical parameter ω2 = g/l :

2θ̈1 + θ̈2 + 2ω2θ1 = 0 and θ̈1 + θ̈2 + ω2θ2 = 0. (84)
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The corresponding conserved energy is H = T + V ,

H =
ml2

2

[
2θ̇21 + θ̇22 + 2θ̇1θ̇2

]
+mgl

[
θ21 +

θ22
2

]
=

1

2ml2
[
p21 + 2p22 − 2p1p2

]
+mgl

[
θ21 +

θ22
2

]
. (85)

The equations of motion are now a pair of coupled second order linear ODEs with constant
coefficients. It is possible to change variables to normal modes to get a pair of de-coupled linear
ODEs. Let us first write the eom in matrix form

d2

dt2

(
2 1
2 2

)(
θ1

θ2

)
= −2ω2

(
θ1

θ2

)
(86)

If we let B be the constant coefficient matrix,

B =

(
2 1
2 2

)
and θ =

(
θ1

θ2

)
then

d2

dt2
Bθ = −2ω2θ (87)

Though B is not a symmetric matrix, it has distinct eigenvalues λ± = 2±
√

2, and therefore
can be diagonalized. The corresponding eigenvectors are not orthogonal, but may be taken as

a+ =
1

2

(
1√
2

)
and a− =

1

2

(
1

−
√

2

)
. (88)

B may be diagonalized by a (non-orthogonal) similarity transformation S whose matrix repre-
sentation has columns that are the eigenvectors of B

S−1BS = D where S =
1

2

(
1 1√
2 −

√
2

)
, S−1 =

(
1 1√

2

1 − 1√
2

)
and D =

(
λ+ 0
0 λ−

)
. (89)

The equations of motion become

d2

dt2
SDS−1θ = −2ω2θ ⇒ d2

dt2
(S−1θ) = −2ω2D−1(S−1θ) (90)

If we denote

S−1θ = ξ =

(
ξ+

ξ−

)
=

(
θ1 + θ2√

2

θ1 − θ2√
2

)
and 2ω2D−1 =

(
2ω2

λ+

0 2ω2

λ−

)
=

(
ω2

+ 0
0 ω2

−

)
, (91)

then the components ξ± evolve via decoupled 2nd order ODEs

ξ̈+(t) = −ω2
+ξ+(t) and ξ̈−(t) = −ω2

−ξ−(t) where ω2
± =

2ω2

2±
√

2
. (92)

ξ±(t) are called normal modes of the system, they are periodic functions of time with periods

T± =
2π

ω±
=

2π

ω

√
1± 1√

2
. (93)

ξ±(t) may be expressed in terms of trigonometric functions of time

ξ+(t) = c1 cos(ω+t) + c2 sin(ω+t) and ξ−(t) = c3 cos(ω−t) + c4 sin(ω−t). (94)
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The four coefficients ci are to be fixed using the initial conditions. The original deflection angles
are determined via θ = Sξ

θ1 =
1

2
(ξ+ + ξ−) and θ2 =

1√
2

(ξ+ − ξ−) . (95)

Note that the general motion of the double pendulum in the small angle approximation is not
periodic. The above solution is a linear combination of periodic functions whose periods are not
in rational ratio

T+

T−
=
ω−
ω+

=

√
λ+

λ−
= 1 +

√
2 /∈ Q (96)

In general, the motion is quasi-periodic. The double pendulum does not return to its initial
state, but approaches it arbitrarily closely if we are willing to wait long enough. However, if
initial conditions are chosen so that only one of the two normal modes ξ+ or ξ− is present (e.g.
if c3 = c4 = 0), then the motion is periodic.

• We may use the normal modes to find a new conserved quantity for small oscillations of a
double pendulum. As for the simple pendulum or harmonic oscillator, from the equations of
motion,

ξ̈+ = −ω2
+ξ+ and ξ̈− = −ω2

−ξ− (97)

we infer that the energy of each normal mode is a constant of motion

H+ =
1

2
ml2

[
ξ̇2

+ + ω2
+ξ

2
+

]
and H− =

1

2
ml2

[
ξ̇2
− + ω2

−ξ
2
−

]
. (98)

The pre-factor ml2 is chosen so that H± have dimensions of energy. The total energy

H =
1

2
ml2[2θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2] +mgl[θ2

1 +
1

2
θ2

2] (99)

is of course also conserved. Are H,H± functionally independent? This is unlikely since we
would expect the total energy to be a sum of energies contributed by the various normal modes,
which do not interact with each other. In fact, we will show that H is a weighted sum of the
energies of the normal modes H = 2λ+H+ + 2λ−H− . To see this we write the total energy as
a quadratic form and express θi in terms of normal modes ξi :

H =
1

2
ml2

(
θ̇1

θ̇2

)t(
2 1
1 1

)(
θ̇1

θ̇2

)
+mgl

(
θ̇1

θ̇2

)t(
1 0
0 1

2

)(
θ̇1

θ̇2

)
=

1

2
ml2θ̇tτ θ̇ +mglθtvθ

where τ =

(
2 1
1 1

)
and v =

(
1 0
0 1

2

)
. (100)

The kinetic and potential matrices τ and v are not uniquely defined. But if they are chosen
symmetric, then they are unique. We may add any anti-symmetric matrices to τ and v without
affecting the formula for energy. Writing θ = Sξ and using StτS = 2D = 2diag(λ+, λ−) and
StvS = 2I we get

H =
1

2
ml2 ξ̇t (StτS) ξ̇ +mgl ξt (StvS) ξ

= (2λ+)
1

2
ml2ξ̇2

+ + (2µ−)
1

2
ml2ξ̇2

− + (2λ+)
mgl

λ+
ξ2

+ + (2λ−)
mgl

λ−
ξ2
−
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= 2λ+H+ + 2λ−H−. (101)

In the last step we used ω2
± = 2ω2/λ± to write

mgl

λ±
=
ml2ω2

λ±
=

1

2
ml2 ω2

± (102)

So of H , H1 and H2 , only two are independent conserved quantities. Thus we have identified
a second conserved quantity for small oscillations of a double pendulum. In the limit of low
energies, we find that the motion of a double pendulum is integrable, we have explicitly found
the general solution.

6 Vibrations of a stretched string

6.1 Wave equation for transverse vibrations of a stretched string

• Perhaps the simplest physically interesting mechanical system with a continuously infinite
number of degrees of freedom is a vibrating stretched string. We will consider the special case
where, in equilibrium, the string is stretched between two clamps located at x = 0 and x = L .
We ignore the effects of gravity since the tensional forces in the string often dominate. We shall
call the direction in which the string is stretched, the ‘horizontal’ direction. The string is free to
move only in one direction (vertical) transverse to the direction in which the string is stretched.
We assume the string has a mass per unit length of ρ . The instantaneous configuration of the
string is specified by giving the height u(x, t) of the string above the horizontal position x at
time t . Since the string is stretched, there are tension forces that act on any segment of the
string, tangentially at either end of the segment, tending to elongate the segment. It is usually
assumed that the tension in the string is a constant τ , though we will allow it to vary slowly
with location, so τ = τ(x). When the string is horizontal, the tensions at either end of any
segment are horizontal, equal and opposite in direction so that the string is in equilibrium. At
the end points, the tension is balanced by the force applied by the clamps.

• Note that the length of the string is not fixed, it can stretch to a length more than L , for
instance when it is plucked as in a Veena. When the string is displaced from equilibrium by
small vertical displacements, tensional forces on the ends of a small segment are not necessarily
horizontal. But to a good approximation, the horizontal components of tension are equal and
opposite, ensuring that there is no longitudinal/horizontal movement of the string. Moreover,
the vertical components of tension are in general unequal and result in a vertical acceleration of
the segment. We estimate this. Consider a small segment of string between horizontal locations
x and x + dx with corresponding heights u(x) and u(x + dx) ≈ u + du . We suppose that the
tangent to the string at any point x makes a counter-clockwise angle θ(x) with respect to the
horizontal. Draw a diagram! Then since we assume the inclination angles are small,

cos θ(x) ≈ 1− θ(x)2

2
≈ 1 and sin θ(x) ≈ tan θ(x) ≈ ∂u

∂x
≡ u′(x). (103)

Then the horizontal components of tension at the right and left ends of the segment are τ(x+
dx) cos θ(x + dx) and −τ(x) cos θ(x). Since we are assuming that the string does not move
horizontally, these must be equal and opposite (If we approximate cosθ ≈ 1, then this is possible
only if τ is independent of x).
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The vertical components of tension at the right and left ends of the segment are

τ(x+ dx) sin θ(x+ dx)ẑ ≈ (τu′)(x+ dx)ẑ and − τ(x) sin θ(x)ẑ ≈ −(τu′)(x)ẑ. (104)

Thus the net upward force on the segment is

Fup = (τu′)(x+ dx)− (τu′)(x) ≈ ∂(τ(x)u′(x))

∂x
dx (105)

So Newton’s second law for the segment, whose mass is ρ(x) dx is (subscripts denote partial
derivatives)

Fup = (τux)x dx = ρ dx utt. (106)

Thus the equation of motion for small transverse (1D) vibrations of the stretched string is
(τux)x = ρutt . If the tension τ is a constant, then we get the standard form of the wave
equation:

∂2u

∂x2
=

1

c2

∂2u

∂t2
where c =

√
τ

ρ
=

√
tension

mass per unit length
. (107)

c has dimensions of speed and will be seen to be the speed at which waves propagate on the
string. The wave equation utt = c2uxx is a linear, homogeneous partial differential equation
second order in both space and time derivatives. PDEs involve derivatives with respect to more
than one independent variable (x, t here) while ordinary differential equations (ODEs) involve
derivatives only in on independent variable (t in Newton’s equation for a point particle). The
wave equation is linear since it involves only the first power of the unknown function (dependent
quantity) u .

• We are interested in solving the initial-boundary value problem for the string. The wave
equation is second order in time and requires two initial conditions (say at t = 0), just like
Newton’s equation. These are the initial height u(x, t = 0) and the initial velocity of the string
u̇(x, t = 0). In addition, we need to specify what happens at the boundaries. The boundary
conditions corresponding to a string clamped at the end points are u(x = 0, t) = u(x = L, t) = 0.
This is called Dirichlet boundary conditions. Other boundary conditions are also of interest.
For example, we might have an end (say at x = 0) of the string free to move up and down
(though not horizontally), so that the slope of the string vanishes at the end point. This could
be implemented by attaching the left end of the string to a massless ring free to move vertically
with out friction on a pole. This means u has no slope at the left end point, one cannot apply a
vertical force on the ring since it yields, it has no inertia. This leads to the free/open/Neumann
boundary condition ∂u

∂x = 0 at x = 0. We could also consider an infinite string with say,
u(x, t)→ 0 as |x| → ∞ .

• As a consequence of considering small vibrations and small angles θ the equation of motion is
linear, however, it is a partial differential equation unlike Newton’s ordinary differential equations
encountered in the mechanics of finitely many particles. Above, u(x) is the analogue of the
generalised coordinate and x labels the particles in the string. The configuration space is the
set of possible instantaneous locations of the string segments, i.e. the space of twice differentiable
functions u(x) on the interval [0, L] that vanish at the end-points. This is an infinite dimensional
space reflecting the fact that a string has infinitely many degrees of freedom. The equations of
continuum mechanics (e.g. fluid mechanics, electrodynamics, general relativity, elasticity) are
typically systems of partial differential equations and the wave equation is perhaps the simplest
prototype. We may regard a partial differential equation such as the wave equation as a large
(infinite) system of ODEs, one ODE for each value of x .
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6.2 Separation of variables and normal modes of a vibrating string

• On account of the linearity of the wave equation, the superposition principle applies. Lin-
ear combinations of solutions are again solutions. The solution space forms a linear vector
space. This suggests that if we can find a sufficiently large set of linearly independent solutions
(called normal modes of oscillation), we may be able to express a solution of interest as a linear
combination of the normal modes of oscillation.

• The wave equation utt = c2uxx is a partial differential equation for an unknown height function
u dependent on two independent variables t, x . Let us look for solutions which are a product
of a function of t alone and a function of x alone: u(x, t) = X(x)T (t). We hope that solutions
of this separable type form a basis for the space of all solutions of interest. We also hope that
X and T will be determined by simpler ODEs compared to the PDE for u . Indeed, we find,
wherever the quotients make sense,

X(x)T̈ (t) = c2T (t)X ′′(x) ⇒ T̈ (t)

T (t)
= c2X

′′(x)

X(x)
= −ω2. (108)

Now LHS is a function of t alone while RHS is a function of x alone. Thus, both must equal
the same constant which we called −ω2 . We anticipate that the constant must be negative
for physically interesting vibrational motion. This is because −ω2 = ü

u is the ratio of the
acceleration of the string element to its displacement from the mean position. As in Hooke’s
law, this quotient must be negative for a restoring force. Thus, our PDE has reduced to a pair
of ODEs

T̈ (t) = −ω2T (t) and X ′′(x) = −k2X(x) where k =
ω

c
is the angular wave number.

(109)
These ODEs are in fact eigenvalue problems. The first is the same as Newton’s equation for
the harmonic oscillator and the second is essentially the same, so we can write their general
solutions as

T (t) = A cosωt+B sinωt and X(x) = C cos kx+D sin kx. (110)

The clamping of end points of the string (Dirichlet boundary conditions) implies X(0) = X(L) =
0 so we must have C = 0 and sin kL = 0. So kL = nπ where n is an integer, it suffices to take
n ≥ 1 since the negative values give (linearly dependent) solutions that only differ by a sign and
n = 0 gives the trivial solution. So we may write any separable solution of the wave equation
as

un(x, t) = (A cosωnt+B sinωnt) sin
nπx

L
where ωn =

nπc

L
for some n = 1, 2, 3, . . .

(111)
Each of these solutions for n = 1, 2, 3, . . . is called a normal mode of oscillation. The mode n = 1
is called the fundamental or first harmonic n = 2 the second harmonic or first overtone etc.
A normal mode of oscillation has a definite angular wave number kn and spatial wave length
λn = 2π/kn = 2L/n . It has a definite angular frequency ωn = ckn and also a definite time
period of oscillation Tn = 2π/ωn . νn = ω/2π is the frequency at which every point along the
string vibrates about its mean position. As opposed to a normal mode, a more general motion of
a stretched string will not have such a definite wave length and time period, indeed it need not
even be periodic in time! Moreover, these normal modes do not necessarily satisfy the prescribed
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initial conditions. But since the wave equation is linear, we can take linear combinations of
normal modes to produce new solutions. The most general such linear combination is a Fourier
series

u(x, t) =

∞∑
n=1

(An cosωnt+Bn sinωnt) sin
nπx

L
(112)

The coefficients An, Bn must decay sufficiently fast as n→∞ to ensure that the sum converges.
The theorems of Fourier series tell us that we can represent any continuous function that vanishes
at the end points of the interval [0, L] as a Fourier sine series. So we may try to fit the initial
conditions by a suitable choice of constants An, Bn for 1 ≤ n ≤ ∞ . They are fixed by the initial
height and velocity of the string

u(x, 0) =
∞∑
n=1

An sin
nπx

L
and u̇(x, 0) =

∞∑
n=1

Bnωn sin
nπx

L
where ωn =

nπc

L
. (113)

Using the orthogonality of sin(nπx/L) on the interval [0, L] for n = 1, 2, 3, . . . and the fact that
the average value of the square of the sine function is a half, we find

An =
2

L

∫ L

0
u(x, 0) sin

(nπx
L

)
dx and Bn =

2

nπc

∫ L

0
u̇(x, 0) sin

(nπx
L

)
dx. (114)

Thus we have solved the initial-boundary value problem for the motion of a stretched string
clamped at the end points. It is instructive to plot a movie of the time evolution of one such
solution on a computer.

• We see that a general vibration of a stretched string involves a superposition of several normal
modes and does not possess a definite wave number or time period. However, we will see that
in general, higher harmonics cost more energy to excite. We might anticipate this since the
restoring force was found to be proportional u′′(x). Higher harmonics sin(nπx/L), for n � 1
are rapidly oscillating functions with large second derivatives, so they involve significant forces
on the string segments. We would expect much energy to be stored in the oscillatory motion of
a higher harmonic.

6.3 Conserved energy of small oscillations of a stretched string

• Since we have not incorporated any dissipative effects and are not supplying any energy to
the string at any time t > 0, we expect the energy of the vibrating string to the conserved.
Let us derive an expression for the conserved energy in the same way as we did for Newton’s
equation. Recall that we multiplied mq̈i+

∂V
∂qi

= 0 by the integrating factor q̇i and summed over
the degrees of freedom i . The resulting expression was the statement that the time derivative
of energy is zero.

• So let us begin with Newton’s equation for a string in its pristine form and multiply by ut

ρutt dx = (τux)x dx ⇒ ρututt dx− ut(τux)x dx = 0 ⇒ 1

2
ρ(u2

t )t dx− ut(τux)x dx = 0.

(115)
Now we sum over the degrees of freedom by integrating over x ∈ [a, b]

∂t

∫ b

a

1

2
ρu2

t dx−
∫ b

a
ut(τux)x = 0. (116)
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The first term is the time derivative of what looks like a kinetic energy by analogy with a point
particle

m

2

∑
i

q̇2
i →

∫ b

a

1

2
ρ u2

t . (117)

So we would like to express the second term as the time derivative of a potential energy. To do
so we first integrate by parts

∂t

∫ b

a

1

2
ρu2

t dx− [τutux]ba +

∫ b

a
τuxutx dx = 0 (118)

The boundary term vanishes if we use Dirichlet or free boundary conditions (u = 0 or ux = 0 at
x = a, b) or even periodic boundary conditions (τ(a) = τ(b), u(a, t) = u(b, t), ux(a, t) = ux(b, t))
and we get

∂t

∫ b

a
ρ
u2
t

2
dx+ ∂t

∫ b

a

1

2
τ(u2

x) dx = 0. (119)

Thus the conserved energy is a sum of kinetic and potential energies (check the dimensions!)

E = T + V =

∫ b

a

[
1

2
ρu2

t +
1

2
τu2

x

]
dx =

∫ b

a
E dx with

dE

dt
= 0. (120)

The KE is proportional to the sum of squares of speeds of the bits of string as expected. The
PE is an energy of ‘bending’, it is proportional to the square of the gradient (slope) of the
string profile. T and V are separately non-negative and so E ≥ 0 with equality when the
stretched string is in equilibrium u(x, t) = constant. The integrand is called the energy density
E =

∫
E(x, t)dx . In general, the energy density ‘moves around the string’ in such a way that

the total energy is conserved. We also see that for fixed A,B , higher (n� 1) normal modes of
oscillation un = [A sin(nπct/L) +B cos(nπct/L)] sin(nπx/L) store more energy.

• We verify that the energy is conserved using the eom ρutt = (τux)x and integration by parts

dE

dt
=

∫
[ρututt + τuxuxt] dx =

∫ [
ρut

1

ρ
(τux)x − (τux)xut + ∂x(τuxut)

]
dx = [τuxut]

L
0 = 0.

(121)
We assumed the boundary term [τutux]L0 vanishes. This is automatic if u or ux vanish at
the end points, which is the case for a clamped string (Dirichlet b.c.) or a string with free
boundary conditions (ux = 0). Thus the energy of the string is conserved. The energy was
initially supplied to the string when it was set in motion through the initial gradients in the
string profile ux(t = 0) and initial velocity of the string ut(t = 0).

6.4 Lagrangian and Hamiltonian for stretched string

• The possible instantaneous configurations of a vibrating stretched string are the heights u(x)
for 0 ≤ x ≤ L . So the configuration space is a space of functions, it is not finite dimensional.
The generalised coordinates are the values of the function u(x, t) for 0 ≤ x ≤ L at a given time
t . The generalised velocities at time t are u̇(x, t). We will show that a Lagrangian for small
transverse oscillations of the stretched string is

L =

∫ L

0

1

2

[
ρ(ut)

2 − τ(ux)2
]
dx ≡

∫
L dx (122)
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where L = 1
2

[
ρu2

t − τu2
x

]
is called the Lagrangian density. This formula is simply L = T − V

obtained from our earlier formula for the conserved energy E = T + V .

• In general, for a Lagrangian density L that depends on u and its time and space derivatives
ut , ux, uxx , the Euler-Lagrange equation of motion (assuming suitable boundary conditions) is

∂

∂t

∂L
∂ut

=
∂L
∂u
− ∂

∂x

(
∂L
∂ux

)
+ ∂2

x

(
∂L
∂uxx

)
. (123)

To see this, we simply set the first variation of the action S =
∫
Ldx dt to zero after integrating

by parts

δS =

∫ [
∂L
∂u

δu+
∂L
∂ut

δut +
∂L
∂ux

δux +
∂L
∂uxx

δuxx

]
dx dt

=

∫ [
∂L
∂u
− ∂t

(
∂L
∂ut

)
− ∂x

(
∂L
∂ux

)
+ ∂2

x

(
∂L
∂uxx

)]
δu dx dt

δS = 0 ⇒ ∂

∂t

∂L
∂ut

=
∂L
∂u
− ∂

∂x

(
∂L
∂ux

)
+ ∂2

x

(
∂L
∂uxx

)
. (124)

For the above Lagrangian density we get ∂t(ρut) = ∂x(τux) or ρutt = ∂x(τux) since ρ is not
explicitly time dependent. When ρ, τ are constants, this reduces to the familiar form of the
wave equation utt = c2uxx with c2 = τ/ρ .

• The momentum conjugate to the coordinate u(x, t) is

π(x, t) =
δL

δut(x)
= ρut(x, t). (125)

Thus the hamiltonian is

H[u, π] = extut

∫ L

0
[πut − L] dx =

∫ [
π2

ρ
− 1

2
ρ
π2

ρ2
+

1

2
τu2

x

]
dx =

∫ L

0

[
π(x)2

2ρ
+
τu2

x

2

]
dx.

(126)
And the Poisson brackets between canonically conjugate variables (at a common time t) are

{u(x), π(x′)} = δ(x− x′) and {u(x), u(x′)} = {π(x), π(x′)} = 0. (127)

• Let us obtain Hamilton’s equations and check that they reduce to the wave equation. In-
tegrating by parts assuming clamped or free boundaries, we may express the hamiltonian as

H[u, π] =

∫ [
1

2ρ
π2 − 1

2
u(τux)x

]
dx assuming [τuux]L0 = 0. (128)

Hamilton’s equations are

ut(x) =
δH

δπ(x)
=
π(x)

ρ
and πt(x) = − δH

δu(x)
= (τux)x (129)

Combining these two 1st order equations, we get the 2nd order wave equation ρutt = (τux)x or
utt = c2uxx for constant tension, as expected.
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6.5 Right- and left-moving waves and d’Alembert’s solution

• By playing with a stretched string, we may discover the phenomenon of a transverse wave that
moves along a string, a traveling wave. A vertical disturbance that is set up somewhere along
a string can propagate elsewhere. This is because the vertical component of tension causes the
neighboring string element to move vertically, and the process goes on. Indeed, such a traveling
wave can reach a boundary (clamp) and get reflected and come back. Two such traveling waves
moving in opposite directions can collide and superpose. This suggests that it may be possible
to describe the solution of the wave equation in terms of traveling waves.

• The height u(x, t) (measured relative to the equilibrium height) of a stretched string executing
small transverse vibrations must satisfy the wave equation �u = ( 1

c2
∂2
t − ∂2

x)u = 0. In other
words, it must be annihilated by the wave operator or d’Alembertian � . d’Alembert’s approach
to solving the wave equation arises from factorizing the wave operator � into a pair of first
order operators. Let us consider the wave equation on an infinite interval −∞ < x <∞ subject
to the initial height and initial velocity

u(x, t = 0) = h(x) and u̇(x, 0) = v(x). (130)

The wave equation may be factorized as(
c−2∂2

t − ∂2
x

)
u =

(
c−1∂t − ∂x

) (
c−1∂t + ∂x

)
u =

(
c−1∂t + ∂x

) (
c−1∂t − ∂x

)
u = 0 (131)

It follows that if u is annihilated by either ∂− = c−1∂t − ∂x or ∂+ = c−1∂t + ∂x , then it will
satisfy the wave equation4. Let us consider these first order equations. We notice that any
differentiable function u(x, t) = f(x − ct) satisfies (c−1∂t + ∂x)u = 0 while any differentiable
function u(x, t) = g(x+ ct) is annihilated by c−1∂t − ∂x . Thus, for any differentiable functions
f and g ,

u(x, t) = f(x− ct) + g(x+ ct) (132)

is a solution of the wave equation. A little thought shows that for c > 0, f(x − ct) is a right-
moving wave with speed c and initial profile (at t = 0) given by the function f(x). The shape
of the wave f(x− ct) is unaltered as it travels to the right. So f(x− ct) is called a right-moving
wave. Similarly, for c > 0, g(x + ct) is a left-moving wave. Thus we have found that any
superposition of a right- and left-moving wave is a solution of the wave equation.

• One wonders whether such superpositions of right and left moving waves are adequate to solve
the initial value problem for a stretched string5. We will see that this is indeed the case on an
infinite domain. To solve the IVP, we wish to fix f and g in terms of the initial data.

u(x, 0) = f(x)+g(x) = h(x) and u̇(x, 0) = −cf ′(x)+cg′(x) = v(x) or −f ′(x)+g′(x) =
1

c
v(x).

Integrating the latter equation with integration constant K we get

f(x) + g(x) = h(x) and − f(x) + g(x) =
1

c

∫ x

x0

v(ξ) dξ +K. (133)

4These are not necessary conditions for solving the wave equation, only sufficient. But functions of these
special sorts can be used to obtain the complete solution to the initial value problem as we will see soon.

5It can be shown (try!) that the initial value problem for the wave equation has a unique solution. So the
solution we find here in terms of left- and right-moving waves and expressed in terms of initial height and initial
velocity is the only one.
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Adding and subtracting we solve for f, g in terms of initial data

f(x) =
1

2

(
h(x)− 1

c

∫ x

x0

v(ξ) dξ −K
)

and g(x) =
1

2

(
h(x) +

1

c

∫ x

x0

v(ξ) dξ +K

)
(134)

K and x0 are not part of the initial data, so we hope to get rid of them. Fortunately, we are
not interested in f and g separately, but only u(x, t) = f(x − ct) + g(x + ct). Indeed, adding
f, g , we express the solution of the wave equation entirely in terms of initial height and velocity

u(x, t) =
1

2

[
h(x− ct) + h(x+ ct) +

1

c

∫ x+ct

x−ct
v(ξ) dξ

]
. (135)

It is instructive to plot a movie of this solution, for instance in the case of zero initial velocity
and a simple initial height profile such as h(x) = e−x

2/2 . One finds two little waves moving
away from x = 0. The height at xo at time to depends on the initial (t = 0) height at points
xo − cto and xo + cto . So the initial height only at points a distance cto from the observation
point xo can affect the height at the point of observation. This indicates that these ‘signals’
travel at the speed c6. The initial velocity v(x) only at points within a distance cto from the
observation point can affect the height at the observation point.

7 Canonical transformations

7.1 Introduction

• Recall that the space of generalised coordinates and momenta is called phase space. Hamilton’s
equations q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
may be easier to solve (or understand qualitatively) in some

systems of coordinates and momenta compared to others. For instance, there may be more
cyclic coordinates in one system. E.g., for a particle in a central potential V (r) on the plane,
the eom are simpler to handle in polar coordinates r, θ than in Cartesian coordinates x, y . From
the Lagrangian

L(x, y, ẋ, ẏ) =
1

2
m
(
ẋ2 + ẏ2

)
− V

(√
x2 + y2

)
=

1

2
m
(
ṙ2 + r2θ̇2

)
− V (r) = L̃(r, θ, ṙ, θ̇), (136)

θ is a cyclic coordinate and its conjugate momentum Lz = pθ = mr2θ̇ is conserved. On the
other hand, neither px nor py is conserved. We have checked that Hamilton’s equations take
the same form in cartesian and polar coordinates:

ẋ =
∂H

∂px
, ẏ =

∂H

∂py
, ṗx = −∂H

∂x
, ṗy = −∂H

∂y
where px =

∂L

∂ẋ
and py =

∂L

∂ẏ

⇔ ṙ =
∂H

∂pr
, θ̇ =

∂H

∂pθ
, ṗr = −∂H

∂r
, ṗθ = −∂H

∂θ
where pr =

∂L

∂ṙ
and pθ =

∂L

∂θ̇
. (137)

We say that the transformation from cartesian coordinates and conjugate momenta (x, y, px, py)
to polar coordinates and conjugate momenta (r, θ, pr, pθ) is a canonical transformation. We also
check that the fundamental Poisson brackets among coordinates and momenta are preserved

{x, px} = {y, py} = 1, {x, py} = {y, px} = {x, y} = {px, py} = 0

6Note that the speed at which these (transverse) signals travel is quite distinct from the instantaneous vertical
velocity u̇ of a point on the string.
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and {r, pr} = {θ, pθ} = 1, {r, pθ} = {θ, pr} = {r, θ} = {pr, pθ} = 0. (138)

• Suppose we start with a system of coordinates qi and conjugate momenta pi , in which
Hamilton’s equations take the standard form q̇ = ∂H

∂p , ṗ = −∂H
∂q . A canonical transformation

(CT) of coordinates and momenta from old ones (qi, pi) to new ones (Qi, Pi) is one that preserves
the form of Hamilton’s equations. What use is this concept? At the very least, if we make a
change of variables on phase space that is known to be canonical for independent reasons,
then we would not need to re-derive the equations of motion, they are guaranteed to take the
Hamiltonian form in the new variables. In fact, canonical transformations are a widely useful
and deep idea, as we will see.

• But not every choice of coordinates and momenta is canonical. For example, we notice that
Hamilton’s equations treat coordinates and momenta on a nearly equal footing. So suppose we
simply exchange coordinates and momenta by defining Q = p and P = q . Then the hamiltonian
may be written in terms of the new variables H(q, p) = H(P,Q) ≡ H̃(Q,P ). We find that

Q̇ = ṗ = −∂H
∂q

= −∂H̃
∂P

and Ṗ = q̇ =
∂H

∂p
=
∂H̃

∂Q
. (139)

So the eom in the new variables do not have the form of Hamilton’s equations, they are off
by a sign. So (q, p) 7→ (p, q) is not a canonical transformation. We may also check that the
transformation does not preserve the fundamental p.b.

{q, p} = 1 while {Q,P} = {p, q} = −1 (140)

• Any change of coordinates alone (‘point transformation’) qi → Qi , with the associated ‘in-

duced’ change in momenta Pi = ∂L̃
∂Q̇i

is automatically canonical (provided we have a Lagrangian

in mind). An example of such a canonical transformation is the one from cartesian to polar
coordinates for a free particle (or one in a potential V (x, y)) on a plane. The interesting thing
is that there are canonical transformations that are more general than those resulting from
changes of coordinates (point transformations) on Q . Perhaps the simplest such examples are
(1) Q = p, P = −q and (2) Q = −p, P = q which mix coordinates and momenta for one degree
of freedom. Check that Hamilton’s equations retain their form, as do the fundamental Poisson
brackets.

• In the above examples of CTs, along with Hamilton’s equations, the fundamental p.b. among
coordinates and momenta were also preserved. This is true in general. It is worth noting that
a transformation (q, p)→ (Q,P ) is canonical irrespective of what the hamiltonian is. The form
of Hamilton’s equations must be unchanged for any smooth H(q, p). Preservation of p.b. allows
us to state the condition of canonicity without reference to the hamiltonian.

7.2 Four points of view on canonical transformations

• An invertible and sufficiently differentiable transformation from old canonical variables (qi, pj)
to a new set of variables Qi = Qi(q1, . . . , qn, p1, . . . , pn), Pj = Pj(q

1, . . . , qn, p1, . . . , pn) is canon-
ical if any of these conditions is satisfied:

• (1) The Fundamental p.b. between coordinates and momenta is preserved, i.e.,

{qi, pj} = δij , {qi, qj} = {pi, pj} = 0 (141)
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implies that
{Qi, Pj} = δij , {Qi, Qj} = {Pi, Pj} = 0. (142)

Here all p.b. are evaluated by differentiating with respect to the old variables, in other words,
all these p.b are {., .}q,p .

• (2) Hamilton’s equations take the same form in the new variables

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
⇒ Q̇i =

∂H̃

∂Pi
, Ṗi = − ∂H̃

∂Qi
. (143)

where H̃(Q,P ) = H(q(Q,P ), p(Q,P )) is the hamiltonian re-expressed in the new variables.

• (3) The p.b. of any pair of observables satisfies

{f, g}q,p = {f, g}Q,P . (144)

So the formula for p.b. calculated by differentiating with respect to coordinates and momenta
is the same in the new variables.

• (4) For one degree of freedom, the signed area element on the phase plane is preserved, i.e.,
dqdp = dQdP . For several degrees of freedom, the area element in every 2-plane in phase space
must be preserved (i.e. the symplectic 2-form must be preserved).

• We will not prove the equivalence of these statements here. But let us illustrate them in the
case of one degree of freedom.

• (1)⇔ (4) For e.g. let us see why preservation of area and fundamental p.b. are the same. The
only non-trivial p.b. for 1 dof is {Q,P} = ∂Q

∂q
∂P
∂p −

∂Q
∂p

∂P
∂q . We notice that this is the expression

for the Jacobian determinant for the change of coordinates on phase space

det J = det

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)
= 1 ⇔ {Q,P} = 1. (145)

Now the ‘signed’ area element under a change of variables transforms as dQdP = det J dqdp7.
So preservation of the signed area element is the same as preservation of fundamental p.b. By
signed area element we mean that the area ‘vector’ points in the direction of the cross product
of infinitesimal vectors along the q and p coordinate directions. A reflection about any axis is
orientation reversing and reverses the sign of the area element.

• (3) ⇔ (1) We try to express the p.b. of two observables {f, g} = {f, g}qp in terms of
{f, g}QP . A function f(q, p) can be regarded as a function of the new variables by substitution

f(q, p) = f(q(Q,P ), p(Q,P )). We will use subscripts to denote partial derivatives fP = ∂f
∂P etc.

By the chain rule and rearranging terms,

{f, g} = fqgp − fpgq = (fQQq + fPPq) (gQQp + gPPp)− (fQQp + fPPp) (gQQq + gPPq)
= fQgP (QqPp −QpPq) + fP gQ (PqQp − PpQq) + fQgQ (QqQp −QpQq) + fP gP (PqPp − PpPq)
= (fQgP − fP gQ) {Q,P}+ fQgQ{Q,Q}+ fP gP {P, P}. (146)

Of course, the last two terms are identically zero by anti-symmetry of p.b., but we displayed
them as they help in writing the corresponding formula for n degrees of freedom:

{f, g} =
(
fQigPj − fPjgQi

)
{Qi, Pj}+ fQigQj{Qi, Qj}+ fPigPj{Pi, Pj}. (147)

7If the Jacobian determinant is new to you, use it to work out the area element in plane polar coordinates start-
ing from Cartesian coordinates dxdy = r dr dθ and also in spherical polar coordinates dxdy dz = r2 sin θ dr dθ dφ .
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Now we see that

{f, g} =
n∑
i=1

(
∂f

∂Qi
∂g

∂Pi
− ∂f

∂Pi

∂g

∂Qi

)
= {f, g}Q,P . (148)

iff the new coordinates and momenta satisfy canonical p.b. relations, i.e., if

{Qi, Pj} = δij , and {Qi, Qj} = 0 = {Pi, Pj}. (149)

Thus a transformation is canonical if the p.b. of any pair of observables is given by the same
sort of formula whether computed using the old or new variables:

(q, p) 7→ (Q,P ) is a canonical transformation iff {f, g}q,p = {f, g}Q,P ∀ f, g. (150)

7.3 Examples of Canonical Transformations

1. The identity Q = q, P = p is a canonical transformation, fundamental p.b. are clearly
preserved.

2. Exchange of coordinates and momenta Q = p, P = q is not canonical since {Q,P} = −1.
Such an exchange is orientation reversing, det J = −1

3. Exchange with a sign Q = −p, P = q is a CT, it preserves p.b. The existence of this CT is
what one means when one says that hamilton’s equations treat coordinates and momenta
on a nearly equal footing. There is another exchange Q = p, P = −q which too is a CT.

4. A translation on the phase plane q → q + a, p → p + b by the vector (a, b) is a CT. The
Jacobian matrix here is the identity and has unit determinant, so areas are preserved.

5. A rotation on the phase plane preserves area elements, it is canonical. The Jacobian here
is the rotation matrix given below. It has unit determinant cos θ2 + sin θ2 = 1:(

Q
P

)
=

(
cos θ sin θ
− sin θ cos θ

)(
q
p

)
(151)

6. Translations and rotations each form a group, two dimensional and one dimensional,
parametrized by the vector (a, b) ∈ R2 and the angle θ ∈ [0, 2π). We may compose
translations and rotations to form the group of rigid motions of the phase plane (the
Euclidean group). All of them are canonical transformations.

7. On the other hand, a reflection such as Q = −q, P = p is not a CT, the sign of the
fundamental p.b. is reversed. It also does not preserve the signed area element, it reverses
the orientation. We could write symbolically dQdP = −dqdp . The determinant of the
Jacobian matrix is minus one.

8. A scaling of coordinates and momenta by a real constant Q = λq , P = λp is in general
not area preserving (except if λ2 = 1). On the other hand, the scaling Q = λq, P = λ−1p
for λ 6= 0 does preserve areas. It maps squares to rectangles that are thin and tall or short
and fat!
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9. Time evolution by any hamiltonian gives us important examples of canonical transforma-
tions. Recall that the equal time Poisson brackets of coordinates and momenta

{qi(t), pj(t)} = δij and {qi(t), qj(t)} = {pi(t), pj(t)} = 0 (152)

are valid at all times. So the map from (qi(t1), pi(t1)) to (qi(t2), pi(t2)) which is a map
from phase space to itself, is canonical for any times t1, t2 . So hamiltonian evolution gives
us a 1-parameter family of canonical transformations, the parameter is time. Different
hamiltonians (say with different potentials V (q), give rise to various 1-parameter families
of canonical transformations).

10. Area & orientation preserving maps of the phase plane are all the canonical transformations
for one degree of freedom. These include (but are not restricted to) rigid motions like
translations and rotations of the phase plane. For example, time evolution by a generic
hamiltonian is a CT which in general will morph a nice looking disk on the phase plane
into a complicated region having the same area. The harmonic oscillator hamiltonian
H = p2/2m + 1

2kq
2 produces clockwise rotation of the phase plane if k/2 = 1/2m . The

space of hamiltonians is infinite dimensional, corresponding to various possible choices of
potential functions V (q). So we get a large supply of CTs (and area preserving maps of
the phase plane) by various choices of hamiltonians.

11. Let us work out one example of a canonical transformation in detail. Consider a free par-
ticle on the half line q > 0 with equation of motion mq̈ = 0 following from the Lagrangian
L(q, q̇) = mq̇2 with conjugate momentum p = mq̇ . Suppose we change coordinates to

Q = q2 . Then Q̇ = 2qq̇ and the equation of motion q̈ = 0 becomes Q̈ + Q̇2

2Q = 0. This is

in fact the EL equation following from the new Lagrangian is L̃(Q, Q̇) = mQ̇2

8Q . The new

momentum is P = ∂L
∂Q̇

= mQ̇/4Q . The new variables can be written in terms of the old

ones Q = q2 and P = p/2q . The p.b. {Q,P} = {q2, p/2q} = 1 so this transformation
is canonical. Changing variables in the old hamiltonian H = p2/2m gives us the new
hamiltonian H̃(Q,P ) = 2P 2Q/m . Hamilton’s equations that follow, Q̇ = 4QP/m and
Ṗ = −2P 2/m imply the same second order equation Q̈+ Q̇2/2Q = 0 as obtained before,
showing that the form of hamilton’s equations does not change under this transformation.
Show that H̃ is the Legendre transform of the new lagrangian L̃ . Moreover, the Jaco-

bian matrix for the transformation Q = q2, P = p/2q is J =

(
2q 0

−p/2q2 1/2q

)
has unit

determinant ensuring the preservation of the area element.

7.4 Generating function for infinitesimal canonical transformations

• The condition for a transformation from canonical coordinates and momenta (qi, pi) to new
ones (Qi, Pi) to be canonical is that the Poisson brackets must be preserved. It would be nice
to find an explicit way of producing canonical transformations. Let us address this question for
infinitesimal canonical transformations, those that depart from the identity transformation by
a small amount. It turns out that any such canonical transformation can be expressed in terms
of a single ‘generating’ function on phase space. In other words, we consider transformations of
the form

Qi = qi + δqi(q, p) and Pi = pi + δpi(q, p) where δqi, δpi are small. (153)
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Note that we do not expand δq, δp in powers of q and p , we are not assuming that q, p are
small.

• We mentioned that time-evolution by any hamiltonian is a CT. Under infinitesimal time evo-
lution δq = ∂H

∂p = {q,H} and δp = −∂H
∂q = {p,H} . We say that H(q, p) generates infinitesimal

time-evolution. Since this is true for any hamilton function H we may say more generally that
any observable f(q, p) generates an infinitesimal canonical transformation via the p.b.:

δqi =
∂f

∂pi
= {qi, f} and δpi = − ∂f

∂qi
= {pi, f} (154)

f is determined up to an additive constant. In the case of R2n phase space, all infinitesimal
CTs may be obtained through appropriate choices of generators f(q, p). It is also possible to
build up finite CTs by composing a succession of infinitesimal ones. We will say more about
finite CTs later.

• E.g. what infinitesimal CT does the angular momentum component εLz generate? One finds

δx = −εy, δy = εx, δz = 0 and δpx = −εpy, δpy = εpx, δpz = 0. (155)

This CT is a counter clockwise rotation in the x− y plane and px− py plane by the small angle
ε as we see by writing it asx+ δx

y + δy
z + δz

 =

1 −ε 0
ε 1 0
0 0 1

xy
z

 ≈
cos ε − sin ε 0

sin ε cos ε 0
0 0 1

xy
z

 for small ε. (156)

A similar matrix representation works for the momenta as well. We say that the components
of angular momentum εLi generate counter-clockwise rotations of the position and momentum
vectors about the ith axis.

• εpx generates translations in x , δx = {x, εpx} = ε and δy = δpx = 0 etc.

• It is also interesting to have an expression for the infinitesimal change in a given observable
g(q, p) due to a canonical transformation generated by f(q, p):

δg =
∂g

∂qi
δqi +

∂g

∂pi
δpi =

∂g

∂qi
∂f

∂pi
− ∂g

∂pi

∂f

∂qi
= {g, f}. (157)

So the change in any observable is given by its p.b. with the infinitesimal generator.

7.5 Symmetries & Noether’s theorem in the hamiltonian framework

• In the hamiltonian formalism, it is natural to define a symmetry transformation as a canonical
transformation (qi, pi) → (Qi, Pi) that leaves the hamiltonian invariant. The former condition
ensures that a symmetry preserves the p.b. This requirement allows us to obtain a conserved
quantity from an infinitesimal symmetry. This is expected from Noether’s theorem, which we
proved in the Lagrangian framework. Symmetries of the hamiltonian that aren’t CTs, generally
do not lead to conserved quantities.

• E.g., if the hamiltonian is independent of a coordinate q , as for a free particle H = p2/2m ,
then it is invariant under translations of q , H(q, p) = H(q + a, p). These are implemented by
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the p.b. preserving CT q → q + a, p → p . q is then a cyclic coordinate and the conjugate
momentum is conserved ṗ = −∂H

∂q = 0. More generally, a transformation is said to leave the
hamiltonian invariant if H(q, p) = H(Q(q, p), P (q, p)). The value of energy does not change if
we evaluate the hamiltonian at a point on phase space related to the original one by a symmetry
transformation. Note that the above translations are a family of symmetries parametrized by
a . If a is small, we call it an infinitesimal translation.

• The identity CT Qi = qi, Pi = pi is always a symmetry. Families of symmetries (they form
a group in general) may be discrete or continuous. Continuous symmetries are those that may
be continuously deformed to the identity. In the case of translations, this is done by taking
a → 0. Finite continuous symmetries can be built by composing many infinitesimal ones. We
will be concerned with infinitesimal symmetry transformations, which, regarded as CTs, admit
an infinitesimal generator f(q, p). E.g. f(q, p) = p · a = pia

i for a fixed vector ~a generates a
translation of coordinates by ~a , since

δqi =
∂f

∂pi
= ai and δpi = − ∂f

∂qi
= 0. (158)

Now the change in any observable g due to the symmetry transformation generated by f is
δg = {g, f} . In particular, since the hamiltonian is invariant under a symmetry, we must have
0 = δH = {H, f} = 0. By hamilton’s equation this means ḟ = {f,H} = 0. It follows that the
generator f of the infinitesimal symmetry, is a constant of motion. Thus we have a Hamiltonian
version of Noether’s theorem. The symmetry generator is the conserved quantity (Noether’s
‘charge’). In the above example, it means p · a is a conserved quantity if the hamiltonian is
invariant under translations of coordinates by any small vector ~a . This means the component
of momentum in any direction is conserved for a free particle.

7.6 Brief comparison of classical and quantum mechanical formalisms

• This is a good opportunity to compare certain features of classical and quantum mechanics.

1. In CM, the space of (pure) states is the phase space. Each point in phase space is a
possible state. In QM the space of states is the quantum mechanical Hilbert space (vector
space H with inner product 〈·, ·〉). Unlike in CM, the space of quantum states satisfies
the principle of linear superposition.

2. In CM, observables are smooth real-valued functions on phase space. In QM, observables
(A,B etc) are self-adjoint (hermitian) operators on Hilbert space. Self-adjointness is the
analogue of reality, both of which ensure that results of measurements are real numbers.

3. The Poisson bracket of observables in CM is replaced by the commutator of operators
(upto a factor of i~) in QM, e.g. {x, p} = 1 −→ 1

i~ [x, p] = 1. Both operations map a pair
of observables to a new observable.

4. Hamilton’s equation for the time derivative of an observable f is df
dt = {f,H} . The

quantum mechanical version is the Heisenberg equation of motion i~df̂dt = [f̂ , Ĥ] .

5. A dynamical variable f that Poisson commutes with the hamiltonian is a classical con-
stant of motion. A quantum mechanical operator Â that commutes with the hamiltonian
[Â, Ĥ] = 0 is a conserved quantity.
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6. In CM, time evolution is a 1-parameter family of canonical transformations. In QM, time
evolution is a 1-parameter family of unitary transformations U(t) = e−iHt/~ .

7. Unitary transformations ( |ψ〉 → |ψ′〉 = U |ψ〉 and A → A′ = UAU † with U †U = I )
are quantum analogs of canonical transformations. Both preserve the structure of the
formalism. CTs preserve the fundamental p.b. while unitary transformations preserve the
Heisenberg canonical commutation relations, since [A′, B′] = U [A,B]U † and in particular
[q′, p′] = U [q, p]U † = U(i~)U † = i~ . Unitary transformations also preserve inner products
〈Uφ|Uψ〉 = 〈φ|U †Uψ〉 = 〈φ|ψ〉 .

7.7 Liouville’s theorem

• We will apply the idea of infinitesimal generator for a CT to establish an interesting theorem
of Liouville on the geometric nature of CT. Previously, we saw that for one degree of freedom,
CTs preserve areas in phase space. This is a special case of Liouville’s theorem. For n degrees
of freedom, it says that CTs preserve 2n-dimensional ‘volumes’ in phase space. In other words,
suppose a 2n-dimensional region in phase space D ⊂ R2n is mapped by a CT to a new region
D′ ⊂ R2n . Then Vol(D) = Vol(D′). Alternatively, it says that the volume element in phase
space is invariant under a CT

n∏
i=1

dQi
n∏
j=1

dPj =
n∏
i=1

dqi
n∏
j=1

dpj . (159)

For a general transformation, the determinant of the Jacobian matrix of first partials appears
as a pre-factor on the rhs

J =

(
∂Qi

∂qj
∂Qi

∂pj
∂Pi
∂qj

∂Pi
∂pj

)
2n×2n

, where each sub-matix is an n× n block with 1 ≤ i, j ≤ n. (160)

So Liouville’s theorem says that det J = 1 for a canonical transformation. Note that unlike for
one degree of freedom, for n > 1, det J = 1 is not a sufficient condition for a transformation to
be canonical.

• Let us establish Liouville’s theorem for infinitesimal canonical transformations by using our expressions
for Qi, Pj in terms of an infinitesimal generator8 εf

Qi ≈ qi + ε
∂f

∂pi
and Pi ≈ pi − ε

∂f

∂qi
(161)

Let us first look at the simple case of n = 2 degrees of freedom, where

Q1 ≈ q1 + εfp1
, Q2 ≈ q2 + εfp2

, P1 ≈ p1 − εfq1 and P2 ≈ p2 − εfq2 (162)

and sub-scripts denote partial derivatives. In this case the Jacobian matrix

J ≈ I + ε


fq1p1

fq2p1
fp1p1 fp1p2

fq1p2
fq2p2

fp1p2
fp2p2

−fq1q1 −fq2q1 −fp1q1 −fp2q1

−fq1q2 −fq2q2 −fp1q2 −fp2q2

 = I + εF (163)

8 ε is a small parameter which will help us keep track of infinitesimals, we will ignore quantities of order ε2 .
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departs from the identity by an infinitesimal matrix of second partials of f .

• Now9

det J = det[I + εF ] = 1 + ε tr F +O(ε2) = 1 +O(ε2) (164)

since F is traceless. So for two degrees of freedom we have shown that an infinitesimal canonical
transformation preserves the (4-dimensional) volume element in phase space.

• The case of n -degrees of freedom is analogous. The 2n× 2n Jacobian matrix is made of n×n blocks

J =

(
δij + ε ∂2f

∂pi∂qj
ε ∂2f
∂pi∂pj

−ε ∂2f
∂qi∂qj δij − ε ∂2f

∂qi∂pj

)
⇒ det J ≈ 1 + ε

n∑
i=1

∂2f

∂pi∂qi
− ε

n∑
i=1

∂2f

∂qi∂pi
= 1 (165)

Thus, an infinitesimal canonical transformation preserves the volume element in phase space. Synthesizing
a finite canonical transformation by composing a succession of N infinitesimal ones and letting N →∞
and ε→ 0, we argue that finite canonical transformations also preserve the phase volume. One needs to
show that the terms of order ε2 and higher, will not contribute to the Jacobian of a finite CT.

• In particular, hamiltonian time evolution preserves phase volume. This is true even if the
hamiltonian is explicitly time dependent. All we need is for the equations of motion to be
expressible in Hamiltonian form q̇i = ∂H

∂pi
, ṗi = ∂H

∂qi
and this is true even if the Lagrangian

depends explicitly on time (see the section on Hamilton’s equations). At each instant of time,
H generates an infinitesimal CT that preserves the phase volume. Of course, if H is explicitly
time-dependent, the CT will change with time, but phase volume will still be preserved. Note
that dissipative systems do not admit a standard Lagrangian or hamiltonian description, there
is no function H(q, p, t) for which hamilton’s equations reproduce the equations of motion.
Typically, for dissipative systems, the volume in phase space is a decreasing function of time
(e.g. for the damped harmonic oscillator mẍ = −kx−γẋ , irrespective of what initial conditions
one considers, the mass comes to rest at the equilibrium point (x = 0,mẋ = 0), so the phase
space area shrinks to zero).

• Application to statistical mechanics: Consider the gas molecules in a room, modeled as
a system of N classical point particles. The phase space is 6N dimensional with coordinates
~q1 · · · ~qN , ~p1 · · · ~pN . Now owing to the difficulty of determining the initial values of these variables,
we may at best be able to say that the initial conditions lie within a certain region D of phase
space, compatible with our rough knowledge of the initial state (say the initial temperature and
extent of the room etc.). Each of the phase points in D will evolve in time and trace out a phase
trajectory (note that a point in D is not a gas molecule, it is one state of all the gas molecules!).
In this manner D itself will evolve to a new region D′ which contains the possible phase points at
a later time. We are often not interested in locations and momenta of individual gas molecules
but average properties of the gas (such as mean pressure or internal energy). These may be
obtained by computing an average over the region of phase space D′ . Liouvilles’s theorem says
that this region of phase space evolves in time as an ‘incompressible fluid’ (retaining its 2n
dimensional volume). Note that this is true even if the gas itself is compressible! In general, the
shape of the region will get distorted with time, while maintaining a constant 6N -dimensional
volume.

9Suppose the eigenvalues of J = I+ εF are λ1, · · · , λ2n . Then from the characteristic equation det(J −λI) =
det(εF − (λ − 1)I) = 0 we see that the eigenvalues of εF are λ1 − 1, · · ·λ2n − 1. Hence the eigenvalues of F
are f1 = λ1−1

ε
, · · · λ2n−1

ε
. Thus det J = λ1 · · ·λ2n = (1 + εf1) · · · (1 + εf2n) = 1 + ε(f1 + · · · + f2n) + O(ε2) =

1 + ε tr F + O(ε2) . Alternatively, assuming the identity det J = exp( tr log(I + εF )) , one may proceed by
expanding in powers of ε .
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7.8 Variational principles for Hamilton’s equations

• We seek an extremum principle for Hamilton’s equations, just as we had one for Lagrange’s
equations: S[q] =

∫
L dt and δS = 0. Hamilton’s variational principle for his equations is given

by the functional of a path on phase space (qi(t), pj(t))

S[q, p] =

∫ tf

ti

[
piq̇

i −H(q, p)
]
dt. (166)

Recall that L(q, q̇) = extp(pq̇ − H(q, p)), which motivates the formula for S[q, p] . However,
here we do not extremize in p . Rather, in the integral, we regard q(t) and p(t) as independent
ingredients used to specify the phase path and q̇ as obtained by differentiating q(t). Note that
S[q] is a functional of a path on configuration space, while S[q, p] is a functional of a path on
phase space. They are not the same, though we call both ‘action’. We ask that this functional
S[q, p] be stationary with respect to small variations in the phase path (q(t), p(t)) while holding
δq(ti) = 0 and δq(tf ) = 0. Note that we do not constrain δp(ti) or δp(tf ). That would be an
over specification10. Now

δS =

∫ tf

ti

[
δpi q̇

i + piδq̇
i − ∂H

∂qi
δqi − ∂H

∂pi
δpi

]
dt+ . . . (167)

We find upon integrating by parts in the second term and using δq(ti,f ) = 0,

S[q + δq, p+ δp] = S[q, p] +

∫ tf

ti

[
q̇iδpi − ṗiδqi −

∂H

∂qi
δqi − ∂H

∂pi
δpi

]
dt+ . . . . (168)

The action must be stationary with respect to arbitrary infinitesimal independent variations δp ,
δq subject to δq(ti) = δq(tf ) = 0. So the coefficients of δp and δq must individually vanish.
Thus we recover Hamilton’s equations at all times ti < t < tf :

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
. (169)

Hamilton’s equations treat position and momentum on an equal footing except for a sign. But
the above boundary conditions treat them asymmetrically. This is a clue that there is another
variational principle for Hamilton’s equations. Consider the functional of a path on phase space

S̃[q, p] =

∫ tf

ti

[
−qj ṗj −H(q, p)

]
dt (170)

which we extremize with respect to small variations δq, δp while holding δpj(ti) = δpj(tf ) = 0.
Then integrating by parts,

δS̃ =

∫ tf

ti

[
−ṗjδqj − qjδṗj −

∂H

∂qj
δqj − ∂H

∂pj
δpj

]
dt

=
[
q̇jδpj

]tf
ti

+

∫ tf

ti

[(
ṗj +

∂H

∂qj

)
δqj +

(
q̇j − ∂H

∂pj

)
δpj

]
dt. (171)

So δS̃ = 0 also implies Hamilton’s equations. We will exploit both these variational principles
to find generating functions for finite canonical transformations. The utility of the second varia-
tional principle is mostly conceptual. In practice, we are rarely interested in finding trajectories
connecting specified initial and final momenta.

10There would in general not be any trajectory joining specified values of q and p at both ti and tf . Demonstrate
this in the case of a free particle.
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7.9 Generating functions for finite canonical transformations from variational principles

• Transformations between different sets of canonical coordinates and momenta are called canon-
ical transformations. Here we seek to express finite canonical transformations in terms of gener-
ating functions. We have already done this for infinitesimal canonical transformations. To do so,
we will use Hamilton’s variational principle for his equations. Consider the (possibly explicitly
time-dependent) map from (qi, pj) 7→ (Qi, Pj) with the equations of transformation given by
the functions

Qi = Qi(q, p, t) and Pi = Pi(q, p, t) (172)

Such a change is canonical provided there is a new Hamiltonian K(Q,P, t) (previously called
H̃ ) such that the eom in the new variables take the same form as those in the old variables, i.e.,

Q̇i =
∂K

∂Pi
and Ṗi = − ∂K

∂Qi
while q̇i =

∂H

∂pi
and ṗi = −∂H

∂qi
. (173)

When the transformation is not explicitly dependent on time, K(Q,P ) is got by expressing q, p
in terms of Q,P in the old Hamiltonian H(q, p). We will see that essentially the same thing
continues to be true, but with a slight modification. Now both these sets of Hamilton equations
should be equivalent in the sense that if we express Q and P in terms of q and p in the second
set, they should reduce to the old Hamilton equations.

• Each set of Hamilton’s equations follows from a variational principle:

δ

∫ tf

ti

[
piq̇

i −H(q, p)
]
dt = 0 and δ

∫ tf

ti

[
PiQ̇

i −K(Q,P )
]
dt = 0. (174)

The extrema of these two functionals are the same equations (just in different coordinates). One
way for this to happen is for the integrands to be the same. But there is also a more general
way for this to happen, the integrands could differ by the total time derivative of a function
F1(q,Q, t). Let us see why. Subtracting, we find that the condition for the functional

I[q, p,Q, P ] =

∫ tf

ti

(
pq̇ −H − PQ̇+K

)
dt (175)

to be extremal is identically satisfied, since it is the difference between two equivalent sets of
equations. So this integral must be a constant functional with respect to variations of q, p,Q, P
subject to the boundary conditions δq(ti) = δq(tf ) = δQ(ti) = δQ(tf ) = 0. A way for this to
happen is for the integrand to be a total time derivative of a function Ḟ1(q,Q, t). For, then

I =

∫ tf

ti

Ḟ1 dt = F1(q(tf ), Q(tf ), tf )− F1(q(ti), Q(ti), ti). (176)

And I is then a constant since q and Q are held fixed at the fixed times ti and tf . Note that
F1 cannot be taken as a function of p or P since δp(ti), δp(tf ), δP (ti), δP (tf ) are unconstrained
in Hamilton’s variational principle and the total derivative of such a term would violate the
constancy of I . In other words, a way by which the equations in both old and new variables
take the hamiltonian form is for the relation

piq̇
i −H = PiQ̇

i −K +
dF1

dt
, (177)
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to hold for some function F1(q,Q, t). Multiplying through by dt we get

pdq −Hdt = PdQ−Kdt+
dF1

dt
dt. (178)

That the independent variables in F1 are q,Q, t is also consistent with the fact that the inde-
pendent differentials appearing in the rest of the terms above are dt, dq, dQ . So as an equation
among the independent differentials dq, dQ, dt we have

pdq −Hdt = PdQ−Kdt+
∂F1

∂q
dq +

∂F1

∂Q
dQ+

∂F1

∂t
dt. (179)

Comparing coefficients, we read off the relations

p =
∂F1

∂q
, P = −∂F1

∂Q
and K(Q,P, t) = H(q, p) +

∂F1(q,Q, t)

∂t
. (180)

F1(q,Q) is called the generator of the CT. The first two equations determine the equations
of transformation. The first may be solved to find Q = Q(q, p, t) and using it, the second
expresses P = P (q, p, t). The last relation fixes the new hamiltonian in terms of the old one
and the generator. If F1 does not depend explicitly on time, then it just says that K(Q,P ) =
H(q(Q,P ), p(Q,P )) = H̃(Q,P ) as before. But in general, the new and old hamiltonians differ
by the partial time derivative of the generator.

• Not every function F1(q,Q, t) is a legitimate generator. E.g., F1(q,Q) = q +Q would imply
p = 1 and P = −1 which in general cannot be solved to express Q,P in terms of q, p . Similarly,
F1 = q2 + Q2 also does not generate a CT since it implies p = 2q, P = −2Q which cannot be
solved to express Q,P as functions of q, p . On the other hand, a choice that does generate a
CT is F1(q,Q) = qQ , in which case, Q = p and P = −q exchanges coordinates and momenta
up to a sign. What CT does F1 = −qQ generate?

• In general, for F1(q,Q) to generate a CT, we need the ‘hessian’ of unlike second partials ∂2F1
∂q∂Q

to be non-vanishing This will allow us to use p = ∂F1(q,Q)
∂q to solve for Q in terms of q, p , at least

locally. When the second partial is non-vanishing ∂F1(q,Q)
∂q depends non-trivially on Q which

can then be solved for and then inserted in P = −∂F1(q,Q)
∂Q to express P = P (q, p).

• The generator of a finite CT F1(q,Q, t) is distinct from the infinitesimal generator f(q, p)
encountered before. Unlike f(q, p), which generates all infinitesimal CTs, F1(q,Q, t) does not
generate all finite CTs. In particular, the identity transformation Q = q, P = p is not expressible
via a generating function F1(q,Q, t). The latter expresses p = ∂F1(q,Q)

∂q = p(q,Q) and P =

−∂F1(q,Q)
∂Q = P (q,Q). But for the identity transformation, it is not possible to express P as a

function of Q and q . Roughly, F1 = qQ + εg(q,Q) is good at generating CTs that are in the
vicinity of the one that exchanges coordinates and momenta upto a sign Q = p , P = −q . It is
not a good way of generating CTs in the vicinity of the identity transformation. [Nevertheless,
it is possible to get arbitrarily close to the identity CT using a generator of type I, see problems.]

• To find a generator for other canonical transformations, we make use of the second variational
principle S̃[Q,P ] for Hamilton’s equations. Here the momenta are held fixed at the end points
δP (ti) = δP (tf ) = 0. For the old hamilton equations, we use the first variational principle
S[q, p] where δq(ti) = δq(tf ) = 0:

δ

∫ tf

ti

[pq̇ −H(q, p)] dt = 0 and δ

∫ tf

ti

[−QṖ −K(Q,P )] dt = 0. (181)
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These two variational principles give the same equations even if the integrands differ by the
total time derivative of a function F2(q, P, t) since δq, δP are held fixed at the end points. So
we must have

pdq −Hdt = −QdP −Kdt+
∂F2

∂q
dq +

∂F2

∂P
dP +

∂F2

∂t
dt (182)

Thus F2(q, P ) generates a CT, with the equations of transformation given by

p =
∂F2

∂q
, Q =

∂F2

∂P
and K = H +

∂F2

∂t
. (183)

• It is easily seen that if F2(q, P ) = qP , then the resulting transformation is the identity
Q = q, p = P . In the absence of explicit time dependence, F2(q, P ) is sometimes denoted
W (q, P ). The above arguments show that F2 generates a CT and must therefore preserve
Poisson brackets.

• The difference between the generating functions F1(q,Q) and F2(q, P ) lies in the indepen-
dent variables they depend on. As we have seen, F1(q,Q) cannot be used to get the identity
transformation and one checks that F2(q, P ) cannot be used to get the exchange transformation
Q = p, P = −q . But there are many CTs that may be generated by both a generating func-
tion F1(q,Q) and one of type F2(q, P ) (we will give non-trivial examples in the context of the
harmonic oscillator). In these cases, one wonders whether F1 and F2 are related by a Legendre
transform, as they produce the same CT. From the difference of the above two relations among
differentials,

pdq −Hdt = PdQ−Kdt+ dF1 and pdq −Hdt = −QdP −Kdt+ dF2 (184)

we get

−QdP + dF2 = PdQ+ dF1 ⇒ dF2(q, P ) = d [F1(q,Q) +QP ] where P = −∂F1

∂Q
. (185)

In other words, up to an additive constant, F2 = QP + F1 with P given as above, or in short,

F2(q, P, t) = extQ [QP + F1(q,Q, t)] . (186)

• We may obtain two more types of generators F3(p,Q, t) and F4(p, P, t) for finite canoni-
cal transformations by suitable choices of variational principles for the old and new Hamilton
equations.

S̃[q, p] & S[Q,P ] =⇒ F3(p,Q) while S̃[q, p] & S̃[Q,P ] =⇒ F4(p, P ) (187)

• One wonders if there are generating functions F5(q, p) and F6(Q,P ) for finite CTs.
The above variational approach doesn’t lead to such generators. In Hamilton’s action principle,
both q and p cannot be held fixed at the end points, so the total time derivative of F5 would
non-trivially modify the form of hamilton’s equations and not lead to a CT. Similarly, a generator
F6(Q,P ) is also disallowed.

• Example: We began our study of canonical transformations with coordinate changes Qi(q)
on configuration space (‘point’ transformations). The identity is included among such transfor-
mations. So let us look for a generator of type W (q, P ) that effects a change of coordinates on
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Q , for simplicity when n = 1. We must have Q = ∂W
∂P and p = ∂W

∂q . The first equation then
implies

W (q, P ) = PQ(q) + g(q) (188)

for some function g(q) of the old coordinates alone. Then p = PQ′(q) + g′(q) or P = (p −
g′(q))/Q′(q). This determines the new momentum. A CT that effects a change of coordinates
on Q is clearly not unique, g(q) being an arbitrary function. Different functions g(q) produce
different possible new momenta. In our earlier discussion, the new momenta were determined
using a Lagrangian. Specification of a Lagrangian (L(q, q̇) with a particular dependence on

velocities), which ‘induces’ a change in momenta P = ∂L̃
∂Q̇

where L̃(Q, Q̇) = L(q(Q), q̇(Q, Q̇)),

is like selecting a specific function g . Of course, the simplest possibility is to take g = 0, which
we will see below corresponds to a Lagrangian with the standard kinetic terms.

• Let us illustrate with the example of the ‘point’ transformation from cartesian to plane polar
coordinates on configuration space. The old coordinates and momenta are x, y, px, py and the

new coordinates and momenta are r =
√
x2 + y2, θ = arctan(y/x), pr, pθ with pr, pθ yet to be

determined. By the above arguments, the simplest generating function of the second type, that
should take cartesian to plane polar coordinates is one with g = 0:

W (x, y, pr, pθ) = Qi(q)Pi = r(x, y)pr + θ(x, y)pθ =
√
x2 + y2 pr + arctan

(y
x

)
pθ (189)

The new coordinates are given by partial derivatives of W and satisfy the defining relations as
expected:

r =
∂W

∂pr
=
√
x2 + y2 and θ =

∂W

∂pθ
= arctan

(y
x

)
. (190)

The old momenta are given by the following partial derivatives of W

px =
∂W

∂x
=
x

r
pr −

y

r2
pθ and py =

∂W

∂y
=
y

r
pr +

x

r2
pθ. (191)

We may invert these relations and express pr and pθ in terms of the old coordinates and
momenta

pr =
x

r
px +

y

r
py = px cos θ + py sin θ = p · r̂ and pθ = xpy − ypx = Lz. (192)

We see that pr and pθ are the familiar radial and angular momenta. So our generating function
reproduces the usual conjugate momenta that we derived using the standard Lagrangian L =
1
2m(ṙ2 + r2θ̇2)− V (r, θ). On the other hand, if we took

W (x, y, pr, pθ) = rpr + θpθ + g(x, y) for g 6= 0, (193)

then the resulting transformation would still be a CT, but the momenta px = x
r pr−

y
r2 pθ+

∂g
∂x and

py = ∂W
∂y = y

rpr + x
r2 pθ + ∂g

∂y , would not be the usual ones (arising from the above Lagrangian).

7.10 Hamilton Jacobi equation

• Canonical transformations from one canonical set of coordinates and momenta to a more
convenient set allow us to better understand the dynamics of a system. The more cyclic co-
ordinates there are, the more the number of conserved conjugate momenta. An extreme set
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of canonical variables are those in which the hamiltonian is independent of all coordinates as
well as momenta, i.e., if the hamiltonian is a constant. By a choice of zero of energy, this
constant may be taken as zero. Now if the hamiltonian in the new variables K = 0, then the
new coordinates and momenta are both constant in time, and are therefore determined by their
initial values: Qi(t) = Qi(0) = βi and Pi(t) = Pi(0) = αi . Time evolution is very simple in
such variables! All the complications are put in the canonical transformation from the original
variables to the new ones! However, it is not always possible to find canonical variables in which
K = 0. But if it is possible, then the generator of the canonical transformation to such variables
must satisfy an interesting first order PDE called the (time-dependent) Hamilton-Jacobi equa-
tion. Let us look for a generating function of the second type F2(q, P, t) for the transformation
from (q, p,H)→ (Q,P,K). For reasons to be clarified below, it is conventional in this context
to denote F2 by S(q, P, t) and call it Hamilton’s principal function. Pi are the new constant
momenta and p = ∂S

∂q . Then S must satisfy

K = H(q, p, t) +
∂S(q, P, t)

∂t
= 0 or H

(
qi,

∂S

∂qj
, t

)
+
∂S

∂t
= 0. (194)

This is the Hamilton-Jacobi equation (HJ), a first order (generally non-linear) PDE for the
unknown generating function S in n+ 1 variables q1, · · · , qn, t . For a particle in a 1D potential
V (q), it is a PDE for one unknown function S of two independent variables q, t :

∂S

∂t
+

1

2m

(
∂S

∂q

)2

+ V (q) = 0. (195)

One is interested in the so-called ‘complete integrals/solutions’ of HJ, which depend on n + 1
constants of integration. These solutions are of the form

S = S(q1, · · · qn, α1 · · ·αn, t). (196)

We haven’t indicated the dependence on the (n+ 1)th constant of integration αn+1 . αn+1 may
be taken as an additive constant in S , since only derivatives of S appear in the HJ eqn. We
will choose αn+1 = 0 since it will be seen not to enter the equations of transformation p = ∂S

∂q ,

Q = ∂S
∂P and K = H + ∂S

∂t . The origin of these constants of integration will be clarified when
we discuss the method of separation of variables to solve the HJ equation. In favorable cases
(such as the free particle), the HJ PDE can be reduced to a set of n decoupled first order ODEs,
whose solution introduces the required constants of integration.

• The virtue of a ‘complete’ solution of the HJ equation is that it provides a way of solving
for the time evolution of the original mechanical system, i.e., of expressing qi(t) and pj(t) in
terms of their initial values. First, we are free to take (i.e., define) the new constant momenta
to equal the constants of integration, i.e., Pj = αj . (We could also take the Pj to be some n
independent functions of the αj .)

• The equations of transformation in terms of the generator S read

pj =
∂S(q, α, t)

∂qj
and βi = Qi =

∂S(q, α, t)

∂αi
. (197)

The second equation may be used to solve for qi = qi(αj , β
k, t). This may be put in the first

equation to find pi = pi(αj , β
k, t). Now the solution of the mechanical problem in the sense
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mentioned above would be obtained if we express αj , β
k in terms of the initial values of the old

variables qi(0) and pi(0). To do this, let us consider these equations at t = 0. We get

pj(0) =
∂S(q, α, t)

∂qj
and βi =

∂S(q(t), α, t)

∂αi
evaluated at t = 0 . (198)

We may use the first equation to express αi in terms of qi(0) and pi(0). Then the second
equation gives us βi in terms of qj(0) and pk(0).

• Using the above results, we get

qi(t) = qi(qj(0), pk(0), t) = qi(α, β, t) and pi(t) = pi(q
j(0), pj(0), t) = pi(α, β, t) (199)

These give the solution to the mechanical problem since they express the old coordinates and
momenta in terms of their initial values.

• It is not always possible to find a complete solution of the HJ equation. Sometimes, one may
find a solution S depending on less than n+ 1 constants of integration. Even this can be used
to provide a partial understanding of the original mechanical problem.

• Time-independent HJ equation by separation of the time variable: As we will show
shortly, the HJ equation is the classical limit of the time-dependent Schrödinger equation (SE)
for the quantum mechanical wave function Ψ(q, t) = eiS(q,t)/~ in the ~→ 0 limit. Recall that for
a time-independent hamiltonian, we solve the SE by separating the time dependence from spatial
dependence via the product ansatz Ψ(q, t) = ψ(q)T (t). One finds T (t) = e−iEt/~ where the
separation constant E is the energy eigenvalue in the time-independent Schrodinger equation
Hψ = Eψ . This suggests that we may separate variables in the HJ equation as well. Since
the wave function is the exponential of S , the classical analogue of the product ansatz is an
additive ansatz S(q, t) = W (q) + Θ(t). Θ̇(t) = −E must be must be equal to a separation
constant E with dimensions of energy for this to satisfy the HJ equation. So if H = H(q, p)
is not explicitly dependent on time, so that the hamiltonian is a constant of motion, we may
separate the coordinate dependence of S from its time-dependence and seek a solution of the
HJ equation H(q, ∂S∂q ) + ∂S

∂t = 0 in the form

S(q, α, t) = W (q, α)− Et (200)

Inserting this in HJ, we find that it is satisfied provided W solves the time-independent HJ
equation for Hamilton’s characteristic function

E = H

(
q,
∂W

∂q

)
. (201)

For a particle in a 1d potential, this is the non-linear ODE 1
2mW

′(q)2 + V (q) = E .

• Why do we use the letter S to denote the generating function F2 in the above
discussion? An interpretation of S is got by computing its time derivative.

Ṡ =
∂S

∂q
q̇ +

∂S

∂t
= piq̇i +

∂S

∂t
= pq̇ −H ⇒ S(t)− S(t0) =

∫ t

t0

[pq̇ −H]dt′ (202)

So S is the action that appears in Hamilton’s variational principle, now regarded as a function
of the final time.
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7.11 Hamilton-Jacobi equation as semi-classical limit of Schrodinger equation

• We began with Newton’s formulation of a mechanical system in terms of a system of non-linear
ODEs for cartesian coordinates. We progressed to Lagrange’s equations which are still ODEs,
but whose form is invariant under changes of coordinates on configuration space. Then came
hamilton’s ODEs which are form-invariant under canonical transformations on phase space.
The Poisson bracket formulation of hamilton’s equations ḟ = {f,H} take the same form for
any observable and any system of coordinates on phase space (canonical or not). Now we have
reformulated time-evolution of a hamiltonian system in terms of a single non-linear first order
PDE for a generating function S(q, P, t). This brings the equations of particle mechanics closer in
spirit to the PDEs for waves: classical EM waves in the short wavelength Eikonal approximation
and quantum matter waves in the semi-classical approximation. Recall the Schrodinger equation
for time evolution of the wave function of a particle in a potential V :

i~
∂Ψ

∂t
= HΨ = − ~2

2m
∇2Ψ + VΨ (203)

As we know from the free particle stationary state wave function Ψ(x, t) = ei(px−Et)/~ , which
has an essential singularity at ~ = 0, the wave function itself does not have a good classical
limit. But the quantity S defined by Ψ = eiS/~ is better placed to have a finite ~ → 0 limit.
We have

∇Ψ =
i

~
Ψ∇S, ∇2Ψ = − 1

~2
Ψ∇S · ∇S +

i

~
Ψ∇2S, (204)

so the Schrodinger equation becomes, upon cancelling eiS/~ 6= 0,

−∂S
∂t

=
1

2m
|∇S|2 + V − i~

2m
∇2S (205)

No approximation has been made, though we assume that ψ is expressible as eiS/~ for some
S 11. In the limit ~→ 0 we ignore the last term and get the Hamilton-Jacobi evolution equation:

∂S

∂t
+
|∇S|2

2m
+ V = 0 or

∂S

∂t
+H(q,∇S) = 0. (206)

• Similarly, show that the time-independent HJ equation is the ~ → 0 limit of the time-
independent Schrödinger equation.

8 Rigid body mechanics

8.1 Lab and co-rotating frames

• A rigid body in mechanics is a system of particles such that the distances between the particles
is fixed. E.g. four mass points ma, a = 1, 2, 3, 4 arranged at the vertices of a regular tetrahedron
and pairwise connected by light rigid rods. A continuous distribution of mass is also possible,
as in a stone. In this case, the discrete index a is replaced with the continuous location index x
and the masses of individual particles is replaced by the mass dm(x) = ρ(x)dV in any elemental
volume dV around x where ρ(x) is the local mass density. Examples of rigid bodies include a

11S would have to diverge at points where Ψ vanishes.
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point mass, a pair of point masses connected by a massless rod, a spherical shell, a boomerang,
a top, a spaceship, a gyroscope, a tennis ball, a plate, rotational dynamics (ignoring vibrational
modes) of molecules in quantum mechanics, etc. Our approach is based on the treatment of
Landau and Lifshitz.

rho(x)

dV

Anisotropic rigid body with 8 particles

m1

m2

m3

m4

Anisotropic rigid body with continuous mass distribution

• For example, a top fixed at a point on the ground in the uniform gravitational field of the
earth executes a motion which involves rotation about its own axis, precession about a vertical
axis parallel to the gravitational field and a wobble of the axis of rotation, called nutation. The
three periodic motions have their own periods, which if incommensurate prevent the top from
returning to its position under time evolution.

Figure 3: Three periodic motions of a top.

• The motion of points in the rigid body may be described using the lab (‘inertial’ or ‘space’
or ‘fixed’) frame. We will use a system of cartesian co-ordinates X,Y, Z for the lab frame. The
radius vector of the point in the body labelled a , relative to the origin of the lab frame, is
called ra . The components of ra relative to the lab axes are ra = (Xa, Ya, Za). The lab frame
coordinates Xa(t), Ya(t), Za(t) (or coordinates in ‘space’) of a point in the body, in general,
change as the body moves. The centre of mass of the body is the point R = (X̄, Ȳ , Z̄) whose
coordinates are

X̄ =
1

M

∑
maXa, Ȳ =

1

M

∑
maYa, Z̄ =

1

M

∑
maZa, where M =

∑
a

ma. (207)

The sum on a is over all the mass points that make up the body whose total mass is M . The
center of mass (CM) is a distinguished point associated to a rigid body (however, it need not
lie inside the body!). So it is convenient to consider the location of a mass point labelled a ,
relative to the center of mass. The corresponding radius vector relative to the CM is called ra .
The components of ra relative to the lab axes, in general change with time. The radius vector
of the center of mass, relative to the center of mass is obviously the zero vector:

∑
amara = 0.
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• We may also use a moving system of cartesian coordinates r1 = x, r2 = y, r3 = z referred
to a so-called co-rotating frame whose axes are rigidly fixed in the body and participate in the
motion. The origin O , of the co-rotating frame is most conveniently chosen to lie at the centre of
mass of the body, so

∑
amaxa =

∑
amaya =

∑
amaza = 0. The co-moving frame components

(xa, ya, za) of the radius vector ra of a point in the body are independent of time.

• A point mass moving in 3d space has three degrees of freedom and configuration space R3 .

• If a rigid body is concentrated along a line (e.g. a pair of mass points or a thin wire/pen), the
number of degrees of freedom is five. Such a rigid body is called a rigid rotator. A rigid rotator
has three translational degrees of freedom, which may be regarded as specifying the location of
the center of mass. Once the location of the CM has been fixed, the orientation of the pen is
determined by the point on a unit sphere (centered at the CM), at which the line from the CM
to the nib intersects it. Thus, the configuration space of a rigid rotator is R3 × S2 . The unit
2-sphere is defined as S2 = {~x ∈ R3 such that ||~x|| = 1} .
• A general (i.e. non-collinear) rigid body has six degrees of freedom. We need three coordinates
to locate the position of the centre of mass, which we denote R = (X̄, Ȳ , Z̄). We are then free
to rotate the rigid body about its center of mass in any manner. The orientation of the moving
frame relative to the lab frame is determined by such a rotation of 3D space. A rotation is
determined by an axis and an angle of rotation. We need two angles to define an axis and one
angle to specify the amount of rotation. So rotations are a three parameter family. Thus, a
general rigid body has three translational and three rotational degrees of freedom. Moreover,
rotations may be composed and inverted; they form the group of special orthogonal matrices.
Thus, the configuration space of the rigid body is R3× SO(3).

8.2 Infinitesimal displacement and angular velocity of rigid body

• We begin with some kinematical aspects and in particular, the concept of angular velocity.
An infinitesimal displacement of a rigid body in a time dt may be expressed as a sum of an
infinitesimal translation of the center of mass to its final location (keeping the orientation of the
body fixed) and an infinitesimal rotation about the center of mass O that orients the moving
frame appropriately. Moreover, any infinitesimal rotation about O is a rotation about some axis
passing through O .

O

Omega

Y

X

Z
z

r

P

x

v

y

V

R

rho

Figure 4: Lab and co-rotating frames. ‘rho’ corresponds to r in the text.

• Let us denote by r the radius vector of a point P in the rigid body, relative to the origin of
the lab frame. Suppose the same point has the (fixed) radius vector r relative to the CM. Then
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delta phi delta r

theta

r sin theta

r

Figure 5: Infinitesimal displacement due to a rotation

r = R + r where R is the radius vector of the centre of mass relative to the origin of the lab
frame. We will regard each of these three vectors as given by their components with respect to
the lab axes. Now, a small displacement δr of P may be written as

δr = δR + ~δφ× r (208)

Here δR is the displacement of the center of mass. ~δφ × r is the infinitesimal change in the
radius vector r (relative to the lab frame) due to a counter-clockwise rotation about the axis
~δφ by an angle δφ = |δφ| . To see why, consult fig. 5. The change in r under an infinitesimal
rotation by angle δφ about the axis ~δφ is in magnitude

|δr| = |r| sin θ |δφ| (209)

δr is perpendicular to both r and ~δφ . So δr = ~δφ× r .

• Thus dividing by the time δt in which the infinitesimal motion took place,

δr
δt

=
δR

δt
+
~δφ

δt
× r (210)

Now we let δt→ 0. If we denote the velocity vector of P relative to the origin of the lab frame
by v = dr

dt , the translational velocity of the center of mass by V = dR
dt and the angular velocity

by Ω = d~φ
dt then we have

v = V + Ω× r or v = V + v where v = Ω× r. (211)

Ω points along the axis of rotation passing through the center of mass (direction of Ω is along
axis ~δφ of right-handed rotation). Ω may of course change with time both in direction and
magnitude.

• To summarize, for each mass point ma in the rigid body we use the following notation (not
quite that of L & L). R is the radius vector of the center of mass relative to origin of lab frame,
and ra the radius vector of the point a relative to the center of mass,

ra = R + ra, and differentiating va = V + va where V = Ṙ and va = ṙa = Ω× ra.
(212)

va = ṙa is the velocity relative to the center of mass. Multiplying by the mass ma we get

pa = maV + pa where pa = mava = maΩ× ra. (213)
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The vector sum of all the momenta in the lab frame coincides with the center of mass momentum

P =
∑
a

pa = MV + Ω×
∑
a

mara = MV. (214)

The second sum vanishes as the center of mass lies at the origin of the co-moving frame.

• The coordinates and momenta (ra,pa) of all the particles in the body together specify the
instantaneous state of the rigid body. To understand its dynamics, we examine its Lagrangian.

8.3 Kinetic energy and inertia tensor or matrix

• The Lagrangian of the rigid body is L = T − U where U is the external potential that the
body moves in. Let us express the kinetic energy of the rigid body in terms of the center of
mass velocity and angular velocity. The kinetic energy is just a sum of free particle KE of each
constituent mass point labelled a , whose velocity vector we have denoted va relative to the
origin of the lab frame. So

T =
∑ 1

2
mav2

a ≡
∑ 1

2
mv2 (215)

where the sum is over mass points. We will often suppress the index a that labels the points.
Note that this index appears on r,v but not on Ω or V , which are properties of the body as
a whole. Thus,

T =
∑ 1

2
m (V + Ω× r)2 =

∑ 1

2
mV2 +

∑
mV ·Ω× r +

∑ 1

2
m(Ω× r)2

=
1

2
MV2 + (V ×Ω) ·

∑
mr +

1

2

∑
m
[
Ω2r2 − (Ω · r)2

]
(216)

We simplified the second term using the cyclic symmetry of the formula for the volume of a
parallelepiped V · Ω × r = r ·V × Ω . But the second term vanishes since the center of mass
lies at the origin of the moving system:

∑
mr = 0. Ω, r are the magnitudes of Ω, r . Thus the

kinetic energy may be written as a sum of the translational kinetic energy of a body of mass M
located at the center of mass and the kinetic energy of rotation about the center of mass

T =
1

2
MV2 +

1

2
ΩiΩj

∑
m
(
r2δij − rirj

)
=

1

2
MV2 +

1

2
IijΩiΩj . (217)

The rotational kinetic energy involves a 3× 3 matrix called the inertia matrix/tensor (distinct
from the identity matrix!)

Iij =
∑
a

ma

(
r2
aδij − (ra)i(ra)j

)
=

∫∫∫
ρ(r)

(
r2δij − rirj

)
d3r. (218)

We have written the formula for a rigid body with continuous mass distribution as well. The
components of the inertia tensor are independent of time if (ra)i are the components with respect
to the co-moving frame. If instead, we use the components of ra with respect to the lab frame,
then Iij will be time-dependent in general, this is often less convenient. The matrix Iij is an
intrinsic property of the mass distribution of the rigid body, the chosen origin and axes of the
co-moving frame.
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• The inertia matrix is real and symmetric matrix Iij = Iji . It is a positive matrix in the sense
that the associated quadratic form (‘rotational kinetic energy’) is manifestly non-negative

Trot =
1

2
IijΩiΩj =

1

2
ΩtIΩ =

∑
a

1

2
ma(Ω× ra)

2 ≥ 0. (219)

We may write out the components of the inertia matrix,

I =
∑m(y2 + z2) −mxy −mxz

−myx m(z2 + x2) −myz
−mzx −mzy m(x2 + y2)

 (220)

it is evidently the sum of the inertia matrices of each mass point in the body. The diagonal
entries I11 =

∑
m(y2 +z2), I22, I33 are called the moments of inertia about the first, second and

third axes of the rotating frame. In general, given any axis n̂ , the moment of inertia about n̂ is
defined as In̂ =

∑
amaρ

2
a where ρa is the perpendicular distance of point a from the axis. The

parallel axis theorem relates the moment of inertia about an axis through the center of mass
to the moment of inertia about a parallel axis m̂ : Im̂ = Icm + Md2 , where d is the distance
between axes and M is the total mass of the body.

• Being a real symmetric matrix, the inertia matrix may be diagonalized by an orthogonal
transformation S that rotates the axes of the co-moving frame: S−1IS = D where D is the
diagonal matrix of eigenvalues. As the matrix is positive, the eigenvalues are non-negative, they
are called the principal moments of inertia, which we may order as 0 ≤ I1 ≤ I2 ≤ I3 . The
eigenvectors of the inertia matrix may be chosen orthonormal and are called the principal axes
of inertia. If the axes of the moving frame are chosen along the principal axes of inertia, then
the inertia matrix is diagonal12

D =

∑ama(y
′2
a + z′2a) 0 0

0
∑

ama(z
′2
a + x′2a) 0

0 0
∑

ama(x
′2
a + y′2a)

 =

I1 0 0
0 I2 0
0 0 I3

 . (221)

Here x′a, y
′
a, z
′
a are the components of the radius vector of a point in the body with respect to the

principal axis basis. Note that the off diagonal entries vanish due to cancellations
∑

amax
′
ay
′
a =

0 even though max
′
ay
′
a is, in general, non-zero for various particles in the body. In the principal

axis basis, the rotational kinetic energy is particularly simple

Trot =
1

2

(
I1Ω2

1 + I2Ω2
2 + I3Ω2

3

)
. (222)

If all three principal moments of inertia are unequal, we call it an anisotropic rigid body. If
one pair coincide, it is called a symmetrical top. For e.g. if I1 = I2 then the corresponding
two principal axes may be chosen to be any pair of mutually perpendicular unit vectors in the
corresponding x-y eigenplane. If all three eigenvalues coincide it is called a spherical top and
the principal axes of inertia can be chosen as any orthonormal frame.

• If the body is concentrated along a straight line, say the z -axis, then it has no rotational
inertia when spinning about the z -axis. Such a body is called a rigid rotator. Examples include

12The principal moments of inertia satisfy a triangle inequality Ii + Ij ≥ Ik where i, j, k are distinct indices
from 1, 2, 3.
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a very thin pencil/dumbell or wire. Argue that the configuration space of such a rigid body is
R3 × S2 . It has only two rotational degrees of freedom which may be parametrized by points
on a two-sphere which specify the direction in which the body is pointing. Note that the mass
distribution need not be uniform along the z -axis. Since x = y = 0 for all particles, the centre
of mass lies on the z -axis and we must have I3 = 0 and I1 = I2 =

∑
amaz

2
a . Note that two

of the triangle inequalities are saturated I1 + I3 = I2 and I2 + I3 = I1 . The principal axes of
inertia point along the z -axis and any pair of mutually orthogonal directions in the x-y plane.

• Consider a rigid body that is concentrated on a plane (say the x-y plane), like a flat plate
or sheet of cardboard. z = 0 for all points on the body so the centre of mass lies on the x-y
plane. It is clear from the explicit matrix representation of I that it is block diagonal and that
the z -axis is one of the principal axes. The other two lie in the x-y plane. Let us choose the
x and y axes to point along these principal axes of inertia. The principal moments of inertia
are I1 =

∑
my2 , I2 =

∑
mx2 and I3 =

∑
m(x2 + y2). Notice that the triangle inequality is

saturated I1 + I2 = I3 , this relation is called the perpendicular axis theorem.

8.4 Angular momentum of a rigid body

• The angular momentum of a system of particles is defined with respect to an origin. If we
use the origin of the lab frame, then the radius vector of point labelled a in the rigid body is
ra = R + ra where R is the location of the centre of mass. If pa is the lab-frame momentum
of the same particle, we must have pa = mava = maV + maΩ × ra . Then the ‘total’ angular
momentum about the origin of the lab frame is

Ltot =
∑
a

ra × pa =
∑
a

R× pa +
∑
a

ma~ra ×V +
∑
a

mara × (Ω× ra) (223)

Furthermore let P =
∑

apa be the total momentum (‘centre of mass momentum’) of the body,
then

P =
∑
a

pa =
∑
a

mava =
∑
a

maV + Ω×
∑
a

mara = MV (224)

by the definition of center of mass. Thus the total angular momentum is

Ltot = R×P +

(∑
a

mara

)
×V +

∑
a

mara × (Ω× ra) = Lcm + Lrot (225)

The middle term is zero by the definition of center of mass. We see that the total angular
momentum about the origin of lab frame splits into a centre of mass part Lcm = R×P and a
rotational part. We are primarily interested in the latter. Lrot is in fact the angular momentum
about the center of mass (origin of co-moving frame). It is the angular momentum resulting
from motion relative to the center of mass. Lrot =

∑
a ra × pa where, pa is the momentum

relative to the center of mass, i.e., pa = mava = ma(Ω× ra). So we define

L ≡ Lrot =
∑
a

ra × pa =
∑
a

ma ra × (Ω× ra) =
∑
a

ma(r
2
aΩ− (Ω · ra) ra)

⇒ Li =
∑

m
(
r2δij − rirj

)
Ωj = IijΩj . (226)

Thus the ‘rotational’ angular momentum with respect to the centre of mass is related to the
angular velocity via the inertia matrix. This is loosely analogous to how the translational
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momentum of a point particle is related to its velocity via the mass p = mv . Momentum
always points in the same direction as velocity. But in general, angular momentum points in the
same direction as angular velocity only for an isotropic rigid body, for which the inertia matrix
is a multiple of the identity. For a non-isotropic rigid body, the angular momentum points in
the same direction as angular velocity only if a principal axis of inertia can be taken to point
along the angular velocity vector.

• We note that Lrot defined above is the angular momentum as defined by an inertial observer
stationed at the center of mass. It is different from an angular momentum about the center of
mass defined by an observer who moves and rotates with the body. For such an observer, the
momenta of all particles in the body are zero, since nothing in the body moves relative to such
an observer. Such an angular momentum is identically zero and not a useful concept for us.

8.5 Equations of motion of a rigid body

• The eom of the rigid body made of N point masses can be written using Newton’s second
law

mar̈a = fa for a = 1, . . . , N. (227)

fa is the force acting on the ath particle, including both external forces and (internal) forces due
to other particles in the rigid body. These are 3N second order equations. However, a generic
rigid body only has 6 degrees of freedom, irrespective of how large N may be. So the above
equations are somewhat redundant. They do not make manifest the fact that the body is rigid
(this is encoded in a complicated way in the internal parts of the forces fa ). We seek a more
global formulation of the eom, without reference to individual mass points. The configuration of
the rigid body may be specified by giving the location R of the center of mass and a rotation ~φ
about the CM that brings the body to the desired orientation, relative to a reference orientation.

• The equations of motion for the rigid body may be formulated as equations for the centre
of mass momentum P and for the angular momentum about the centre of mass L . We will
obtain these equations in the lab frame or any frame inertially related to it, the equations have
the same form in all such frames by Galilean invariance. Note that the lab frame and the co-
rotating frame are not related by galilean transformations, the co-rotating frame is in general a
non-inertial frame. So the eom will take different forms in these two frames. We will transform
the eom to the co-rotating frame in the next section.

• Let us work in the fixed lab frame. If fa is the force on the ath particle, then ṗa = fa is

Newton’s equation. Adding these up for all the particles we get Ṗ = F where P =
∑

apa = MV

is the total momentum and F =
∑

fa is the total force acting on the body. Here we need only
include the external forces acting on the particles since the inter-particle forces balance out and
cancel. Ṗ = F is the equation of motion in the lab frame. By Galilean invariance, it also takes
the same form in any frame that is inertially related (via a translation/rotation/boost or some
combination of these) to the lab frame.
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• This equation of motion may also be obtained from the Lagrangian13

L =
1

2
MV2 +

1

2
IijΩiΩj − U(R, φ) where V = Ṙ. (228)

• The corresponding equations of motion for the coordinate R are seen to reproduce what we
got above

d

dt

∂L

∂Ṙ
=
∂L

∂R
⇒ MV̇ ≡ Ṗ = −∂U

∂R
= F = force. (229)

Here we used the fact that the change in potential energy under a translation of the center
of mass by δR is δU =

∑
a
∂U
∂ra · δR since all particles are translated by the same amount,

δra = δR . So δU = −
∑

a fa · δR = −F · δR .

• Next we compute the time derivative of the angular momentum about the centre of mass
L =

∑
a ra×pa where r is the radius vector of the ath particle and p its momentum relative to

the center of mass. We want the equation of motion for L in the lab frame, not the co-rotating
frame. But the equation of motion will take the same form in any frame that is related to the
lab frame by a Galilean transformation. So for convenience, let us work in an inertial frame that
at the instant considered is moving with velocity V with respect to the lab frame and has origin
at the center of mass. In this frame, the center of mass is instantaneously at rest and the mass
point a has radius vector ra , velocity va = ṙa = Ω× ra and momentum pa = mṙa . Moreover,
ṗa = fa is the force on this particle

So L̇ =
∑
a

(ṙa × pa + ra × ṗa) . (230)

The first term vanishes as ṙa ×mṙa = 0. In the second term, ra × ṗa = ra × fa = ka is the
torque on the ath particle about the centre of mass and so the second term is K =

∑
a ka which

is the total torque on the body about the centre of mass. Thus, the equation for evolution of the
angular momentum of the rigid body is L̇ = K . Here both the angular momentum and torque
are defined with respect to the centre of mass of the rigid body and this equation is written
in an inertial frame moving at velocity V relative to the lab frame. Moreover, L = I Ω , so
we could also say I Ω̇ = K . In the absence of any external torque about the centre of mass
(e.g. if there are no external forces), the angular momentum of the rigid body about its CM is
independent of time L̇ = 0. This equation of motion takes the same form in the lab frame, by
Galilean invariance.

• The equation for L̇ also follows from the above Lagrangian. We think of the components of
angular velocity Ω as the rate of change φ̇ of angular variables ~φ specifying the orientation
of the rigid body, for instance, via an axis and an angle to specify a rotation from a reference
orientation. We will be more explicit about these angular variables later on. Then the LHS of
Lagrange’s equations for the angular variables is

d

dt

∂L

∂~̇φ
=

d

dt

∂L

∂Ω
=

d

dt
(IΩ) = L̇. (231)

As for the RHS, let us show that ∂L
∂φ = K . Now ∂L

∂φ = −∂U
∂φ is (minus) the change in potential

energy due to an infinitesimal rotation δφ . The change in potential energy δU due to an

13The external potential energy U could depend both on the location R of the center of mass as well as the
orientation of the body, specified, say, by angular variables φ which could specify an axis and an angle that
determine a rotation that would bring the body to a reference orientation.
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infinitesimal rotation δφ (about an axis passing through the CM) is minus the work done by
the external forces. Under a rotation about the CM, the CM R does not move, so δra = δra ,
so the change in potential energy is

δU = −
∑
a

fa · δra = −
∑
a

fa ·(δφ×ra) = −δφ·
∑
a

ra×fa = −δφ·K ⇒ lim
δφ→0

δU

δφ
= −K. (232)

We used the cyclic symmetry of the scalar triple product. So the Euler-Lagrange equations
imply the law of evolution of angular momentum (relative to the CM) of the rigid body

d

dt

∂L

∂φ̇
=
∂L

∂φ
⇒ L̇ = −∂U

∂φ
= K = total torque about CM. (233)

8.6 Force-free motion of rigid bodies

• Now consider a rigid body in the absence of any external forces. If the centre of mass was
initially at rest, it will remain so. More generally, the center of mass will move along a straight
line since R̈ = 0. Let us choose our inertial frame to be such that its origin always lies at the
CM, i.e., the inertial frame moves at constant velocity V relative to the fixed lab frame. So
we have ensured that the CM is at rest in the inertial frame. Of course, the body could rotate
while the centre of mass remains at rest. Since there are no external forces, there are no external
torques either, about any point. So the angular momentum about any point must be conserved.
In particular, the angular momentum about the CM must be constant in time, provided it is
measured with respect to an inertial system. It is important to realize that the components of
the angular momentum vector, with respect to the co-moving frame, are in general not constant
in time, since the frame is rotating relative to the inertial frame. We will see examples of this.

• Let us illustrate some consequences of conservation of angular momentum and the formula
L = IΩ , for force-free motion of simple rigid bodies. For a spherical top the principal moments
of inertia are all equal. I is a multiple of the identity in any basis, We may write L = I1Ω ,
so the angular velocity is just a multiple of the angular momentum, both point in the same
direction and are both constant in time. In particular, force free motion of a spherical top
consists of uniform rotation about some axis that is fixed in the lab frame. The direction of this
axis and the rate of rotation |Ω| are determined by initial conditions. The conserved energy

E = 1
2I1(Ω2

1 + Ω2
2 + Ω2

3) = 1
2I1|Ω|2 = |L|2

2I1
is also determined by initial conditions.

8.6.1 Free motion of rigid rotator

• Next consider a rigid rotator (collinear rigid body). Suppose the third principal axis points
along the axis of the rotator. In this case the principal moments of inertia are I1 = I2 and
I3 = 0. Since all the masses lie along the axis of the rotator, in the formula for angular
momentum ~L =

∑
a ~ra×~pa , ~ra is along the axis of the rotator. So ~L must be orthogonal to the

axis of the rotator at all times. We could have reached this conclusion by a different argument
as well. From L = IΩ written in the principal axis basis, we see that the component of angular
momentum in the direction of the axis of the rotator must vanish (L3 = I3Ω3 = 0) irrespective
of what Ω3 is. So the angular momentum must always point in a direction orthogonal to the
axis of the rotator. Since L is a constant vector, the axis of the rotator must always lie in the
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plane orthogonal to ~L . In other words, the rotator must rotate in a fixed plane with respect
to the lab frame. Let us for simplicity call this the X -Y plane (in the lab system) so that L
points along Z .

• So for an infinitesimal rotation, δ~φ ∝ Ẑ . It follows that the angular velocity Ω = limδt→0
δ~φ
δt

also points along Ẑ . So both L and Ω point along Ẑ .

• If the z axis is chosen along the axis of the rod, x = y = 0 for all mass points and so the
inertia tensor becomes diagonal I = diag(I1, I2, 0) irrespective of how we choose the x, y axes
in the plane orthogonal to z . It follow that L1 = I1Ω1 , L2 = I1Ω2 and L3 = 0 where 1, 2, 3
refer to components in principal axis frame. It follows that L = I1Ω so Ω is a constant vector
in space, just like L is. Moreover, the rate at which the rod rotates (axis ‘precesses’ about
L) is independent of time and equal to |Ω| = L/I1 where L is the magnitude of the angular
momentum vector. So the most general free motion of a rigid rotator is uniform rotation in a
plane fixed with respect to the lab frame and orthogonal to the direction of angular momentum.

• We may also specify a convenient body fixed frame which is also a principal axes frame.
z was taken along the axis of the rotator (I3 = 0). We may take x along the fixed Z axis
(direction of L), which is a direction that is fixed both in the body and in space. Then y must
lie in the XY plane in such a way that xyz is a right-handed system. With these choices,
we may write the angular momentum vector in terms of its components in both the lab and
principal-axes-body-fixed frames.

L = LẐ = Lx̂ and Ω =
L

I1
Ẑ =

L

I1
x̂. (234)

8.6.2 Free motion of symmetrical top

• Force-free motion of a symmetric top is a combination of spinning on its axis and precession
of the axis about a fixed direction in space, and at a fixed angle (there is no nutation in the
absence of gravity).

• Conservation of angular momentum and the relation between angular momentum and angular
velocity allow us to understand some aspects of the free motion of a symmetrical top as well.
Following Landau and Lifshitz (see fig. 6), consider a symmetrical top with 0 < I1 = I2 6= I3 6= 0.
The angular momentum in space is of course a constant vector L . Let us choose the Z axis of
the lab frame along L . The axis of the top is along the third principal axis x̂3 = ẑ . The first
two principal axes of inertia x̂1, x̂2 may be freely chosen (orthogonal to the z -axis and forming
a right-handed system) since the corresponding eigenvalues are equal I1 = I2 .

• However, not every such choice of principal axes are fixed in the body. A principal axes frame
is not necessarily a body fixed frame or vice versa. However, in this section, we do not need to
choose a co-moving frame. In fact, it is not possible, in general, to specify a co-moving frame
relative to the lab frame, without prior knowledge of how the body moves! So we will simply
choose a convenient set of principal axes with respect to which the inertia tensor is diagonal.
This principal axis frame will not qualify as a co-moving frame.

• Let us choose the second principal axis of inertia x̂2 to be always perpendicular to the plane
spanned by L and the axis of the top14. Then the x̂1 principal axis must lie in the same

14Here we exclude the possibility that the axis of the top, points along L . This case (θ = 0) will be treated
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Figure 6: Fig 46 of symmetric top from Landau & Lifshitz. M = L is vertical and axis is along
x̂3 = ẑ . The x1 principal axis has been marked, and chosen to lie in the plane of the axis of the
top and the angular momentum vector. It is not fixed in the body, if the body spins on its axis.

plane as L and x̂3 , in such a way that the x1, x2, x3 axes form a right handed orthonormal
system. Since the x2 axis is always orthogonal to L , it follows that the component of angular
momentum along the x2 axis, L2 = 0. This implies Ω2 = L2/I2 = 0 as I2 6= 0. So Ω always
lies in the plane spanned by L and the axis of the top. It follows that the velocity of any point
on the axis of the top, v = Ω× r always points perpendicular to that plane. So the axis of the
top precesses about the direction of angular momentum in space, sweeping out a cone. Let us
denote the angle between the axis of the top and L by the symbol θ . Let us argue that θ is
time independent so that the cone has a fixed opening angle. v for a point on the axis of the
top would have to have a component in the plane containing L and the axis of the top for the
angle θ to change. However, as noted above, v (for points on the axis of the top) always points
in a direction perpendicular to this plane. So θ must be fixed by the initial conditions. We will
see below that the rate of precession is also constant in time. We will also show that the length
of Ω is constant in time. In addition to precessing about the Z axis, the top also spins about
its own axis. We wish to find the angular speeds of precession Ωpr and spin Ωspin . Let us find
expressions for these two angular velocities in terms of the angle θ and the constant magnitude
of angular momentum |L| = L and the principal moments of inertia. It helps to expand L and
Ω in the principal axis basis. Ω = Ω1x̂1 + Ω3x̂3 and L = L1x̂1 + L3x̂3 where L1 = L sin θ
and L3 = L cos θ where θ is the angle between L and ẑ . By constancy of the magnitude L
and θ , the components L1, L3 of L in the principal axis frame are independent of time, L is a
constant vector both in the principal axis frame and in space. Moreover, Ω1 = L sin θ/I1 and
Ω3 = L cos θ/I3 are also constant in time. So Ω is a constant vector in the principal axis frame.
But Ω is not a constant vector in space, the plane in which it lies goes round and round the Z
axis as seen in the figure.

• The rate at which the top spins on its axis may be obtained by decomposing Ω into two

separately.
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parts Ω = Ω3ẑ + Ω1x̂ , the second term does not cause any spinning motion, it simply moves
the axis of the top as a whole. So Ωspin = Ω3 = Ω · x̂3 = L3

I3
= L cos θ

I3
. We argued above that θ

is independent of time, so the top spins at a constant rate on its axis. Moreover, a symmetric
top must spin on its axis, as long as the axis is inclined at anything other than right angles to
the direction of L . θ is fixed by initial conditions.

• On the other hand, to find the precession rate of the axis of the top about the Ẑ axis, we will
decompose Ω as a sum of two vectors, one of which does not cause any precession and thereby
identify the rate of precession. We write Ω as a (non-orthogonal in general!) linear combination
of ẑ and Ẑ , ~Ω = Ω(3)x̂3 + ΩprẐ . Here we assume θ 6= 0, since otherwise Ẑ, ẑ are not linearly
independent. The first of these (which is not equal to Ω3x̂3 in general) does not produce any
displacement of the axis of the top. The second component gives the precession rate. To find the
precession rate Ωpr we simply take the dot product with x̂1 and use the fact that x̂1 · x̂3 = 0:

Ω1 = ~Ω · x̂1 = ΩprẐ · x̂1 = Ωpr sin θ ⇒ Ωpr =
Ω1

sin θ
=

L1

I1 sin θ
=
L

I1
. (235)

So we see that the precession rate is constant and non-zero if L is not the zero vector (and
θ 6= 0). The axis of the top rotates uniformly about L in space. Since Ω lies in the same
plane as L and the axis of the top, it follows that Ω also precesses about L at the same rate
Ωpr = L/I1 . Interestingly, the rate of precession is independent of opening angle θ .

• So far we excluded the case θ = 0. Suppose the axis of the top (the 3rd principal axis ẑ )
always points along the fixed direction of angular momentum in space L = LẐ . Then L = Lẑ .
So the components of L in any principal axis basis are L1 = L2 = 0, L3 = L . It follows that
Ω1 = L1/I1 = 0 and Ω2 = L2/I2 = 0, so Ω = Ω3ẑ = (L/I3)Ẑ . So like L , Ω too is a fixed vector
in space. Its magnitude Ω = L/I3 is the rate Ωspin at which the top spins on its axis. Since the
axis always points in the same direction, it does not precess, Ωpr = 0. We may obtain the case
θ = 0 as a limit of the previous analysis. For θ > 0 we found Ωspin = L cos θ/I3 which reduces
to L/I3 in the limit θ → 0. To find the limiting value of the precession rate Ωpr = L1

I1 sin θ , we
must bear in mind that as θ → 0, L1 → 0 as well. The physical process of taking the limit
must be such that L1 vanishes faster than sin θ , so that Ωpr → 0 as θ → 0.

8.7 Euler angles

• The purely geometric/pictorial approach used above has its limitations if we wish to study
the motion of an anisotropic top or one that is subject to external forces. It helps to have
a coordinate system on configuration space. This will allow us to write down the differential
equations of motion and look for solutions.

• Euler angles are a way of parametrizing the rotational degrees of freedom of a rigid body.
They give us a way of specifying the orientation of the co-rotating frame x = x1, y = x2, z = x3

with respect to the inertial frame X,Y, Z , both of which are right-handed systems. Since we are
interested in the relative orientation, we may, without loss of generality, assume that the two
frames have a common origin (say the center of mass). At any instant, the co-rotating frame
is related to the fixed frame by a rotation. So Euler angles parametrize points on the rotation
group SO(3). Now, the XY and xy planes intersect along a line ON which is called the line
of nodes. This line is of course orthogonal to both the Ẑ and ẑ axes, and the direction of ON
is chosen along Ẑ × ẑ . Now the orientation of the xyz axes relative to the fixed XY Z axes

59



is specified as follows. θ is the angle between the Z and z axes. The line of nodes ON on
the XY plane is fixed by saying that it makes an angle φ with the X axis. This fixes the xy
plane as it must be perpendicular to z and contain the line of nodes. Finally, the x axis is fixed
by saying it makes an angle ψ with the line of nodes. Note that there are other conventions
for specifying the Euler angles. The Euler angles θ, φ, ψ are generalised coordinates that fix
the angular orientation of a rigid body. The corresponding generalised velocities are their time
derivatives θ̇, φ̇, ψ̇ .

Figure 7: Euler angles and their time derivatives, from Landau and Lifshitz, Mechanics (fig.
47).

• The body fixed frame x̂, ŷ, ẑ may be obtained from the lab frame X̂, Ŷ , Ẑ by a sequence of
three rotations by the Euler angles about suitably chosen axes. Suppose the body-fixed frame
initially coincides with the lab frame (and has the same origin). Then we first rotate the body
frame by an angle φ counter clockwise about the Z axis. As a result, the rotated x̂ will now
point along the intended line of nodes while ẑ continues to coincide with Ẑ . Next we rotate the
body frame by an angle θ counter clockwise about the new x̂ axis (line of nodes). As a result of
this, the new ẑ = x̂3 axis has reached its desired orientation. Finally, we rotate the body frame
by an angle ψ counter-clockwise about the new ẑ axis. As a result, x̂ moves off the XY plane
and makes an angle ψ with the line of nodes, and reaches its desired orientation.

• Now consider an infinitesimal rotation of the body (and co-moving frame) that is made up of
small increments δθ, δφ, δψ in a small time δt . δ~θ denotes an infinitesimal rotation by angle δθ
about a certain axis. From the figure, we see that a small change in θ holding φ, ψ fixed is a
rotation about the line of nodes. So we say that δ~θ points along the line of nodes ON . Letting

δt→ 0, ~̇θ = θ̇ ÔN. Similarly, ~̇φ points along Ẑ so ~̇φ = φ̇Ẑ and ~̇ψ = ψ̇ẑ . We add up the effects

of these three small rotations per unit time to get the angular velocity vector ~Ω = ~̇θ + ~̇φ + ~̇ψ .
Its components with respect to the co-rotating frame xyz are denoted Ω1,Ω2,Ω3 . We wish to
express the components Ωi of angular velocity in terms of the generalised velocities θ̇, φ̇, ψ̇ .

• Let us denote by θ̇1, θ̇2, θ̇3 the components of the vector
~̇
θ in the three directions of the co-

rotating xyz frame and similarly for φ̇i and ψ̇i ; i.e., θ1 = ~̇θ · x̂ etc. Then by some trigonometry
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we determine the components.

θ̇1 = θ̇ cosψ, θ̇2 = −θ̇ sinψ, and θ̇3 = 0;
ψ̇1 = ψ̇2 = 0, and ψ̇3 = ψ̇;
φ̇1 = φ̇ sin θ sinψ, φ̇2 = φ̇ sin θ cosψ, φ̇3 = φ̇ cos θ (236)

In the last equation, we used the fact that Ẑ is ⊥ to the line of nodes. So the projection of
~̇
φ ∝ Ẑ

onto the xy plane must also be perpendicular to the line of nodes. It follows that this projection

makes an angle ψ with the y axis. Combing these, we get Ω1 = ~Ω·x̂ = (
~̇
θ+

~̇
φ+

~̇
ψ)·x̂ = θ̇1+ψ̇1+φ̇1

etc:

Ω1 = θ̇ cosψ + φ̇ sin θ sinψ, Ω2 = −θ̇ sinψ + φ̇ sin θ cosψ, Ω3 = ψ̇ + φ̇ cos θ. (237)

Now, if x, y, z are taken to point along the principal axes of inertia, the formula for rotational
kinetic energy simplifies to T = 1

2

∑
j IjΩ

2
j , where Ij are the principal moments of inertia. We

may substitute for Ω1,2,3 from above to express the kinetic energy in terms of the Euler angles
and their time derivatives:

T =
I1
2

(
θ̇2 cos2 ψ + φ̇2 sin2 θ sin2 ψ + 2θ̇φ̇ sin θ sinψ cosψ

)
+

I2
2

(
φ̇2 sin2 θ cos2 ψ + θ̇2 sin2 ψ − 2θ̇φ̇ sin θ cosψ sinψ

)
+
I3
2

(
ψ̇2 + φ̇2 cos2 θ + 2ψ̇φ̇ cos θ

)
.(238)

• For a symmetric top, with I1 = I2 6= I3 this simplifies

Tsymm top =
I1

2

(
θ̇2 + φ̇2 sin2 θ

)
+
I3

2

(
ψ̇ + φ̇ cos θ

)2

=
I1

2

(
θ̇2 + φ̇2 sin2 θ

)
+
I3

2

(
ψ̇2 + φ̇2 cos2 θ + 2ψ̇φ̇ cos θ

)
. (239)

For a spherical top (I1 = I2 = I3), it further simplifies

Tsph top =
1

2
I1(θ̇2 + φ̇2 + ψ̇2 + 2ψ̇φ̇ cos θ). (240)

• We could also obtain this formula by a judicious choice principal axes. Let us choose the z
axis along the third principal axis of inertia corresponding to I3 . For a symmetrical top I1 = I2 .
Now we use the freedom of choosing the first two principal axes as any pair of orthogonal vectors
perpendicular to z . Let us choose (at the instant considered), the first principal axis x1 = x to
point along the line of nodes ON . Then ψ = 0 at the instant considered (this does not mean
ψ̇ is zero!). x2 is determined by the need for x1, x2, x3 to be a right-handed system. So

Ω1 = θ̇, Ω2 = φ̇ sin θ, Ω3 = ψ̇ + φ̇ cos θ. (241)

Squaring and adding 1
2I1Ω2

1+ 1
2I2Ω2

2+ 1
2I3Ω2

3 we recover the above expression Trot for a symmetric
top. Let us now use these formulae in terms of Euler angles to find the rates of precession and
spin of a freely rotating symmetrical top. Suppose the constant angular momentum vector points
along the Z -axis of the lab frame. Let us choose the z axis of the co-rotating frame to point
along the axis of the top. Then the rate at which the top spins on its axis is Ω3 . And the rate
at which the axis of the top ( ẑ ) precesses about the angular momentum vector is equal to the
rate at which the line of nodes goes round the Ẑ axis, namely φ̇ . We wish to express these rates
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in terms of L and θ . To introduce L we first note that the components of angular momentum
along the co-rotating axes are

L1 = I1Ω1 = I1θ̇, L2 = I2Ω2 = I2φ̇ sin θ and L3 = I3Ω3 = I3

(
ψ̇ + φ̇ cos θ

)
(242)

On the other hand, since L points along Ẑ , its components along the principal axes must be

L1 = L · x̂ = 0, L2 = L · ŷ = L sin θ and L3 = L · ẑ = L cos θ. (243)

L1 vanishes since x has been chosen along the line of nodes, which is perpendicular to the Z axis.
Comparing the two formulae, we express the relations between angular velocities and angular
momenta as relations between the Euler angles and their time-derivatives, and the magnitude
of angular momentum

θ̇ = 0, I2φ̇ = L and I3

(
ψ̇ + φ̇ cos θ

)
= L cos θ or ψ̇ = L cos θ

(
1

I3
− 1

I1

)
.

(244)
These relations are enough to give us an expression for the rate at which the top spins on its
axis

rate of spin = Ω · ẑ = Ω3 =
L3

I3
=
L

I3
cos θ. (245)

Note that ψ̇ is not the rate at which the top spins on its axis. We will identify the physical
meaning of ψ̇ in the next section. Meanwhile, we find the rate of precession, which turns out
to be a constant:

precession rate = Ωpr = φ̇ =
L2

I2 sin θ
=
L sin θ

I2 sin θ
=
L

I1
. (246)

These formulae agree with what we obtained by other means in the last section. For instance,
0 = L1 = I1θ̇ so θ̇ = 0. So the axis of the symmetric top remains at a constant angle relative
to ~L .

8.8 Euler equations for a rigid body in body-fixed frame

• As we have seen above, the eom of a rigid body may be formulated as equations for the centre
of mass momentum P = MV and for the angular momentum L = I Ω about the centre of
mass.

dP

dt
= F and

dL

dt
= K (247)

where F =
∑

a fa and K =
∑

a ra×fa are the external force and external torque about the centre
of mass. Here, the rates of change of both P and L are measured with respect to an inertial
observer (e.g. lab frame). Now we wish to write these equations for the time evolution of P and
L in the (non-inertial) co-rotating frame. The rotation of the frame imparts a time dependence
even to a vector that may be fixed in the lab frame, so we should expect the equations to look
a bit different. In particular, the angular momentum, which is fixed in space is in general not a
constant vector with respect to the co-moving frame.

• As we have seen in the case of the force free motion of a symmetrical top, even if the angular
momentum is constant in the lab frame, the angular velocity vector (in space) need not be
constant in time, indeed the top could precess about the constant angular momentum vector.
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• Let A be a vector such as angular momentum or linear momentum of the rigid body or of
a mass point. We wish to relate its time dependence with respect to the lab frame to that in
a frame rotating with instantaneous angular velocity Ω . If the vector is fixed in the rotating
frame (Ȧrot = 0) then its time dependence in the lab frame arises purely from the rotation and
is given by Ȧlab = Ω×A . The reason is the same as the one we gave in deriving the second term
of the equation v = V+Ω×r at the beginning of our study of rigid bodies. More generally, the
vector A may be changing with respect to the rotating frame as well. Combining these two,(

dA

dt

)
lab

=

(
dA

dt

)
rot

+ Ω×A (248)

Thus in the body-fixed frame we have a system of six equations:

Ṗ + Ω×P = F and L̇ + Ω× L = K where L = IΩ. (249)

The dot denotes time derivative with respect to the co-rotating frame. The equations for evolu-
tion of angular momentum components in the body-fixed frame are (the last two equations are
got by cyclic permutation of indices)

L̇1 +(Ω2L3−Ω3L2) = K1, L̇2 +(Ω3L1−Ω1L3) = K2, L̇3 +(Ω1L2−Ω2L1) = K3. (250)

• Here the components Li and Ωj are all unknown, but they are related via the inertia tensor.
The relation between angular momentum and angular velocity is simplest in a principal axis
frame, where the inertia matrix is diagonal. To exploit this simplicity we choose the axes of
the co-rotating frame to point along the principal axes of inertia so that Li = IiΩi for each
i = 1, 2, 3. The resulting equations were derived by Euler and bear his name. Assuming none
of the principal moments of inertia vanish and defining aij = I−1

i − I
−1
j ,

L̇1 +

(
1

I2
− 1

I3

)
L2L3 = K1, L̇2 +

(
1

I3
− 1

I1

)
L3L1 = K2 and L̇3 +

(
1

I1
− 1

I2

)
L1L2 = K3

or L̇1 + a23L2L3 = K1, L̇2 + a31L3L1 = K2, and L̇3 + a12L1L2 = K3. (251)

It is also of interest to find the time evolution of the components of angular velocity with
respect to the body fixed principal axes. Rather than try to extend the above formula to the
case A = Ω , we simply write Li = IiΩi in the Euler equations and obtain

Ω̇1 +

(
I3 − I2

I1

)
Ω2Ω3 = K1, Ω̇2 +

(
I1 − I3

I2

)
Ω3Ω1 = K2 and Ω̇3 +

(
I2 − I1

I3

)
Ω1Ω2 = K3.

(252)
• The Euler equations could be written as second order ODEs for the Euler angles by substituting
for Ωi in terms of θ, φ, ψ using our formulae from the previous section. But we could also
regard them as first order equations specifying the evolution of the components of the angular
momentum vector. Once the time-evolution of Li or Ωi have been found, we would then find
the time dependence of the Euler angles by solving the 1st order equations for the Euler angles
using Ωi as input. Knowledge of Euler angles as a function of time would give us the orientation
of the rigid body relative to the lab frame at all times.

• Note that the torque on the RHS of the Euler equations, K =
∑

a ra × fa depends on the
instantaneous location and orientation of the body (which depends for instance on R which must
be determined from Ṙ = P by solving the momentum equations Ṗ + Ω × P = F . Thus the
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Euler equations in general are a complicated system that couple the rotational and translational
motion. However, they simplify in the absence of external forces, in which case the equations for
L decouple from those for P . So for force free motion, the three Euler equations for L1, L2, L3

are a self-contained system of quadratically non-linear ordinary differential equations for the
rotational dynamics in the co-rotating principal axis frame.

8.8.1 Euler equations for force-free motion of symmetric top

• Let us consider the Euler equations in the case of the free motion of a symmetric top, for
which 0 < I1 = I2 . So the axis of the top is the third principal axis, i.e., the z-axis of the
co-moving frame. Euler’s equations become

L̇1 + aL2L3 = 0, L̇2 − aL3L1 = 0 and L̇3 = 0 where a =
1

I2
− 1

I3
=

1

I1
− 1

I3
. (253)

So L3 is a constant while L1 , L2 obey the coupled equations

L̇1 + ωL2 = 0 and L̇2 − ωL1 = 0 where ω = aL3 = L3

(
1

I1
− 1

I3

)
. (254)

The general solutions depend on a multiplicative constant C and an additive phase δ

L1 = C cos (ωt+ δ) and L2 = C sin (ωt+ δ) (255)

The motion of the angular momentum vector with respect to a frame fixed in the top is periodic
in time. The component of angular momentum along the axis of the symmetric top is fixed
wile the component orthogonal to it rotates at an angular speed ω . Since L1 = I1Ω1, L2 =
I1Ω2, L3 = I3Ω3 , the same holds for the angular velocity vector, it rotates about the axis of the
top at the constant rate ω . In fact

Ω3 =
L3

I3
= constant, while Ω1 =

C

I1
cos (ωt+ δ) and Ω2 =

C

I1
sin (ωt+ δ) (256)

In particular, Ω3 is time-independent as is L3 . Seen from the body-fixed frame, the angular
velocity vector ~Ω precesses about the axis of the top at the angular rate ω , sweeping out a
cone of opening angle arctan(C/I1Ω3). Similarly, the angular momentum vector ~L precesses
about the axis of the top at the angular frequency ω and sweeps out a cone of opening angle
arctan(C/L3).

• Earlier we found that L3 = L cos θ or Ω3 = L
I3

cos θ , where the Euler angle θ is the angle
between the (constant) angular momentum vector in space and the instantaneous direction of
the axis of the top. So we deduce that θ = arctan(C/L3) is independent of time. The axis of
the top precesses at a constant angle around the fixed direction of angular momentum in the
lab frame. If the angular velocity vector pointed along the axis of the top (i.e., if C = 0), then
we would say that the top simply spun on its axis. For C 6= 0, the above solution describes the
force-free motion of a top that is spinning on its own axis and precessing about an axis fixed in
space.

• Furthermore, the square of the length of the angular velocity vector is constant in time. To
see this, we compute it in the co-moving frame

Ω2 = Ω2
1 + Ω2

2 + Ω2
3 =

C2

I2
1

+
C2

I2
2

+
L2

3

I2
3

= constant. (257)
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The magnitude of Ω is of course the same in the co-rotating and lab frames, since rotations do
not alter lengths of vectors.

• Let us interpret the angular frequency ω . From the above solution, L3 is constant while
L1 = C cos (ωt+ ϕ) and L2 = C sin (ωt+ ϕ). So ω is the rate at which the L vector precesses
about the z axis of the co-moving frame. Above we found

ω = L3

(
1

I1
− 1

I3

)
= L cos θ

(
1

I1
− 1

I3

)
= −ψ̇. (258)

The last equality follows from what we found in the section on Euler angles. So −ψ̇ is the rate
at which the L vector precesses around the z axis of the co-rotating frame, which is also evident
from fig. 7.

• The limiting case of a rigid rotator may be obtained by letting I3 → 0 holding I1 fixed.
In other words, we first let I2 → I1 and then let I3 → 0 so that the symmetric top becomes
infinitesimally thin. The only way for ω to remain finite is for θ → π

2 in such a way that
cos θ
I3

approaches a finite limit. Thus we find that the axis of a rigid rotator must always be

perpendicular to the angular momentum in space. Since the latter is a fixed vector L ∝ Ẑ ∝ Ω ,
the axis of the rotator sweeps out a disc in the XY plane. What is more, the limiting value
of cos θ/I3 must be zero. This is because cos θ

I3
= Ω3

L , and Ω3 = 0 since x3 is along the axis of
the rotator, which is always in a plane orthogonal to Ω . It follows that in this limit, ω → 0 so
that Ω1,Ω2 are both constants. We may choose x̂ along Ẑ and ŷ in the plane swept out by the
axis of the rotator which points along ẑ . This corresponds to the choice of phase δ = 0. Then
Ω1 = C/I1 = Ω, C = L and Ω2 = Ω3 = 0.

8.9 Ellipsoid of inertia and qualitative description of free motion of rigid body

• The rotational kinetic energy T = 1
2IijΩiΩj takes a simple form in the principal axis basis

T =
L2

1

2I1
+
L2

2

2I2
+
L2

3

2I3
. (259)

• For torque free motion, we use Euler’s equations to show that the rotational kinetic energy
and square of angular momentum L2 = L2

1 + L2
2 + L2

3 are constant in time.

Ḣ =
L1L̇1

I1
+
L2L̇2

I2
+
L3L̇3

I3
= −L1L2L3

(
a23

I1
+
a31

I2
+
a12

I3

)
= 0. (260)

Similarly, we show

1

2

dL2

dt
= L1L̇1 + L2L̇2 + L3L̇3 = −L1(a23L2L3)− L2(a31L3L1)− L3(a12L1L2) = −L1L2L3(a23 + a31 + a12) = 0.

• Thus we have two conserved quantities. We may use them to visualise the trajectories in the
phase space of angular momenta. The phase space is R3 whose coordinates are L1, L2, L3 . The
conservation of total angular momentum implies that the trajectory must lie on the angular
momentum sphere L2

1 + L2
2 + L2

3 = L2 . The radius of the sphere is determined by the initial
magnitude of the angular momentum vector. In addition, conservation of energy implies that

the trajectory must lie on an ellipsoid of constant energy H =
∑

i
L2
i

2Ii
= E . The three semi-axes
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Figure 8: Trajectories of Euler equations on an energy level surface (from Landau & Lifshitz)

of this ellipsoid of inertia are
√

2EIi for i = 1, 2, 3. E is of course determined by the initial
conditions. Without loss of generality let us assume that I1 ≤ I2 ≤ I3 so that I−1

1 ≥ I−1
2 ≥ I−1

3 .
Then we see that the energy satisfies the following inequalities

L2

2I3
≤ E ≤ L2

2I1
. (261)

As a consequence √
2EI1 ≤ L ≤

√
2EI3. (262)

These inequalities imply that the energy ellipsoid and angular momentum sphere always have
non-empty intersection. In other words, the radius of the angular momentum sphere lies between
the smallest and largest semi-axes of the ellipsoid of inertia. The two quadratic surfaces generi-
cally intersect along a (union of) closed curves or points. Each such intersection set is a union
of possible trajectories of the angular momentum vector, for given total angular momentum and
energy.

• Let us get a qualitative picture of the types of curves traced out by the tip of the angular
momentum vector. There are six stationary points corresponding to rotation about the principal
axes of inertia: L1,2,3 = ±

√
2EI1,2,3 with others vanishing and with energy E = L2

2I1,2,3
. Check

that these are solutions of the Euler equations.

• More generally, suppose we keep the energy E fixed and imagine varying the magnitude
of total angular momentum L . When L2 = 2EI1 , there are two points of intersection, at
L1 = ±

√
2EI1, L2 = L3 = 0. So the angular momentum vector is static in the co-moving frame.

It always points along (or opposite to) the principal axis (x-axis) corresponding to the smallest

principal moment of inertia I1 . It follows that Ω1 =
√

2E
I1
,Ω2 = Ω3 = 0 so the angular velocity

is constant and always along the x principal axis of the body-fixed frame. The locus of the
angular velocity vector is called a polhode curve. Here the polhodes are a pair of points. We will
see now that this motion is stable in the sense that a small change in energy/angular momentum
results in a trajectory that always remains close to this one.

• As the angular momentum is increased slightly, the angular momentum sphere intersects the
inertia ellipsoid in a pair of small closed curves encircling the x axis. So the static solutions
of the previous paragraph (rotation of the body about the ±x-axis) are stable. The present
solutions correspond to a time-dependent L in the body fixed frame, whose terminus precesses
around the ±x-principal axis. Thus, the L vector relative to the body is periodic in time,
it sweeps out a conical surface. The angular momentum vector relative to space is of course
constant.
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• As L2 → 2EI2 , the curves of intersection become larger and at L2 = 2EI2 , are a pair of
large ellipses that intersect at the points where the inertia ellipsoid meets the y axis. L2 =
±
√

2EI2, L1 = L3 = 0 are static solutions corresponding to rotation about the ±y -principal
axis corresponding to the middle principal moment of inertia. However, rotation about the
middle principal axis is unstable, since a small change in E or L2 results in a trajectory that
isn’t always close to L2 = ±

√
2EI2 . The complement of these two static solutions in the

pair of intersecting ellipses results in 4 separatrices. They separate the regions of phase space
corresponding (broadly) to oscillations about rotation about the largest and smallest principal
axes.

• As L2 goes from 2EI2 to 2EI3 , the curves of intersection shrink to a pair of curves around
the z -axis and eventually end at the pair of static solutions L1 = L2 = 0, L3 = ±

√
2EI3

corresponding to stable rotation about the ±z -axis.

• Almost all trajectories are closed curves (except the separatrices), so the motion on phase
space of angular momenta is periodic almost always. Static solutions have a period zero (on
the angular momentum phase space). One can often interpret separatrices as trajectories whose
period has gone to infinity.

• A rapidly spun tennis racquet (or chalkboard duster) displays the above stability while rotating
about its principal axes corresponding to its largest and smallest principal moments of inertia.
The above instability manifests itself when we try to spin the racquet about its middle principal
axis. Of course, a spinning tennis racquet is not free but subject to the gravitational force of
the earth. But if the kinetic energy of rotation is large, we would expect to be able to ignore
the effects of gravity on the qualitative rotational behavior discussed above.
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