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1 Thermodynamic systems and states

• Thermodynamics arose in part from the needs of steam engine builders; the need to under-
stand the possibility and limits of conversion of mechanical/electrical/chemical energy into heat
and vice versa; the attempts to optimize efficiencies of heat engines and refrigerators etc. An im-
portant role was played by the study of the behavior of gases and of the heats released/absorbed
in chemical reactions. Another motivation came from the remarkable phenomena discovered in
phase transitions such as the boiling or freezing of water.

• Before discussing the state of a thermodynamic system, let us recall the concept of the
dynamical state of a mechanical system. The state of a mechanical system of point particles is
specified by giving the positions and momenta of all the particles at an instant of time.

• The state variables of a thermodynamic system depend on the sort of system it is. Some
examples of thermodynamic systems include gases and liquids (fluids), solids, magnets, chemi-
cal solutions, electrolytes, blackbody radiation, stars, black holes etc. These systems typically
contain a very large number of microscopic constituents and it would be impractical to follow
their individual motions. What is more, in most cases, the thermodynamic understanding has
preceded a detailed understanding of the nature of microscopic degrees of freedom. Thus, ther-
modynamics deals with ‘macroscopic’ properties of these systems without reference to positions
and momenta of constituents. As opposed to the dynamical state of a gas of N molecules, which
would be specified by N positions and momenta, the thermodynamic state is defined by just a
handful of state variables (a number independent of N ).

• Perhaps the simplest thermodynamic system is a homogeneous gas (or fluid) composed of a
single chemical substance (e.g. oxygen or water) at rest (no flow). Volume, constant pressure
and density are obvious mechanical properties associated with the uniform fluid. In addition to
mechanical properties, thermodynamics deals with the temperature of the gas, which may be
measured with, say, a mercury thermometer1. For the present we use the same thermometer for
all temperature measurements to make them comparable.

• Thus, thermodynamics postulates the existence of temperature as a thermal property
of a system. It is a parameter of state being defined by the instantaneous state of the system
independent of its history.

1Operationally, we have a column of mercury of height h at some reference temperature (say freezing point
of water at atmospheric pressure). We say that the water freezes at temperature h . When heated, the mercury
expands and the temperature is defined simply to be the height of the column.
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• It is observed that a fluid when left to itself (‘isolated’) for some time settles into a state of
thermal equilibrium, characterized by a common temperature everywhere. Thus the zeroth law
of thermodynamics postulates that parts of a system (or different systems) are in thermal
equilibrium if they have the same temperature. Furthermore, if system A is in thermal equilib-
rium with system B and B is in equilibrium with C then A is in equilibrium with C: all three
have a common temperature. A consequence of this transitivity is that it allows us to conclude
that a bar of iron and a bucket of water are in thermal equilibrium even without bringing them
into contact, provided we check that each is separately in equilibrium with a third system, which
plays the role of a thermometer.

1.1 Thermodynamic state of a gas and a paramagnet

• Thermodynamic state of a homogeneous fluid. For the purposes of thermodynamics, a
uniform fluid has one mechanical degree of freedom, its volume. It is found that thermodynamic
properties (like energy) are largely independent of the shape of the region occupied by the fluid
as long as its volume is large (compared to molecular dimensions) and surface area not too large
compared to that of a sphere of the same volume. This is not true for microscopic volumes nor
for regions with very large surface area like the small intestine - we will exclude such regions
from this discussion.

• Just as momentum is conjugate to the position of a particle in mechanics, we will see that
pressure is the variable conjugate to volume2. The thermodynamic state of a fixed mass of
homogeneous fluid is fixed once the volume V , the (uniform) pressure p and temperature t
have been specified. Thus, the thermodynamic state space is three dimensional. However, not
all triples (V, p, t) represent equilibrium states. Equilibrium states have the special property
of remaining unchanged in time under fixed external conditions. For instance, a flowing gas is
not in equilibrium (at the very least, one would need to specify the velocity and pressure at
different locations in the gas to determine its state). Equilibrium states lie on a 2D surface
(called the equilibrium manifold) determined by a relation f(V, p, t) = 0 called the equation of
state. The equation of state allows us to express one of the state variables, say p(V, t), as a
function of the other two. We will see that for many dilute gases at sufficiently high temperatures
and low pressures (ideal gases) the equation of state is approximately pV = nRT where the
proportionality constant nR is the product of the number of moles of gas (amount of substance)
and the universal gas constant and T is the so-called gas thermometer temperature (to be
introduced later).

• Following James Watt, the state of such a gas can conveniently be represented by a point in
the V -p plane (indicator diagram) with abscissa V along the horizontal axis and ordinate p
along the vertical axis. An isotherm is a curve along which temperature is constant. A PT -
diagram is sometimes convenient especially when studying phase transitions, say between liquid
and vapour.

• The first derivatives of p, V, T with respect to each other are used to define three material

2Hydrostatic pressure at a point A is introduced as follows: Consider a small fictitious membrane (flat surface)
passing through A in a gas/fluid. It is found that the fluid on one side of the membrane exerts a force normal
to the membrane and towards the other side. This normal force per unit area is the hydrostatic pressure. The
same value of pressure is obtained by considering the normal force per unit area due to the fluid on the other
side. Moreover, the value of pressure at a point is independent of the orientation of the membrane through the
point: it is a positive scalar quantity.
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properties which describe the response of one due to a change in another keeping the third
fixed. Thus we have the coefficients of thermal expansion, thermal tension3 and isothermal
compressibility

α =
1

V
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)
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, β =
1
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(
∂p

∂T

)
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T

. (1)

For instance, compressibility κT measures the fractional change in volume of a gas due to an
increase in pressure. The minus sign is because gases are compressed upon the application of
pressure. The reciprocal of compressibility is called the bulk modulus. There are three more
such coefficients that we could define, involving ∂T

∂V , ∂T
∂p and ∂p

∂V . However, we will see that on
the equilibrium surface, there are four relations among these six coefficients so that only two can
be independent. Let us also note that the coefficients α, β and κ are in general not constant
and vary from place to place on the equilibrium manifold.
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as well as the remarkable relation among the three coefficients α, β and κT .

p β κT = α. (3)

This is obtained by replacing x, y, z by p, V, T in the identities we now derive.

• In general, if x, y, z satisfy a functional relation f(x, y, z) = 0 that allows us to locally express each
as a function of the other two z = z(x, y), y = y(z, x) and x = x(y, z), then we have the ‘triple product’
identity4 (
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= −1 (4)

that holds on the constraint surface f(x, y, z) = 0. To see this we write the differentials with subscripts
denoting partial derivatives (E.g. zx =

(
∂z
∂x

)
y

, the variable that is held fixed in the partial derivative is

not indicated explicitly as it is clear from the context)

dz = zx dx+ zy dy, dx = xy dy + xz dz, and dy = yz dz + yx dx. (5)

Now we regard x and y as independent variables on the constraint surface & write dz in terms of dx &
dy in the formula for dx

dx = xy dy + xz (zx dx+ zy dy) . (6)

Since dx and dy are independent differentials on the 2d surface f = 0, their coefficients must vanish.

The coefficient of dx vanishes provided xzzx = 1 (i.e.,
(
∂x
∂z

)
y

(
∂z
∂x

)
y

= 1). Since we could equally well

have taken any other pair as independent variables, we must also have xyyx = yzzy = 1. Now requiring

that the coefficient of dy vanish gives xzzy = −xy which becomes zxxyyz = −1 upon using the previous

result.

• Thermodynamic variables can often be classified as extensive or intensive. Extensive
quantities are proportional to the amount of material. For example, internal energy (U ), the

3Tension is another word for force and thermal tension refers to the change in pressure (force/area) as tem-
perature is varied.

4To remember this formula, begin with any of the partial derivatives as the first factor. The latter two factors
are obtained by cyclically permuting the variables in the first partial derivative.
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various free energies (e.g. Helmholtz free energy F ) and entropy (S ) are extensive variables,
they scale with the volume V (ignoring boundary/surface effects), the number N of particles
present or the total mass m . By dividing by N , V or m we obtain the corresponding ‘specific’
energies or entropy. Intensive quantities such as pressure, temperature and chemical potential
(to be introduced later) are independent of the amount of substance. We will see that (p, V ),
(µ,N) and (t, S) are canonically conjugate pairs of intensive and extensive variables.

• Magnets as thermodynamic systems: The analogs of pressure and volume for a magnetic
material are the external magnetic field (H , intensive) and magnetization (M , by convention
dipole moment per unit volume, intensive). A ferromagnet such as an iron bar magnet (a
‘magnetic dipole’) has a permanent magnetization (pointing, say, in the z direction). The
magnetization leads to a magnetic field in the neighbourhood of the magnet, which aligns iron
filings. By measuring the magnetic field, one can infer the magnetization. The magnetization
of a ferromaget is permanent (more precisely spontaneous) in that it is non-zero even in the
absence of an external magnetic field. From a microscopic viewpoint, the magnetization is the
vector sum of molecular magnetic moments per unit volume. A paramagnetic substance has no
magnetization of its own since thermal fluctuations ensure that the molecular magnetic moments
point in random directions and sum to zero. However, in the presence of an external magnetic
field H , it acquires a magnetization M that points along H . Ferromagnets gradually lose their
spontaneous magnetization with increase in temperature. The spontaneous magnetization drops
to zero above the Curie temperature tc (770◦ Celsius for iron) and then ferromagnets become
paramagnets. This is a phase transition which bears some resemblance to the liquid to gas
vapourization transition. By convention, we will assume that H , and therefore M , point in the
z -direction and denote them by their z -components H and M . Thus, the thermodynamic state
space of a uniformly magnetized homogeneous paramagnet is three dimensional with coordinates
H,M and t . H and M are conjugate variables like the pressure and specific volume (volume
per particle) of a gas. In equilibrium, there is an equation of state that relates H,M and t .
For a linear paramagnetic medium M = χH where M is the magnetization per unit volume
(V the volume of the magnet is essentially a constant, unlike for a gas). This simply states
that the induced magnetization is proportional to the applied magnetic field. The magnetic
susceptibility χ depends on temperature, it is a measure of how ‘magnetizable’ a paramagnet
is. At high temperatures (t > tc ) the paramagnetic susceptibility is given approximately by
the Curie-Weiss5 law χ ≈ C/(t− tc) for an appropriate temperature scale. C is called Curie’s
constant.

1.2 Thermodynamic processes

• A process is a transformation of a system from an initial state through a continuous succession
of intermediate states to a final state. It may sometimes be represented by a curve in the
thermodynamic state space, in which case we could call it a thermodynamic process (this may
not be possible if the transformation produced inhomogeneities so that, say, the pressure is not
constant throughout). A transformation in which the system is always infinitesimally close to
an equilibriums state is called a reversible or quasi-static transformation. For a homogeneous
gas, such a process may be represented by a curve that lies entirely on the equilibrium surface
in the p-V -t state space; it may also be represented by a curve in a p-V diagram. Starting

5Named after the Polish-French and French physicists Marie Curie and Pierre Weiss.
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Figure 1: From K Huang, Introduction to statistical physics: V, p, t thermodynamic state space
of a gas of uniform composition. Reversible processes are curves on the equilibrium EOS surface.
Irreversible processes which can be represented in such a diagram go off the equilibrium surface.

from an equilibrium state, a reversible transformation may be realized through a slow variation
of external conditions so that the system always has time to adjust itself to the new equilibrium
state corresponding to the altered conditions6. For example, the slow expansion of a gas in a
container fitted with a piston (that can move vertically), as small weights are slowly removed
from the piston and kept aside at the same height. The process may be reversed by replacing the
weights onto the piston slowly as the gas contracts. If the piston is lowered rapidly, the pressure
would not be uniform and there would also be velocity currents set up in the gas, making it pass
through non-equilibrium states. A transformation passing through equilibrium states from A to
B is called reversible since it can be reversed by applying the changes to the external conditions
slowly in the opposite order, so that the system passes through the same intermediate states
but from B to A .

• A process that is not reversible (not quasi-static) is called irreversible. Irreversible processes
may not always be representable as curves in the pV t state space, since we may need to specify
other variables like velocity and there may not be a single pressure that can be assigned to the
whole gas.

• Note that a slow process need not be reversible. Examples may be found among dissipative
processes such as the slow frictional heating of the suspension of a swing as it executes damped
oscillations or the slow heating of a resistor connected to a battery. Even if we try to reverse
these processes (by reversing the direction of oscillation of the swing or reversing the direction
of current) heat is still produced, not absorbed!

• The spontaneous flow of heat (whether quickly or slowly) from a body at a higher temperature
to one at a lower temperature is irreversible. Indeed, we do not see heat spontaneously flowing
from a cold body to a hot one.

• Thermodynamic processes in which p, V or T remain constant are called isobaric, isochoric
(isopiestic) and isothermal.

• A cycle or cyclic process is a transformation in which the initial and final states are the same.
On a p-V diagram, a cycle is represented by a closed curve (which could have self-intersections).

6In other words, for the purposes of the thermodynamic process, we only observe the system at intervals of
time that are large compared to the equilibration time of the system. So the ‘continuity’ of the process needs to be
understood in this sense. We will not attempt to understand the dynamical process of how the system approaches
equilibrium: this lies outside the purview of thermodynamics and requires a kinetic or dynamical treatment.
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Figure 2: From A Sommerfeld, Thermodynamics and Statistical mechanics: pV diagram for a cycle of a steam
engine. Work done is equal to shaded area enclosed and is positive as the curve runs clockwise. The isobar at the
high pressure p1 corresponds to the steam in the cylinder expanding while in contact with the boiler. The isobar
at the low pressure p2 corresponds to compression when in contact with the atmosphere or condenser.

Cyclic processes are important in practical applications as they can be repeated, as in a steam
engine or refrigerator. Cyclic processes are also of great conceptual value, as we will learn.

1.3 Work

When a gas expands, it does work ∆W on the surroundings; the surroundings do work −∆W
on the system. Our convention is to take the work done by the gas as positive in the case of
an expansion and negative in the case of a contraction. More generally, a system can perform
work (mechanical - movement of a piston, electrical/chemical - movement of charges/ions in an
electric potential etc.) during a thermodynamic process. For example, consider a gas enclosed
in a cylinder with a movable piston of area A . If p is the uniform pressure in the gas, the
force exerted on the piston is pA . If the piston moves out a distance ∆l , the work done is
∆W = pA∆l . In general, if the volume of a gas increases by dV in an infinitesimal expansion,
then the work done by the gas is δW = pdV . This can be shown by breaking up the bounding
surface into small pieces and treating each as a small piston.

• Suppose the state can be represented on a p-V diagram, then a transformation from state
(Va, pa) to (Vb, pb) is represented by an oriented curve γa→b joining these points. The work done

W (γ) =
∫ b
a pdV is given by the area under the curve (see figure). Note that the pressure could

change during the process and that the area can be negative, as in a compression (Vb < Va ). In
particular, the work done in a cycle (represented in a p-V diagram) is the area enclosed by the
curve. For a simple closed curve, the area is positive if traversed clockwise and vice-versa. dV
and δW both vanish in an infinitesimal isochoric transformation.

• In electromagnetic theory it is shown that the work done by the external field H in increasing
the magnetization of a paramagnet from M to M+dM is µ0HdM where µ0 is the permeability
constant. Thus, the work done by a magnet in the process is δW = −µ0HdM . Up to a sign,
this is analogous to δW = pdV for the work done by a gas.

• It is very important to recognize the empirical fact that the work done during a process γa→b
in general depends on the process and not just on the initial and final states. For example,
consider initial and final equilibrium states of water at temperatures ta and tb > ta , but at a
common pressure, say atmospheric pressure. The corresponding volumes are determined by the
equation of state. Now, we can go from state a to b in more ways than one. For instance, we
could vigorously stir the liquid for some time and heat it up through friction, thereby doing
a significant amount of work (this work is not calculable by integrating ‘pdV ’ since in the
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intermediate stages, we would have set up a velocity field in the water and we would have to
evaluate the work done in setting up the flow etc.). Alternatively, we could simply heat the
liquid using a flame, in which case hardly any work is done (the liquid does a little work in
expanding against atmospheric pressure). Both these processes are irreversible, but the first one
involves a lot more work.

• This path-dependence of the work done is reflected in the fact that areas under different
curves joining a to b in a pV diagram are not necessarily the same. In other words, unlike
temperature, there is no ‘work function’ or property of state W such that W (b) − W (a) is
the work done during the process. In particular, the work done in an infinitesimal process δW
depends on external effects and is not the differential of any state function W . This is why we
do not denote it ‘dW ’. We say that the work done in an infinitesimal process is not an exact
differential.

1.4 Exact and inexact differentials

Two independent variables: Given a differentiable function, say of two variables σ(x, y), its
differential is dσ = ∂σ

∂x dx+ ∂σ
∂y dy . Under suitable hypotheses (it suffices for σ to have continuous

second partial derivatives), the ‘mixed’ second partials are equal: ∂2σ
∂x∂y = ∂2σ

∂y∂x . This is called
Schwarz’s or Clairaut’s theorem.

• On the other hand, suppose we are given a differential expression (also known as a one-form or
Pfaffian differential) ω = f(x, y)dx+g(x, y)dy on the plane. We ask whether ω is the differential
of some function σ , i.e., is ω = dσ? σ would in a sense be an ‘integral’ of ω and we would call
ω a perfect or exact differential. A necessary condition for this (it is also a sufficient condition
on the plane - this is Poincaré’s lemma) follows from the above remark: f and g must satisfy
∂f
∂y = ∂g

∂x . This is called the integrability condition for ω to be exact: if it is satisfied, we can
‘integrate’ ω to find σ . If we use the components of ω to define a ‘coefficient’ vector field
v = (f, g) = fx̂ + gŷ on the plane, this integrability condition states that v must be curl free
∇× v = (gx − fy)ẑ = 0. Here, we use subscripts to denote partial derivatives.

• The curl of a vector field measures how much the vector field circulates or swirls around. In
3d if v = (f, g, h) then ∇ × v = (hy − gz, fz − hx, gx − fy). The curl of a vector field on a
plane points normal to the plane since h = 0 while f and g are independent of z . An example
of a curl-free planar vector field is v = xx̂ + yŷ . It points radially outwards. The integrability
condition is satisfied and indeed we see that σ = (x2 + y2)/2 is a function whose differential
equals ω = xdx+ ydy . On the other hand ω = −ydx+xdy is not exact since it does not satisfy
the integrability condition and the corresponding vector field v = −yx̂+ xŷ has non-vanishing
curl: v it points azimuthally and describing swirling motion counterclockwise around the origin.

• In passing, we note that given a vector field v = (f, g, h) we can define another derivative,
namely its divergence, which is a scalar ∇·v = fx+gy+hz . The divergence measures expansion or
compression and can sometimes be associated with the presence of sources or sinks. For instance
v = (xx̂ + yŷ) has divergence ∇ · v = 2 but no curl. However, the integrability condition for
exactness is not related to the divergence of the coefficient vector field.

• There is a third notion of derivative, namely the gradient which takes a function σ(x, y, z)
and produces a vector field ∇σ = σxx̂ + σyŷ + σz ẑ . Our statement on the exactness of ω can
then be restated as follows: ω is exact (ω = dσ) if the coefficient vector field v is curl-free and
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in that case, v = ∇σ is the gradient of the scalar function σ .

• In the last section we asserted that the work differential (work that can be done by a gas in an
infinitesimal expansion) δW = pdV is not exact in general. As another example, consider the
Pfaffian differential ω = CdT + nRT

V dV in the variables T and V . Here n and R are constants
while C is independent of V . The above integrability condition is not satisfied since nR/V
is not identically zero. Interestingly, notice that ω/T is an exact differential, the integrability
condition is satisfied and we can integrate it to find a function σ such that dσ = ω . Indeed
ω/T = CdT/T + nRdV/V = d(C log T + nR log V + σ0) ≡ dσ . Notice that σ is defined only
up to an additive constant. T is called an integrating factor or integrating denominator for the
inexact differential ω . More on this later.

• Now if ω is an exact differential, then its line integral between a pair of points a,b on the
plane is independent of the path γ connecting them. Indeed, let the path γ : [ta, tb] → R2 be
given by r(t) = (x(t), y(t)) with r(ta) = a and r(tb) = b . Then the tangent vector to the curve
is ṙ(t) and the line element dl = ṙ(t)dt and∫

γ

ω =

∫
γ

fdx+gdy =

∫
γ

v·dl =

∫ tb

ta

(fẋ+gẏ)dt =

∫ tb

ta

(σxẋ+σy ẏ)dt =

∫ tb

ta

dσ(r(t))

dt
dt = σ(r(tb))−σ(r(ta)). (7)

The last equality follows from the fundamental theorem of calculus. Path-independence follows
since the line integral depends only on the values of the function σ at the end points. Thus, we
arrive at a formula for a function σ(r) whose differential is ω :

σ(r) = σ0 +

∫
γ
ω (8)

where γ is any curve that joins an arbitrary reference point r0 to r = (x, y). Notice that σ is
not unique: it is determined up to an additive constant which we have taken as σ0 = σ(r0).

• In particular, the integral of an exact differential around a closed contour C vanishes
∮
dσ = 0.

This may also be seen by an application of Green’s theorem (2d version of Stokes’ theorem)∮
C
fdx+ gdy =

∫
S

(gx − fy) dxdy = 0 or

∮
C

v · dl =

∫
S

(∇× v) · ẑ dxdy = 0. (9)

Here S is the two-dimensional region bounded by the closed curve C . Conversely, a differential
ω whose line integral around every closed curve vanishes is an exact differential. This is easy to
show, since the function

σγ(x, y) = σ0 +

∫
γ
ω (10)

where γ is any curve from an arbitrary reference point (x0, y0) to (x, y) satisfies dσ = ω and
is is seen to be independent of the choice of γ . Indeed, the difference σγ − σγ′ for two curves
joining the same points is equal to the line integral of the exact differential ω around the closed
curve γ ∪ γ̄′ and therefore vanishes ( γ̄′ is the curve γ′ traversed in the opposite direction).

Three independent variables: The above statements have a natural generalization to 3D.
The differential ω = fdx+ gdy + hdz is locally exact provided the first partials of f , g and h
satisfy

fy = gx, gz = hy and hx = fz. (11)

Here, for instance, fy =
(
∂f
∂y

)
x,z

is the partial derivative with respect to y holding x and

z fixed. These three conditions simply state that the coefficient vector field v = (f, g, h, ) is

9



curl-free:
∇× v = (hy − gz, fz − hx, gx − fy) = 0. (12)

So, when v is curl-free, we may express it as the gradient of a scalar v = ∇σ or ω = dσ .
Furthermore, the line integral

∫ b
a ω of the exact differential ω is the difference in values σ(b)−

σ(a) independent of the path.

• The above result can also be obtained from Stokes’ theorem in three dimensions. Given a
sufficiently smooth vector field v in a simply connected region, its line integral around a closed
curve C can be re-expressed as the surface integral of its curl over any surface S in the region
whose boundary is C : ∮

C
v · dl =

∫
S

(∇× v) · dS. (13)

Now if v is curl-free, the RHS vanishes, so that its line integral around any (necessarily) con-
tractible closed path vanishes.

1.5 Ideal gas laws

• It is empirically found that many gases in equilibrium satisfy certain common (‘ideal’ gas)
laws at temperatures much higher than their condensation point and at low pressures. At 20◦ C
and atmospheric pressure of one Atm (or 760 mm of Hg or 760 torr), helium, hydrogen, oxygen,
carbon dioxide and air to a reasonable approximation behave ideally while water vapour (steam)
does not. An ideal gas is what we would get when we expand a real gas to very large volumes.
From the molecular standpoint, an ideal gas is one whose molecules are point-like (i.e. occupy
negligible volume compared to that of the container) and do not interact with each other (exert
negligible forces).

• Boyle’s and Mariotte’s Law (1658, 1676): For a given mass of a gas at a fixed tem-
perature, the product of pressure and volume occupied by the gas in equilibrium is a constant:
p(i)V (i) = Θ(i)(t,m). Based on the investigations of Boyle and Mariotte, the constant Θ(i)(t,m)
could depend (and in fact does depend) on temperature t , mass m of gas and on the chemical
nature of the gas (indicated by the species label i).

• Gas temperature scale: By a gas thermometer, we mean the following. We select a
specified volume (say 1 cc) of a gas (such as Helium) that is far from condensation at a reference
temperature (say the freezing point of water at atmospheric pressure of 1 atm). As noted,
gases are observed to expand on heating and contract on cooling. We simply define the gas
temperature T to be a constant multiple of the volume, with the pressure being held fixed. The
constant is often fixed by requiring the difference in gas temperatures at the boiling and freezing
points of water to be 100 at atmospheric pressure. Note that fixing the constant through such
a specification also removes the dependence on the volume of gas we started with, it could have
been 100 cc instead of 1 cc. It is a remarkable empirical fact (see also the Charles-Dalton-Gay-
Lussac law below) that a wide variety of gas thermometers (with different gases, but all of which
have the same volume at the reference temperature and pressure) agree on their assignment of
gas temperatures as long as the gases are far from condensing. The temperature scale T defined
this way is called the gas thermometer scale (or absolute gas temperature) or the Kelvin scale.
Water freezes at 1 atm pressure at T = 273.16 Kelvin. By construction T > 0 since the volume
of a gas is a positive number.

10



• Charles’, Dalton’s and Gay-Lussac’s Law (1787, 1802): (See N D Hari Dass, The
principles of thermodynamics) All gases, whatever may be their density and the quantity of water
which they hold in solution, and all vapours expand equally between the same degrees of heat.
Here ‘same degrees of heat’ means ‘between the same initial and final temperatures’ (freezing
and boiling points tf , tb of water at atmospheric pressure in Gay-Lussac’s experiments). By
‘expand equally’ he apparently meant the change in volume as a fraction of original volume was
the same for all gases. The expansion of all gases was carried out at the same fixed pressure p
(atmospheric pressure). If the species of gas is labelled i , we may summarize the law by

V
(i)
tb
− V (i)

tf

V
(i)
tf

= c(p; tf , tb) (14)

for all gases. In other words, the fractional change in volume is independent of species, but
we have allowed for a dependence on the pressure and initial and final temperatures through

c(p; tf , tb). Note that though the volumes V
(i)
tb
, V

(i)
tf

depend on the mass of gas present, the ratio
on the left is independent of the mass, since it is found that twice the mass of a gas occupies
twice the volume at a fixed temperature and pressure. So the RHS is also independent of mass
of gas used.

• Now applying the Boyle-Mariotte law, we get

Θ(i)(tb,m)−Θ(i)(tf ,m)

Θ(i)(tf ,m)
= c(p; tf , tb). (15)

The dependence on pressure cancels between numerator and denominator on the LHS since the
expansion is carried out at a fixed pressure. Thus the RHS must be independent of pressure and
c = c(tf , tb). Moreover, the RHS is independent of species. The simplest way for the LHS to
be independent of species is for Θ(i)(t,m) to be species independent. However, this contradicts
experiment: putting this in Boyle’s law, we would find that the product pV for mass m of any
gas is the same function of temperature Θ(t,m). However, it is found that a common mass m of
different gases at the same temperature have different constant values for the product pV . This
is also why in setting up the gas thermometer, we did not take equal masses of different gases
but rather equal volumes at a common temperature and pressure. The next simplest possibility
is that Θ(i)(t,m) = ν(i)(m) Θ(t) is the product of a species-dependent function ν(i)(m) and a
species-independent function of temperature. The constant ν(i)(m) cancels in the quotient on
the LHS of (15), ensuring that the RHS is independent of both i and m .

Putting this in the Boyle-Mariotte law, we deduce that for a fixed mass m of any gas (labeled
i) at a fixed temperature t ,

p(i)V (i) = ν(i)(m) Θ(t). (16)

Here Θ(t) is a universal function of temperature. Now we are free to choose our temperature
scale. The law takes its simplest form when we use the gas thermometer scale of temperature,
in which case Θ(T ) is a universal constant multiple, say R , of T (since we defined the gas
thermometer temperature to be a multiple of the volume of the gas holding p,m fixed). Thus
the simplest way of satisfying the observations of Boyle-Mariotte-Charles-Dalton-Gay-Lussac is
for gases to obey

p(i)V (i) = ν(i)(m) RT (17)
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where T is the gas thermometer temperature. As we will see, ν(i)(m) depend on the species
via a characteristic property which we now recognize as their molecular masses. This brings us
to Avogadro’s postulate.

• Avogadro’s postulate (1811): Equal volumes of all gases at the same temperature and
pressure have the same number of corpuscles (molecules), but (in general) different masses.
However, the molecular constitution of matter took nearly a century to be confirmed. In the
interim, it made sense to reformulate Avogadro’s postulate in terms of measurable quantities.
Ostwald introduced the concept of moles for this purpose. A gram-mole or gram molar mass
µ of a gas was defined as a definite number of grams of a gas. For example, one gram-mole of
hydrogen is 2 grams of the gas (i.e. µ = 2 for H2 ). A gram mole of oxygen is 32 grams (i.e.
µ = 32 for O2 ).

• These assignments were based on the proportions in which elements combined to form chemical
compounds (the subject of Dalton’s and Gay-Lussac’s laws of multiple proportions7 and integral
volume ratios8), but could also be deduced from calibrating gas thermometers with the same
mass of different gases with each other. In current language, one gram mole of a compound
is as many grams as there are units in the sum of atomic weights of the constituent elements,
with the Hydrogen atom being assigned an atomic weight of one since it is the lightest known
element. We often refer to one gram mole of a gas as simply one mole of the gas. Avogadro’s
law in Ostwald’s formulation states that equal volumes of all gases at a common pressure and
temperature contain equal numbers of moles of the gas. So suppose we consider one gram-mole
of gas i (i.e. µi grams) as well as one gram mole of gas j (i.e. µj grams) at the same pressure
and temperature. The Avogadro-Ostwald postulate along with the Boyle-Mariotte-Gay-Lussac-
Charles law implies

V (i) = V (j) or
ν(i)(µi)RT

p
=
ν(j)(µj)RT

p
or ν(i)(µi) = ν(j)(µj) ∀ i, j. (18)

Thus the constants ν(i)(µi) are independent of species if we consider one gram mole of each
species. We can take this universal constant to be one, by a rescaling of R . Thus, for one mole
of an ideal gas, pV = RT . If we had considered n gram moles instead of one gram mole, the
volume occupied at a fixed temperature and pressure is found to be multiplied by n , so we arrive
at pV = nRT for n gram moles of any sufficiently ideal gas. In other words, ν(i)(m) = m/µi .
To see this, we first note by the property just noted that ν(i)(m) ∝ m is proportional to the
mass of the gas, so for some proportionality constant ki (depending on species),

ν(i)(m) = ki m. (19)

Taking one gram mole of gas i we have m = µi . Now, using our observation that

ν(i)(µi) = 1 we get kiµi = 1 or ki =
1

µi
. (20)

7Dalton’s law of multiple proportions: When two elements combine with each other to form more than
one compound, the masses of one element that combine with a fixed mass of the other are in a ratio of small whole
numbers. E.g. 24g of carbon combine with 32g of oxygen to form 56g of carbon monoxide. 24g of C also
combine with 64g of oxygen to give 88g of carbon dioxide. So the ratio of oxygen masses that combine
with the same mass of carbon is 1 : 2 .

8Gay-Lussac’s law of integral volume ratios: The ratio between the volumes of the reactant gases and
the products can be expressed in simple whole numbers. E.g. 4g of hydrogen gas combine with 32g of oxygen
to give 36g of water vapour. It is found that two litres of hydrogen combines with one litre of oxygen to
give 2 litres of water vapour. The ratio of volumes of reactants to product is 3 : 2 .
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• Ideal gas law: Combining Avogadro’s postulate with the Boyle-Mariotte and Charles-Dalton-
Gay-Lussac laws in the manner above, it is found that the equation of state of an ideal gas takes
a particularly simple form when we use the gas thermometer scale. For m grams of a gas with
gram molecular mass9 µ ,

pV = (m/µ)RT. (21)

• Here R = 8.314 Joules/Kelvin per mole is the universal gas constant. From Ostwald’s
definition, the quotient n = m/µ is the number of moles of the gas. By Avogadro’s law, one
mole of all (nearly ideal) gases contain the same number of molecules, namely NA = 6.023×1023

(Avogadro’s number, estimated by J J Loschmidt in 1856 and more accurately measured by J
B Perrin in 1909 after Einstein’s work on Brownian motion).

• The ideal gas EOS may also be expressed as a relation among pressure, density ρ = m/V and
temperature p = ρRT/µ . Alternative forms are pV = nRT and pV = NkBT where N = NAn
is the number of molecules and kB = R/NA = 1.38× 10−23 J/K is Boltzmann’s constant. If we
introduce the specific volume v = V/m which is the reciprocal of density, then the ideal gas law
states that pv = RT/µ .

• As noted, from a microscopic viewpoint, an ideal gas is a collection of molecules of a given
chemical species occupying a volume much larger than the size of the molecules and whose
inter-molecular forces can be ignored. The Hamiltonian for such a collection of molecules is the
sum (1/2M)

∑
a(p

2
a) where the various molecules are labelled by a and M is the mass of each

molecule. It is not surprising, then, that all gases that can be approximated by such a treatment
behave in the same way except for the difference in the masses of the molecules. The molecular
mass enters the ideal gas law through µ (M = µ/NA ) and is the only way in which the gas
manifests its chemical identity.

• For an isothermal transformation of a fixed amount of an ideal gas, pV is a constant. Thus, on
a p-V diagram, an isotherm is represented by a hyperbola with the p and V axes as asymptotes.
The work done by the gas in a reversible isothermal expansion from volume V1 to V2 is

W =

∫ V2

V1

p(V )dV = nRT

∫ V2

V1

dV

V
= nRT log(V2/V1) = nRT log(p1/p2). (22)

2 Heat transferred and the first law of thermodynamics

2.1 Heat transferred and its mechanical equivalent

• Caloric theory of heat: Prior to the mid 1800s heat was regarded as a substance, the
‘caloric’ which was thought to be like a fluid that flowed while its amount was conserved10. This
is in contrast to the current view that heat is a form of energy that can be transformed (partly)
into (or arise from) other forms of energy. The heating of water by a flame was assumed to involve
flow of the caloric (heat-fluid) from the fire to the water. When a bottle of hot water was brought
into contact with a bottle of cold water, it was supposed that the heat fluid flowed from hot
to cold water till the temperatures were equalized. The theory was not without merit. Carnot
(1824) correctly deduced limits to the conversion of heat into work based on the caloric theory.

9For example, the gram molecular mass of H2 molecule is 2 while that of that of He4
2 atom is 4.

10An even earlier (now discarded) theory of combustion was the Phlogiston theory, developed from 1667 onwards.
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However, the caloric theory had to be replaced since it contradicted experiment. The amount
of heat fluid was not conserved: heat could be produced entirely from mechanical or electrical
work, as in the heating of a resistor/filament of a light bulb or the melting of two pieces of ice
when rubbed together. The caloric theory of heat was replaced by a more mechanical theory of
heat.

• The amount of heat transferred in a process may be quantified through temperature mea-
surements. One calorie of heat transferred is defined as the quantity of heat required to
raise the temperature of one gram of water from 14◦ to 15◦ C at atmospheric pressure. It
is important to recognize that while we can measure and define the heat exchanged between
systems, we have not defined the ‘heat content’ of a system.

• Mechanical equivalent of heat Count Rumford (also known as Benjamin Thompson, 1798)
famously demonstrated that water could be made to boil while the shaft of a canon was being
mechanically bored. Water could also be heated through stirring using immersed paddles that
were made to rotate by letting a weight descend under gravity. Several careful experiments
showed that the heat transferred (in calories) was proportional to the work done (say in Joules
or ergs), through a universal proportionality constant δQ = (1/J)δW . Precisely, to transfer one
calorie of heat, the same amount of work, i.e. J = 4.186 Joules had to be done. Thus 4.186
Joules of work done is the mechanical equivalent of one calorie of heat transferred.

2.2 First Law of Thermodynamics

• In 1842 Robert Mayer presented a mechanical theory of heat, based on the transformability of
heat into mechanical energy (and vice versa), and formulated the 1st law of thermodynamics. We
will state the first law and later describe the cyclic process he used to determine the mechanical
equivalent of heat. A similar process had been considered by Sadi Carnot somewhat earlier.
Hermann Helmholtz (1847) made Mayer’s ideas on the first law mathematically more precise.
The first law was the work of these and several other scientists.

• The first law postulates the existence of the internal energy as a state function of a thermo-
dynamic system. It posits that the heat added to a system is equal to the sum of the increase
in its internal energy (denoted U by Rudolf Clausius) and the work done by the system.

∆Q = ∆U + ∆W. (23)

We may regard the first law as a generalization of the statement of conservation of energy. For
an isolated system (thermally and mechanically/electromagnetically etc), the internal energy is
conserved. For a thermally insulated system, the work done by the system is equal to the drop
in its internal energy ∆W = −∆U .

• Given the state of a system, we can speak of the internal energy of that state, but not the
‘heat content’ or ‘work’ of the system in that state, heat and work are not state functions, they
are measures of external effects. If the caloric theory was true, heat would be a state function,
equal to the amount of caloric fluid.

• For a cyclic process, the initial and final states are the same so ∆U = 0 and the 1st law
becomes ∆Q = ∆W , i.e., the work done is equal to the heat absorbed.

• For an infinitesimal reversible expansion of system volume dV against a pressure p , the work
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done is δW = pdV . So for infinitesimal reversible processes, we write

δQ = dU + pdV. (24)

Unlike the heat and work differentials δQ and δW which are not exact, the internal energy
differential dU is an exact differential. So for a cyclic process

∮
dU = 0. On the other hand,

there is no state function Q such that δQ is equal to dQ .

• The 1st law allows us to measure heat exchanged in energy units. It is found that 1 calorie of
heat exchanged is equivalent to 4.186 Joules of energy.

• The first law is sometimes interpreted as stating the impossibility of constructing a machine
(perpetuum mobile or perpetual motion machine of the first kind) that can create or destroy
energy. Rather, energy can be transformed into other forms such as mechanical/electrical work
and heat.

• When the number of particles N in the system can change, the internal energy of a system
could change even if no mechanical work is done on the system nor any heat transferred to it.
It is conventional to define the chemical potential µ as the energy required to add one particle
to a thermally and mechanically isolated system. The first law is then generalized to

∆Q = dU + ∆W − µ∆N or δQ = dU + pdV − µdN (25)

for an infinitesimal process. We may interpret this equation as saying that the heat added to a
cup of water by a flame is equal to the sum of the increase in its internal energy, the work the
water does in expanding against atmospheric pressure and the energy lost to particles expelled
from the container (dN < 0, µ > 0, here N is ).

• Based on the manner they enter the equation for energy conservation, we say that p and V
are conjugate variables as are µ and N . In each pair we have one intensive and one extensive
variable. Notice that the product of conjugate variables has dimensions of energy.

2.3 First law for systems with (p, V, T ) state space, three δQ equations and specific heats

• If the state of a thermodynamic system (such as a homogeneous gas) can be represented by a
point in PV T space (subject to the equation of state), then we may express the state function
U in terms of any one of the three pairs of independent variables. For instance, taking (T, p) as
independent variables, the infinitesimal increase in volume and internal energy are

dV =

(
∂V

∂T

)
p

dT +

(
∂V

∂p

)
T

dp and dU =

(
∂U

∂T

)
p

dT +

(
∂U

∂p

)
T

dp. (26)

Then the 1st law δQ = dU+pdV implies the following three ‘δQ equations’ for the infinitesimal
heat added to a system with the indicated variables taken as independent:

(T, V ) −→ δQ =

(
∂U

∂T

)
V

dT +

[(
∂U

∂V

)
T

+ p

]
dV,

(T, p) −→ δQ =

[(
∂U

∂T

)
p

+ p

(
∂V

∂T

)
p

]
dT +

[(
∂U

∂p

)
T

+ p

(
∂V

∂p

)
T

]
dp,

(p, V ) −→ δQ =

(
∂U

∂p

)
V

dp+

[(
∂U

∂V

)
p

+ p

]
dV. (27)
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• We define the heat/thermal capacity of a system as the ratio C = δQ/dT of infinitesimal
heat added (usually reversibly) to the consequent increase in temperature. The heat capacity
generally depends on how the system is heated. Of particular significance are the principal heat
capacities CV , Cp at constant volume and pressure. Taking (T, p) and (T, V ) as independent
variables in (27) we obtain expressions for CV , and Cp in terms of derivatives of state functions

CV =

(
∂U

∂T

)
V

and Cp =

(
∂U

∂T

)
p

+ p

(
∂V

∂T

)
p

=

(
∂H

∂T

)
p

(28)

We may intuitively argue that Cp should generally exceed CV since at constant pressure, addi-
tional heat must be supplied for the gas to do work while expanding while at constant volume,
all the heat added goes into increasing the internal energy and temperature.

• Note that CP can also be written as CP = ∂T (U + pV ) where the partial derivative is
evaluated at constant pressure. It is therefore natural to introduce the new extensive state
function ‘enthalpy’ H = U+pV and express Cp as the temperature derivative of H at constant
pressure, just as CV is the temperature derivative of U at constant volume. The formula
H = U + pV is reminiscent of the rough formula H = −L+ pq̇ relating the Hamiltonian to the
Lagrangian in mechanics. More on this analogy later.

• The heat capacities are extensive as U and V are. It is often convenient to define the corre-
sponding intensive quantities cV , cp by considering the heat exchanged per unit mass (specific
heats) or per mole or molecule (molecular heats).

2.4 First law for paramagnet

Recall that the thermodynamic state space of a paramagnet is three dimensional with coordinates
given by external magnetic field H (z component), z -component of magnetization M and
temperature T . From electromagnetic theory, the work done by the external field in increasing
the magnetization from M to M + dM is µ0HdM . Thus the first law takes the form (Paul
Langevin, 1905)

δQ = dU − µ0HdM (29)

Comparing with δQ = dU + pdV for a gas, we see that roughly, p and −µ0H play similar roles
while volume and magnetization are analogous. The equation of state for a paramagnet bears
some resemblance to the ideal gas law. Indeed, comparing the Curie-Weiss law with the ideal
gas law,

M = χH =
CH

(T − Tc)
and ρ =

µp

RT
, (30)

we see that Curie’s constant C plays the role of µ/R while magnetization (per unit volume)
is like density and H is like pressure. T − Tc for the paramagnet is replaced with the gas
thermometer temperature.

• As for a gas, we may define heat capacities and specific heats of a paramagnet at constant
magnetic field or constant magnetization. See Haridass or Sommerfeld for further discussion.
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Figure 3: Joule free expansion experiment and Joule-Kelvin porous plug experiment (from Sommerfeld)

3 Applications of the first law

3.1 Gay-Lussac and Joule experiment: irreversible adiabatic expansion

• Gay-Lussac (1807) confined a gas in a thermally insulated cylindrical container fitted with
a movable piston. Initially, the gas was in equilibrium at temperature T1 , pressure p1 and
occupied volume V1 . The piston was suddenly moved outwards, increasing the available volume
to V2 . The gas expanded (through a complicated flow) and eventually reached equilibrium
at a lower pressure p2 in volume V2 . Remarkably, there wasn’t much change in temperature
T2 ≈ T1 . This was confirmed by J P Joule (1845) who repeated the experiment more carefully,
this time with two glass jars connected by a tube with a stop-cock. When the cock was released,
gas (air, hydrogen) from the filled jar flowed into the evacuated jar and a new equilibrium was
established, with barely any change in temperature.

• Though the experiment pre-dates the first law, let us apply the first law to the initial and
final states. Since the gas expands into a vacuum (zero pressure), we may assume it does not
do any work. Insulation ensures the gas does not exchange any heat. Thus the internal energy
must be unchanged. Taking volume and temperature as independent variables (with pressure
determined by the ideal gas equation of state), U(V1, T1) = U(V2, T1). We conclude that the
internal energy of an ideal gas is independent of volume, U = U(T ).

3.2 Joule-Kelvin (or Joule-Thomson) porous plug experiment and enthalpy

• This was a successor to Gay-Lussac’s and Joule’s free expansion experiments. It lent greater
credence to the conclusion that the internal energy of a gas obeying the ideal EOS (air, hydrogen
etc.) is a function of temperature but not volume. Interestingly, the results of the experiment
could be interpreted in terms of enthalpy.

• Gas at a higher pressure p1 is forced slowly11 from the left chamber through a pipe (filled with
a porous plug made of cotton wool) to the right chamber at lower pressure p2 (the pressures
are maintained at the same values throughout). Both chambers were insulated and had the
same cross-sectional area A . The pipe was made of beechwood, a thermal insulator. Consider
a volume V1 of gas between two vertical cross-sections on the left, that emerges on the right
and occupies volume V2 between two vertical cross-sections. The distance traversed by the gas

11When done slowly, this would give another example of a slow but irreversible process.
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on the left is V1/A and V2/A on the right. On the left, the force p1A on the gas does work
p1AV1/A = p1V1 . On the right, the opposing force p2A does work −p2AV2/A = −p2V2 on the
gas. Thus the total work done on this mass of gas is p1V1− p2V2 . The process may be assumed
adiabatic. Denoting the initial and final internal energies of the gas by U1 and U2 , the first law
implies

U2 − U1 = p1V1 − p2V2 or U1 + p1V1 = U2 + p2V2. (31)

The enthalpy H = U +pV of a given mass of gas is conserved as it passes through the insulated
plug.

• Furthermore, it was found that the temperature of the gas was almost unchanged. Assuming
the ideal gas law,

U2 − U1 = p1V1 − p2V2 = nR(T1 − T2) ≈ 0. (32)

Though the volume has changed, U has not, so the internal energy of an ideal gas may be taken
independent of volume U = U(T ). Since the gas is pushed down a pressure gradient (p1 > p2 ),
T2 ≈ T1 implies V2 > V1 , i.e. the gas expands.

• Careful measurements indicate that T1 and T2 are not quite the same (under ordinary condi-
tions T2 < T1 for air but T2 > T1 for hydrogen). In fact, many real (as opposed to ideal) gases
can be cooled as they expand while passing down a pressure gradient. This is the basis of the
Joule-Thomson effect.

3.3 Heat capacities of ideal gases

• We concluded from Joule’s experiment that the internal energy of a fixed mass of an ideal
gas could be taken independent of volume. This is sometimes called the caloric condition. It
follows that CV (T ) = dU

dT or dU = CV (T )dT . This, along with the ideal gas EOS and 1st law
leads to the useful relation Cp − CV = nR between heat capacities at constant pressure and
volume. To see this, we write the first law in form δQ = CV dt + pdV and substitute for pdV
from the differential of the EOS pV = nRT :

pdV + V dp = nRdT. (33)

Thus we get
δQ = (CV + nR)dT − V dp. (34)

We may now read off the heat capacity at constant pressure

Cp = (δQ/dT )p = CV + nR. (35)

This is consistent with our earlier observation that cp must exceed cV : at constant pressure
part of the heat supplied goes into expanding the gas leaving less heat to raise its temperature.
The relation is often expressed in terms of molar specific heats cp − cV = R (cp = Cp/n is the
heat capacity per mole or molecular heat at constant pressure) and is in good agreement with
experiments.

• While thermodynamics has allowed us to find a relation among heat capacities, it does not give
us a way of determining their values. The kinetic theory of gases, which takes into account the
molecular structure of matter allows us to estimate cV . For monoatomic gases (such as helium
and neon and other Noble gases and mercury vapour) one finds the molar specific heat cV =

18



(3/2)R . For diatomic molecules (such as hydrogen, nitrogen and oxygen and air), cV = (5/2)R .
Now a monoatomic species, approximated as a point mass has three translational degrees of
freedom. A diatomic molecule, regarded as a rigid rod of zero thickness has three translational
and two rotational degrees of freedom. It is thus plausible that cV = (f/2)R where f is the
number of such degrees of freedom. In fact, kinetic theory leads to the law of equipartition of
energy, whereby each such degree of freedom contributes R/2 to cV . A non-collinear polyatomic
molecule (such as NO2 ) has three rotational and three translational degrees of freedom so that
cV = 3R .

• Using the thermodynamic relation cp − cV = R we have cp = (1 + f/2)R .

• The ratio of specific heats γ = cp/cV = Cp/CV (‘adiabatic index’) plays an important role in
adiabatic transformations to be discussed shortly. Thermodynamics and kinetic theory together
predict that γ = 1 + 2/f . In particular, γ > 1. For mono-, di- and generic polyatomic gases,
γ = 5/3, 7/5 and 4/3.

3.4 Mayer’s cycle for mechanical equivalent of heat

Figure 4: From Sommerfeld Thermodynamics and Statistical Mechanics. Mayer’s cycle for the mechanical
equivalent of heat.

• To appreciate the historical and physical significance of the formula for the difference between
heat capacities of an ideal gas we study Mayer’s cycle (see Fig. 4). This was a cyclic process
considered by R Mayer in his discovery of the first law of thermodynamics and in calculating
the mechanical equivalent of heat. Consider n moles of an ideal gas in state 1 at atmospheric
pressure p1 and occupying volume V1 at temperature T1 . It is reversibly heated at constant
volume to state 2 at temperature T2 > T1 , pressure p2 > p1 and volume V2 = V1 . In this
process, the gas does no work, but its internal energy is increased by

∆U1 = ∆Q1 =

∫ T2

T1

CV dT. (36)

Next, the gas is expanded isothermally to state 3 with volume V3 so as to reduce its pressure
back to p1 . By the caloric condition, there is no change in internal energy. Finally, the gas is
compressed at constant pressure p1 from volume V3 to V1 , thereby returning it to its initial
state at temperature T1 . In this final stage the work done by the gas is negative p1(V1 − V3)
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and the heat added to the gas is
∫ T1

T2
CpdT . Thus, the increase in internal energy in the third

process is

∆U3 = ∆Q−∆W = p1(V3 − V1)−
∫ T2

T1

CpdT. (37)

Being a cycle, there is no net change in internal energy ∆U1 + ∆U2 + ∆U3 = 0 or∫ T2

T1

(Cp − CV )dT = p1(V3 − V1). (38)

Now suppose we make each of the processes infinitesimal, so that T2−T1 = dT and V3−V1 = dV ,
then

p1dV = (Cp − CV )dT. (39)

Looked at in isolation, we may interpret this as a relation valid for a process at constant pressure
p1 . However, from the ideal gas law pV = nRT , at constant pressure we must have pdV =
nRdT . Thus, the difference between heat capacities must satisfy

Cp − CV = nR = (m/µ)R or cp − cV = R/µ. (40)

where µ is the molar mass and cp, cV are the specific heats per mole. Now, the specific heats had
been measured (and expressed in calories per gram). The gas constant had also been measured
(and expressed in ergs per degree per mole or Joules per degree per mole). By equating the two
we arrive at the mechanical equivalent of heat: 1 calorie of heat added is equivalent to 4.186
Joules of work done.

3.5 Adiabatic transformation of an ideal gas

• Previously, we argued that a reversible isothermal expansion/contraction of an ideal gas is
represented by a hyperbola pV = constant on the pV plane.

• It is similarly interesting to find the curves on the pV plane representing reversible transforma-
tions in which no heat is exchanged, i.e., adiabatic transformations. A gas expands adiabatically
if it is enclosed in a thermally insulated container and does work slowly pushing out a movable
piston. Since δQ = 0 the first law gives dU + pdV = 0. Taking T, V as independent vari-
ables, Joule’s experiment implies that dU = CV dT is independent of the change in volume.
Eliminating p = nRT/V using the ideal gas law, we get

CV dT +
nRT

V
dV = 0 or CV

dT

T
+ (Cp − CV )

dV

V
= 0 or

dT

T
+ (γ − 1)

dV

V
= 0 (41)

where we used Cp−CV = nR and γ = Cp/CV . Now assuming γ is independent of temperature
(as is found to be approximately the case), we may integrate to get log(TV γ−1) = constant.
Thus for adiabatic transformations of an ideal gas we must have

TV γ−1 = constant or pV γ = constant or T ∝ p
γ−1
γ . (42)

Thus, adiabats are defined by curves on the pV plane along which pV γ is constant. Since γ > 1
we see that adiabats are steeper than isotherms if V and p are taken as abscissa and ordinate
respectively.
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Figure 5: From K. Huang Introduction to Statistical Physics. Adiabat is steeper than an isotherm for an ideal
gas.

3.6 Pressure and temperature in the atmosphere

The pressure and temperature are known to drop with height in the atmosphere. Hot air at
the Earth’s surface rises while cooler air drops down in convection currents. Since air is a poor
conductor of heat, its motion can be taken to be adiabatic (i.e. p ∝ ργ or TV γ−1 = constant).
We will not attempt to model this flow, but instead assume a steady state where the pressure
and density are nevertheless related by the adiabatic relation. To get a crude estimate of the
temperature and pressure variation with height, we consider a thin horizontal layer of gas of
height dz and area A in mechanical equilibrium. The weight of the air in the layer is Aρg dz .
In equilibrium, the pressure at the bottom of the layer exceeds that on the top of the layer by the
weight per unit area: dp = −ρgdz . The negative sign is because pressure drops with increasing
z . It turns out that the temperature variation with height is simpler (essentially linear) than
that of pressure or density. So we eliminate density in favour of temperature using the EOS
p = ρRT/µ where µ is the mean molecular mass of air (between 28 and 32 for N2 and O2 ).
Thus

dp

p
= − µg

RT
dz (43)

We may now eliminate pressure in favour of temperature by use of the adiabatic condition

pT
γ

1−γ = constant. Differentiating, we get

dp

p
=

γ

γ − 1

dT

T
. (44)

Thus we arrive at a constant rate of change of temperature with height

dT

dz
= −µg

R

(
γ − 1

γ

)
. (45)

Find the numerical value of the temperature gradient. Also find an equation for dp/dz and
solve it.

3.7 Carnot Cycle

• A reservoir or source of heat or heat bath at a given temperature is an idealized
body that can exchange heat with other thermodynamic systems without suffering a change in
temperature and without performing work. A large body of water at a common temperature
throughout behaves as a reservoir. Its temperature and volume may be taken to be roughly
constant as it comes into contact with other small systems.

21



Figure 6: From K Huang: Carnot cycle on a pV diagram.

• The engine of a car provides an example of a cyclic heat engine. It absorbs heat at a high
temperature t2 (generated from combustion of fuel), does some work in moving the car, expels
waste heat via the exhaust to the low temperature (t1) reservoir (surroundings) and returns to
its initial state. Here t denotes some empirical temperature scale, such as given by a mercury
thermometer.

• A reversible engine is one that operates around a reversible cycle, this is of course an ideal-
ization since no real engine is truly reversible.

• The Carnot engine is a reversible cyclic heat engine that converts heat Q2 absorbed at a
high temperature (t2) reservoir to work W while also expelling some waste heat Q1 at a low
temperature (t1) reservoir. It is of great importance in understanding the limits of conversion
of heat into work. Consider a fluid (e.g. an ideal gas) whose state can be represented by a point
in the p − V plane. A Carnot cycle is a clockwise oriented closed curve ABCDA consisting
of two isotherms and two adiabats (recall that adiabats are steeper than isotherms for an ideal
gas).

• A simple example of a Carnot engine consists of a gas enclosed in a cylindrical container whose
lateral walls are thermally insulated. A thermally insulated movable piston on the top of the
cylinder allows work to be done by/on the gas while the diathermic base of the cylinder allows
heat to be exchanged. One cycle of the engine consists of the following four stages. To begin
with, the gas in the container is placed on the heat source at t2 and brought to equilibrium at
temperature t2 while occupying a volume VA .

AB : The container is placed on a heat source (reservoir) at t2 and the piston is raised slowly
causing the gas to expand isothermally from VA → VB and absorb heat Q2 .

BC : The container is placed on an insulator and the gas is allowed to expand adiabatically
(reversibly) from volume VB to VC while its temperature drops from t2 to t1 .

CD : The container is placed on a heat reservoir at temperature t1 and slowly compressed
isothermally from VC to VD while expelling heat Q1 .

DA : The container is placed on an insulator and the gas is slowly compressed from VD back to
the initial volume VA , raising its temperature from t1 to t2 .

• Let us apply the 1st law to one cycle of the Carnot engine. Since it has returned to its initial
state, there is no change in internal energy (we do not assume here that the fluid is an ideal

22



gas). Thus the work W done by the gas must equal the net heat absorbed: W = Q2 − Q1 .
It is an empirical observation (that we will prove later using the 2nd law of thermodynamics)
that if W > 0, Q1 cannot be zero or negative, i.e., some ‘waste’ heat must be surrendered at
the low temperature reservoir (‘exhaust’). The work done is also given by the area W =

∮
pdV

enclosed by the closed curve ABCDA in the p− V plane.

• The efficiency of the Carnot cycle is defined as the ratio of work done W = Q2 −Q1 to heat
Q2 absorbed at the high temperature reservoir

η =
W

Q2
=
Q2 −Q1

Q2
= 1− Q1

Q2
. (46)

No real engine with η = 1 has been constructed. We will show later that the 2nd law implies
η < 1.

• Since the Carnot cycle is reversible, we can run it in reverse ADCBA to get a refrigerator. In
this case the signs of Q2, Q1 and W are all reversed. Since the curve is traversed counterclock-
wise

∮
pdV is also negative. In other words, work W is performed on the refrigerator, allowing

it to absorb heat Q1 from the low temperature reservoir (at T1 , the interior of the fridge) and
deposit heat Q2 = W + Q1 at the high temperature reservoir (at T2 , the environment outside
the fridge). If E is a Carnot engine, then we will denote the corresponding refrigerator by Ē .

4 Second law of thermodynamics

• The second law is a postulate built on the observation that heat is not conducted (sponta-
neously) from lower to higher temperatures, though we do observer spontaneous heat transfer
from a hot to a cold body. This leads to Clausius’ formulation. Interestingly there is an equiva-
lent formulation of the second law due to Kelvin, that puts limits on the conversion of heat into
work. Recall that while the first law precludes creation of energy, it does not place restrictions
on the conversion of heat into work or vice versa. Empirically, there is no restriction on the
conversion of work completely into heat. Indeed, a body at any temperature can be heated by
friction, thereby converting mechanical work entirely into heat (electrical energy can similarly
be converted into heat using a resistor). However, there are limits to the conversion of heat into
work. If not, it would be possible to do essentially an unlimited amount of work using a device
that extracts heat from our surroundings. The second law states the impossibility of creating
such a ‘perpetuum mobile of the second kind’. Thus, we may regard the 2nd law as placing
restrictions on energy conserving processes that would otherwise be allowed by the 1st law.

4.1 Kelvin and Clausius postulates and their equivalence

• Clausius postulate: There is no thermodynamic process whose only final result is to transfer
heat from a reservoir at a lower temperature to a reservoir at a higher temperature.

• Kelvin postulate: There does not exist a thermodynamic process whose only final result is
to extract heat from a reservoir which is at the same temperature throughout the process and
convert it entirely into work.

• A useful re-statement of the Kelvin postulate is this: If the only final result of a thermodynamic
process is to extract heat Q from a reservoir at temperature t and convert it entirely into work
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W then W = Q ≤ 0. In other words, work was done on the system and converted into an equal
amount of heat.

• The Kelvin postulate precludes the construction of an engine that converts heat from one
reservoir at a fixed temperature into work. Loosely, a Carnot engine is the next best thing, it
does work by operating between reservoirs at two different temperatures.

• We will now show the equivalence of the Clausius and Kelvin postulates. Convince
yourself that to show A⇒ B it is enough to show that the falsehood of B implies the falsehood
of A .

• Clausius ⇒ Kelvin: Suppose the Kelvin postulate is false. It would then be possible to
extract heat Q1 from a reservoir at temperature t1 and convert it to entirely into work W = Q1 .
Now we could use this work W to deliver an equal amount of heat (e.g. via friction) to a reservoir
at any temperature, say one at temperature t2 > t1 . We would thus have transferred heat from
low to high temperature with no other effect, in violation of Clausius’s postulate.

• Kelvin ⇒ Clausius: Conversely, suppose the Clausius postulate is false and we have a
device that delivers heat Q2 from a reservoir at t1 to a reservoir at t2 with t2 > t1 . Then
we could run a Carnot engine between the reservoirs at t2 and t1 to extract heat Q2 from the
reservoir at t2 and deliver Q1 < Q2 to the reservoir at t1 while performing work Q2 −Q1 > 0.
In effect, we would have a machine whose only final effect is to extract heat Q2 − Q1 from a
reservoir at t1 and convert it entirely into work, in violation of Kelvin’s postulate.

• Cautionary remarks: In applying the second law, care must be taken in checking the
hypotheses. In particular, the second law does not prohibit complete conversion of heat into
work, if that is not all that happens. (1) For instance, in isothermal expansion of an ideal gas,
the heat supplied to the gas is equal to the work done by the gas. There is no change in internal
energy of the gas. However, at the end of the process, the gas has expanded and occupies a
larger volume. This violates the assumption in Kelvin’s postulate that ‘there is no other final
effect ...’ So isothermal expansion of an ideal gas does not contradict the second law. (2) On the
other hand, a Carnot engine, being cyclic, is able to do work without any net change in state of
the gas! But this clever device comes at a cost: it needs a second reservoir to accept waste heat!

4.2 Consequences of the 2nd law for efficiency of engines

• A cyclic engine cannot absorb heat at two reservoirs and do work. If a cyclic heat
engine (not necessarily a Carnot engine nor even a reversible one) operating between temper-
atures t2 > t1 does work W > 0 by absorbing heat Q2 > 0 at t2 and expelling heat Q1 at
t1 , then Q1 must be strictly positive. This seemingly obvious but non-trivial statement is a
consequence of the 2nd law. In particular, it means a cyclic engine cannot absorb heat at both
reservoirs and do work. Proof: To see why, suppose Q1 ≤ 0 so that the engine absorbs heat
|Q1| at t1 . If Q1 = 0 then we already have a contradiction with Kelvin’s postulate, so we may
assume |Q1| > 0. Then we could bring the two reservoirs into thermal contact and allow heat of
magnitude |Q1| to be conducted from t2 to t1 so that the low temperature reservoir would suffer
no net heat gain/loss. After one cycle, the engine would have taken heat Q2 − |Q1| from the
reservoir at t2 and converted it completely into work, contradicting the Kelvin postulate. (An
alternate argument is to convert part of the work done into heat amounting to |Q1| and deliver
it to the low temperature reservoir, so that the latter suffers no net heat exchange. Again, we
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arrive at a contradiction with the Kelvin postulate.)

• Fundamental theorem on heat engine efficiencies: Now consider two cyclic engines
(‘unprimed’ and ‘primed’) working between the same temperatures t2 > t1 . Let the amounts
of heat absorbed and expelled at t2 and t1 and the work done be denoted Q2, Q1,W and
Q′2, Q

′
1,W

′ respectively. Taking W,W ′ > 0 all the heats exchanged are positive by the previous
result. Then the second law implies that if the first (unprimed) engine is reversible, then

Q2

Q1
≥ Q′2
Q′1

or η ≥ η′. (47)

In other words, the efficiency η′ = 1 − Q′1/Q′2 of any cyclic engine is bounded above by the
efficiency η = 1−Q1/Q2 of the reversible cyclic engine between the same pair of temperatures.
We will prove this shortly.

Corollary: If both engines are reversible, then

Q2

Q1
=
Q′2
Q′1

or η = η′. (48)

This is a consequence of the fundamental theorem. Indeed, if the primed engine is reversible we
have Q′2/Q

′
1 ≥ Q2/Q1 . Combining with Q2/Q1 ≥ Q′2/Q′1 on account of the reversibility of the

first engine, the result follows. In other words, all reversible cyclic engines operating between the
same pair of temperatures have the same universal efficiency (though they might absorb/expel
different amounts of heat). The Carnot engine is a special cyclic reversible engine that uses an
ideal gas as its working substance, but its efficiency is universal.

Proof of the fundamental theorem in the special case Q2 = Q′2 : We will run the
reversible engine in reverse as a refrigerator. Thus the total work done by the cyclic process
defined by combining the engines is

Wtot = Q′2 −Q′1 − (Q2 −Q1). (49)

For simplicity, let us assume that Q2 = Q′2 so that there is no net heat exchanged with the
high temperature reservoir t2 . It follows that the combined engine absorbs heat Q1 −Q′1 from
reservoir t1 and does an equal amount of work Wtot = Q1 −Q′1 . This would violate the second
law unless Q1 ≤ Q′1 so that the combined engine simply converts work into heat. Dividing by
Q2 = Q′2 we get

Q1

Q2
≤ Q′1
Q′2

or
Q2

Q1
≥ Q′2
Q′1

or η ≥ η′. (50)

• The above proof may be generalized to treat the case Q2 6= Q′2 .

4.3 Absolute thermodynamic temperature

• We concluded above that all reversible cyclic engines working between the same pair of tem-
peratures t2 > t1 have the same Q2/Q1 ratio (or efficiency η = 1−Q1/Q2 ), irrespective of the
heats absorbed/expelled or work done. Thus for a reversible cycle, Q2/Q1 is some universal
function of the temperatures

Q2

Q1
= f(t1, t2). (51)
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Note that f(t1, t2) > 0 since Q1,2 > 0 assuming the engine does positive work. We will show
now that the function f(t1, t2) satisfies the reproducing/multiplicative property

f(t0, t1)f(t1, t2) = f(t0, t2) (52)

where t0 is any temperature (below t1 ). To see this, suppose C1(t0, t1) and C2(t0, t2) are two
reversible cycles working between the indicated temperatures. For i = 1, 2, Ci absorbs heat Qi
at ti and expels heat Q0 at t0 . Then we must have

Q2

Q0
= f(t0, t2) and

Q1

Q0
= f(t0, t1). (53)

Now consider the combined reversible cycle C consisting of one cycle each of C2 and the reverse
of C1 . C absorbs heat Q2 at t2 and expels Q1 at t1 with no net heat exchanged at t0 . Thus
we must have

Q2

Q1
= f(t1, t2). (54)

Combining, we get the advertised multiplicative property

Q2

Q1
= f(t1, t2) =

f(t0, t2)

f(t0, t1)
. (55)

Since t0 is an arbitrary temperature, we may treat it as a fixed reference temperature and regard
f(t0, ti) as a function θ of ti alone. Thus we write

f(t0, t) = θ(t) > 0. (56)

It follows that f(t1, t2) can be expressed in terms of the single function of one variable θ :

Q2

Q1
= f(t1, t2) =

θ(t2)

θ(t1)
. (57)

Note that θ(t) is not uniquely defined: we may redefine θ(t) by a positive multiplicative constant
without affecting Q2/Q1 .

• It now makes sense to switch from the empirical temperature t (which is defined using the
special properties of a thermometric material, say mercury, used in a thermometer) to the so-
called absolute thermodynamic temperature θ(t). It is conventional to choose the multiplicative
constant in θ so as to ensure that the boiling and freezing points of water at atmospheric pressure
differ by 100: θ(tb) − θ(tf ) = 100. The existence of this absolute thermodynamic temperature
is a consequence of the 2nd law. It is independent of the properties of the working substance in
the heat engine, as it is defined in terms of the universal efficiency of reversible cycles.

We may now write this universal efficiency as

ηrev = 1− Q1

Q2
=
θ2 − θ1

θ2
. (58)

• We may also express the ratio of work done to heat expelled at the low temperature reservoir:

W

Q1
=
Q2 −Q1

Q1
=
θ2 − θ1

θ1
=
θ2

θ1
− 1. (59)

Now running the engine in reverse, the signs of Q1, Q2 and W are reversed. W/Q1 is then the
work required to extract a unit amount of heat from the interior of the (reversible) refrigerator.
θ2 is typically room temperature, and is fixed. As expected, the work (supplied through electrical
energy) required grows as the temperature of the interior θ1 falls.
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4.4 Equality of absolute thermodynamic and gas temperatures

The absolute thermodynamic temperature θ coincides with the ideal gas thermometer temper-
ature T defined earlier. To see this, we consider a Carnot cycle, i.e. a reversible engine with
n moles of an ideal gas as working substance composed of the following four stages. (A-B)
isothermal expansion absorbing heat Q2 from reservoir at gas temperature T2 ; (B-C) adiabatic
expansion; (C-D) isothermal compression at gas temperature T1 expelling heat Q1 and (C-A)
adiabatic compression. We will now show that Q2/Q1 = T2/T1 .

Proof: The heat Q2 absorbed during the isothermal expansion is equal the work done WAB

since the internal energy of the ideal gas is unchanged (by Joule’s experiment, internal energy
of an ideal gas depends on temperature an not volume, so UA = UB ). Thus from (22)

Q2 = WAB = nRT2 log
VB
VA

. (60)

Similarly, the heat Q1 expelled during the isothermal compression is

Q1 = −WCD = nRT1 log
VC
VD

(61)

Thus
Q2

Q1
=
T2

T1

log(VB/VA)

log(VC/VD)
. (62)

It turns out that the ratios of volumes are equal, VB/VA = VC/VD . To see this, recall that in
an adiabatic process, TV γ−1 is constant where γ = cp/cV . Thus

T2V
γ−1
B = T1V

γ−1
C and T2V

γ−1
A = T1V

γ−1
D . (63)

Dividing one by the other, we get VB/VA = VC/VD . Thus the ratio of heat absorbed to heat
expelled is the ratio of gas thermometer temperatures

Q2

Q1
=
T2

T1
. (64)

Previously, we found that Q2/Q1 = θ2/θ1 is the ratio of absolute thermodynamic temperatures.
Thus T and θ can differ at most by a multiplicative constant. However we must have T = θ since
both temperature scales have been chosen so that the boiling and freezing points of water are
100 degrees apart at atmospheric pressure. We will denote this common absolute temperature
scale by T , the Kelvin scale. In particular, the efficiency of a Carnot engine is

η =
T2 − T1

T2
. (65)

4.5 Clausius’ Theorem

Consider a system S that undergoes a cyclic process P in which it comes into contact with
reservoirs at temperatures T1, · · · , Tn from which it absorbs heat in the amounts Q1, . . . , Qn
and performs work W =

∑
iQi . By the 2nd law, some of the Q′is must be negative (heat
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expelled), otherwise, heat would have been completely converted into work without other net
effect. Clausius’ theorem states that ∑

i

Qi
Ti
≤ 0 (66)

with equality for a reversible cycle. It is important here that T be the absolute thermodynamic
temperature. By taking a limit as n → ∞ we may arrive at a cycle in which the system
absorbs heat δQ(T ) from a distribution of sources with temperatures T . Clausius’ theorem
then becomes ∮

δQ

T
≤ 0 (67)

with equality for a reversible cycle. Note here that T is the temperature of the particular
reservoir from which the system S receives heat δQ , it is not necessarily the temperature of S
while it receives that heat. After all, in general heat cannot naturally be conducted from a cold
to hot body, so the temperature of S must be bounded above by that of the reservoir if it is
to receive heat (and must be greater than or equal to T if it is to give up heat). If the heat is
received reversibly, then the temperatures of the system and reservoir coincide.

• Proof: Clausius’ theorem is a consequence of the 2nd law and makes elegant use of Carnot
cycles. In addition to the n reservoirs at Ti (i = 1, . . . , n), it is convenient to introduce a
reference reservoir at an arbitrary temperature T0 > 0 and a sequence of Carnot engines Ci
operating between temperatures T0 and Ti . Ci is chosen to absorb heat Q0

i at T0 and expel
heat Qi to the reservoir at Ti . Since S absorbs Qi at Ti during the process P , there is no
net heat exchanged at the n reservoirs in the combined cycle consisting of P,C1, · · ·Cn . In this
combined cycle, an amount of heat

Q0 =
∑
i

Q0
i = T0

∑
i

Qi
Ti

(68)

is absorbed at T0 . Now the work done by S in process P is W =
∑

iQi while the work done
in Ci is Q0

i −Qi . Thus the total work done in the combined cycle is

Wtotal =
∑
i

Qi +
∑
i

(Q0
i −Qi) = Q0. (69)

Thus, the only final result of the combined cycle is to convert heat Q0 from T0 entirely into
work. This would violate the 2nd law unless Q0 ≤ 0, i.e.,

T0

∑
i

Qi
Ti
≤ 0. (70)

Clausius’ inequality follows since T0 is a fixed positive temperature.

• Now if P is a reversible process, we can run it as well as each of the Ci backwards. In
the reversed combined cycle, the signs of all the Q′s would be reversed leading to the reversed
Clausius inequality ∑

i

Qi
Ti
≥ 0. (71)

Combining the inequalities for the forward and backward process we conclude that
∑

iQi/Ti = 0
for a reversible process.
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5 Entropy and some consequences of the 2nd law

• The most important consequence of the second law is the existence of a new state function
called entropy.

5.1 Absolute temperature as an integrating denominator and the entropy

• Clausius’ theorem states that for any reversible cyclic process,∮
rev

δQ

T
= 0. (72)

Thus the line integral of the differential δQ/T vanishes around any closed curve lying on the
space of equilibrium states. Now suppose P and P ′ are two reversible processes between the
same pair A,B of initial and final equilibrium states, and let us denote by P̄ ′ the reverse of
process P ′ . Then P ∪P̄ ′ is a reversible cyclic process (A→ B → A) to which Clausius’ theorem
applies

0 =

∮
P∪P̄ ′

δQ

T
⇒

∮
P

δQ

T
=

∮ ′
P

δQ

T
. (73)

In other words, the line integral of δQ/T is independent of the (reversible) path chosen. On the
other hand, we have observed that the heat change

∫
P δQ is generally path-dependent (even for

reversible processes). This means that though the infinitesimal heat change δQ is not an exact
differential on the space of equilibrium states, dividing it by the ‘integrating factor’ T turns it
into the exact differential δQ/T .

• Entropy of equilibrium states: The second law of thermodynamics has allowed us to
define an absolute temperature T which is an integrating denominator for the heat δQ added in
an infinitesimal reversible process. The exact differential δQ/T = dS defines an extensive state
function (entropy) upto an additive constant. Thus, with respect to a ‘reference’ equilibrium
state A , the entropy of any equilibrium state B that can be reached from A by a reversible
process is given by

S(B) = S(A) +

∫
R(A→B)

δQ

T
. (74)

R(A→ B) is any reversible path from A to B . By the exactness of δQ/T , S(B) is independent
of the choice of reversible path. A different choice of reference state will add a common constant
to the entropy of all equilibrium states. Note that we have not defined the entropy of states
that are not in equilibrium, we will address this later.

• The name entropy was coined by Rudolf Clausius (1850s-1860s) (who also used the letter S for
it) in the context of thermodynamics. Entropy derives from the Greek word for transformation
(τρoπη ). Clausius was studying the changes that occur in a system especially in dissipative
processes as well as the transformation of heat into work and vice versa. He apparently wanted
a word that sounded like energy (derived from the Greek εργo) because entropy and energy had
some similarities – they are both state functions.

• Thus, loosely we may say that the zeroth, first and second laws of thermodynamics each
postulates the existence of a new state function: temperature, internal energy and entropy.

• For an infinitesimal reversible process12, we may write the heat added to the system as

12For irreversible infinitesimal processes, δQ is well-defined, but we have not defined TdS .
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δQ = TdS . Thus an infinitesimal reversible adiabatic process is the same as an isentropic
process. In particular, the heat capacities may be expressed as

CV = T

(
∂S

∂T

)
V

and Cp = T

(
∂S

∂T

)
p

. (75)

For infinitesimal processes we have a new form of the 1st law:

TdS = dU + pdV or dU = TdS − pdV. (76)

In this form, S and V are the ‘natural’ variables that the internal energy depends on.

• In particular, if the function U(S, V ) is known, then we may compute the temperature and
pressure, as functions of S and V :

T =

(
∂U

∂S

)
V

and p = −
(
∂U

∂V

)
S

. (77)

However, the internal energy is often not directly measurable and we seldom have an explicit
formula for U as a function of S and V (e.g. for an ideal gas it is easier to express U as a
function of T : for constant CV , U = CV T upto an additive constant). Remarkably, we can
eliminate the internal energy from (77). Indeed, taking one more partial derivative and equating

mixed partials ∂2U
∂S∂V = ∂2U

∂V ∂S we arrive at the ‘Maxwell relation’(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(78)

which is the integrability condition for exactness of the differential expression for the change in
internal energy. We will say more about Maxwell’s relations later.

5.2 Exactness of dS = δQ/T and the energy equations

Energy equation: The fact that dS is an exact differential implies that its components (re-
garded as a vector) must have zero curl. Choosing T and V as independent variables we have

dS =
1

T

∂U

∂T
dT +

(
1

T

∂U

∂V
+
p

T

)
dV (79)

Thus we must have

∂

∂V

(
1

T

∂U

∂T

)
=

∂

∂T

(
1

T

∂U

∂V
+
p

T

)
or

1

T

∂2U

∂V ∂T
= − 1

T 2

∂U

∂V
+

1

T

∂2U

∂T∂V
− p

T 2
+

1

T

∂p

∂T
. (80)

The mixed partials cancel by Schwarz’s theorem leaving the so-called TV -form of the energy
equation (

∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p. (81)

The energy equation expresses the volume derivative of internal energy at constant T (which is
difficult to measure) in terms of the more easily measurable variation of pressure with temper-
ature.
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• For a fluid satisfying the ideal gas EOS pV = nRT the energy equation becomes(
∂U

∂V

)
T

= T (nR/V )− p = 0. (82)

This is consistent with our earlier assumption (based on Joule’s experiment), that the internal
energy of an ideal gas is a function of temperature and not volume. It now seems as if we can
drop this assumption and instead derive the volume-independence of U using the energy equa-
tion. However, this is not quite true, because the assumption that U is independent of volume
has already crept into the derivation of the energy equation. Strictly speaking, the temperature
that appears in the energy equation (or as an integrating factor for δQ) is the absolute ther-
modynamic temperature. To show the equality of gas and thermodynamic temperatures (see
§4.4), we assumed that the internal energy of an ideal gas is a function of temperature alone, so
that it does not change during an isothermal compression in a Carnot cycle. Thus, the volume-
independence of the internal energy of an ideal gas and the functional form of U(T ) (e.g. that
CV is a constant (independent of temperature) for a calorically perfect gas) are independent
postulates on the nature of an ideal gas, that do not follow from the application of the first and
second laws of thermodynamics to the EOS pV = nRT .

• Later, we will apply the energy equation to understand the slope of phase boundaries in a pT
diagram for first order phase transitions (Clapeyron equation).

• Two other forms of the energy equation may be obtained as above by choosing (T, p) and
(V, p) as independent variables.

5.3 Entropy of an ideal gas

The second law guarantees that T is an integrating denominator for the infinitesimal heat δQ
absorbed in a reversible process. Let us demonstrate this for an ideal gas and thereby identify the
state function (entropy) S such that δQ/T = dS . For n moles of an ideal gas p = nRT/V and
dU = CV dT with CV independent of V (this is called the caloric condition, U(T, V ) = U(T )
is independent of volume). So the first law δQ = dU + pdV implies

dS =
δQ

T
= CV

dT

T
+ nR

dV

V
. (83)

To carry out explicit integration, we assume that CV is independent of temperature, which is
usually a good approximation (such a gas is said to be calorically perfect). It follows that

dS = d
(
log TCV + log V nR

)
= d log

(
TCV V nR

)
. (84)

Thus, the entropy of an ideal gas is

S(T, V )ideal gas = CV log T + nR log V + S0 = log
(
TCV V nR

)
+ S0 (85)

where S0 is an additive constant of integration. The dimensional constants in S0 must ensure
that the argument of the logarithm is dimensionless and that S is extensive (the term nR log V
entails logarithmic violation of extensivity under n→ λn, V → λV ). It turns out that the third
law of thermodynamics constrains the value of S0 .
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• For a monoatomic ideal gas CV = (3/2)nR from kinetic theroy, so

S(T, V )monoatomic = nR log(T 3/2V ) + S0. (86)

• Notice that if an ideal monatomic gas undergoes an isentropic process, then T 3/2V must be
constant. More generally, using nR = CP −CV we find that TCV V CP−CV must be a constant.
Taking the Cth

V root this means TV γ−1 must be constant.

• Entropy may also be expressed in terms of p and T or p and V by using the EOS V = nRT/p
and the relation Cp = CV + nR :

S(p, T ) = Cp log T − nR log(p/nR) + S0 and S(p, V ) = CV log(p/nR) +Cp log V + S0. (87)

• Entropy rise in free Joule expansion of an ideal gas. In thermally insulated free
Joule expansion of an ideal gas from a container of volume V to one of volume V ′ > V , no
work is done and no heat is added to the gas. Though its final pressure is less than the initial
pressure, its final temperature and internal energy are the same as their initial values. Though
the process is irreversible, the initial and final states are equilibrium states, so we may evaluate
their entropies. The constant S0 cancels out and we obtain a simple formula for entropy rise in
free expansion of an ideal gas:

S(T, V ′)− S(T, V ) = nR log(V ′/V ). (88)

Notice that this increase is independent of the temperature T . This entropy rise cannot be
calculated by integrating δQ/T since it is not a reversible process. We note that in this example,
the entropy of a thermally insulated system has increased. We will see that this is more generally
true.

5.4 Properties of entropy and examples

• Clausius inequality: Recall that we defined the entropy of an equilibrium state B with
reference to an equilibrium state A as the line integral of the exact differential δQ/T along any
reversible path R from A to B . Suppose in addition to the reversible path R(A → B), the
equilibrium states A and B are also connected by a (not necessarily reversible) path P . Then
the closed path P ∪ R̄ represents a cyclic process to which we may apply Clausius’ theorem13∮

P∪R̄

δQ

T
≤ 0 ⇒

∫
P

δQ

T
≤
∫
R

δQ

T
= S(B)− S(A). (89)

Thus the line integral of δQ/T along any path P joining equilibrium states A and B is bounded
above by the entropy difference. Equality holds if (and only if) P is reversible.

• Since S is a state function, the entropy change in any process P between equilibrium states
A and B is always given by S(B)−S(A). It may also be expressed as the line integral

∫
P δQ/T

only if P is reversible.

• Law of non-decreasing entropy for insulated systems: For a thermally insulated system,
δQ is identically zero during any process. Thus we must have S(B) ≥ S(A): the final entropy

13Note that in general we may not consider R ∪ P̄ since P may not be reversible!
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of a thermally insulated system must be at least as large as its initial value. This is often
loosely stated as the law of ‘increase’ of entropy of an isolated system. We note that this is
not an independent law but a consequence of the second law of thermodynamics. On the other
hand, the entropy of systems that can exchange heat with their surroundings could increase or
decrease. For example, we might reduce the entropy of a body at temperature Th by letting
heat ∆Q be conducted from it to another body at a lower temperature Tl < Th .

(1) Heat conduction: Suppose an isolated system consists of two large bodies at temperatures
Th and Tl with Th > Tl . A small amount of heat ∆Q > 0 is conducted from the hotter one to
the colder one. From Clausius’ theorem, the changes in entropy satisfy the following inequalities

(∆S)h ≥
∫
δQ

T
≈ −∆Q

Th
< 0 and (∆S)l ≥

∫
δQ

T
≈ ∆Q

Tl
> 0. (90)

Here we have assumed that the small heat transferred does not significantly change the temper-
atures of either of the big bodies. Thus, the change in entropy of the system is given by

∆S = (∆S)h + (∆S)l ≥ ∆Q

(
1

Tl
− 1

Th

)
> 0 as Th > Tl. (91)

We see that entropy is produced in heat conduction. The entropy of the colder body has
increased. The entropy of the hotter body may decrease, though our inequality allows it too to
increase.

(2) Heating through friction: The initial energy in a swing is dissipated as it executes
damped oscillations, heating up the suspension through friction. In this process, mechanical
work ∆W done on the swing is completely converted into heat ∆Q = ∆W and the temperature
of the suspension is raised from Ti to Tf > Ti . The change in entropy of the suspension must
satisfy

∆S ≥
∫ f

i

δQ

T
>

∫ f

i

δQ

Tf
=

1

Tf

∫ f

i
δQ =

∆Q

Tf
> 0. (92)

So heating through friction is an entropy raising process.

• Remark: Suppose equilibrium states A and B of a thermally insulated system are connected
by a reversible process (which must necessarily be adiabatic δQ = 0). Then S(B) = S(A). On
the other hand, if they are connected by an irreversible process (again with no heat exchange)
then S(B) > S(A). Evidently, the same pair of equilibrium states of a thermally insulated
system cannot be connected by both a reversible and irreversible process with no heat change.
E.g. Free Joule expansion of an ideal gas from equilibrium state (T, V1) to equilibrium state
(T, V2) with no heat exchange is an irreversible process between two states of an ideal gas that
differ in volume V2 > V1 but have the same temperature. It involves an entropy increase of
nR log(V2/V1). Can we find a reversible way of adiabatically expanding the same ideal gas
between the same equilibrium states? This is not possible. An adiabat pV γ = const cannot
intersect an isotherm at more than one point, so it cannot connect two distinct states with the
same temperature. Note that there are reversible ways of expanding such a gas isothermally,
but they involve work and hence heat exchange and therefore cannot be adiabatic. E.g. let the
gas expand while compressing a spring connecting the piston to a fixed wall, the process can be
reversed by expanding the spring while compressing the gas.

• Entropy of composite systems Suppose a system s is composed of two homogeneous parts
s1 and s2 , each in equilibrium with its own entropy. Then it is often (though not always) the
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case that we can define the entropy of s to be the sum S = S1 + S2 . For instance, suppose the
internal energies are additive, U = U1 + U2 and the work done by s is the sum of the works
done ∆W = ∆W1 + ∆W2 . Then the heat added to s would also be additive δQ = δQ1 + δQ2 .
If T is the temperature of the reservoir from which heat δQ is received, then the entropy S(B)

(defined as
∫ B
A δQ/T ) of the state B of the combined system (relative to state A) satisfies the

additive property: S(B) =

∫ B

A

δQ

T
=

∫ B1

A1

δQ1

T
+

∫ B2

A2

δQ2

T
= S1(B1) + S2(B2). (93)

Here A1 and B1 are the states of subsystem s1 when the total system is in states A and B , the
same applies to A2 and B2 . The additivity of internal energies may fail for instance if the energy
of the interface (common boundary surface) of the two systems is comparable to the energy of
either s1 or s2 in isolation. It could also fail if there are long-range forces in operation between
the constituents of s1 and those of s2 so that the interaction energy cannot be ignored compared
to U1 and U2 . For neutral gases there are no long-range forces since the electromagnetic forces
are screened due to the neutrality of matter on macroscopic scales (despite the long-range nature
of Coulomb forces between individual charges). On the other hand, this assumption can fail in
systems of gravitating masses (e.g. a galaxy) since gravity is always attractive and there is no
screening.

• When the above additivity property holds, we may use it to define the entropy of non-
homogeneous systems that are not in equilibrium. We subdivide the system s into homogeneous
parts s = ∪isi each of which is in equilibrium (say at temperature Ti and pressure pi ) and define
the entropy of s to be the sum of entropies. In this manner we may try to define the entropy of
a flowing fluid, which is evidently not in equilibrium.

• Infinitesimal version of Clausius inequality: Specializing the Eq. (89) to an infinitesimal
process P we may write S(B) − S(A) ≈ dS and

∫
P δQ/T ≈ δQ/T . So for an infinitesimal

process in which a system absorbs heat δQ from a reservoir at temperature T ,

TdS ≥ δQ. (94)

If the process is irreversible, then TdS > δQ . Equality holds for a reversible process. We had
initially assumed that the process P begins and ends at equilibrium states. This assumption
may be relaxed in situations where we can define the entropy for non-equilibrium states.

• Entropy and loss: The entropy increase in an irreversible process of an isolated system may
be interpreted as a loss in the ability to do useful work. To see this, we consider two processes:
(a) free Joule expansion of n moles of a thermally insulated ideal gas from (T, V1) to (T, V2)
with V2 > V1 and (b) slow (reversible) isothermal expansion of the same ideal gas between the
same initial and final states while compressing a spring. In free expansion, no work is done, but
the entropy of the gas rises by ∆S = nR log(V2/V1). In the slow isothermal expansion, there is
no change in U as T does not change (the gas is kept in contact with a reservoir at temperature
T from which it receives heat in order to expand), so the work done ∆W = nRT log(V2/V1)
must equal the heat ∆Q absorbed. Thus the increase in entropy of the gas in this isothermal
expansion is ∆S =

∫
δQ/T = nR log(V2/V1). We see that in both free and reversible expansion,

there is an identical increase in the entropy of the gas. This had to be the case as both processes
have the same initial and final states, and entropy is a state function. How do the processes
differ?
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• (a) Free expansion is irreversible, the entropy of the system as a whole (gas + insulated
container) increases by ∆S . In (b), the entropy of the surroundings of the gas (the spring and
reservoir) decrease, as they give up heat ∆Q at a fixed temperature T . In fact, since the gas
+ surroundings form an isolated system undergoing a reversible process, the total entropy is
unchanged. Indeed, the process can be reversed by isothermally compressing the gas slowly by
letting the spring expand. Thus we may interpret the increase in entropy in free expansion as a
loss in useful work that the gas could do. In (b) there is no increase in entropy for the system
as a whole, and ‘useful’ work done by the gas is stored in the spring.

• Increasing entropy and stability: An isolated system (thermally and mechanically iso-
lated) must have a fixed internal energy (as δQ = δW = 0). We showed above that its entropy
is a non-decreasing function of time. So if an isolated system is in a state of maximal entropy
consistent with its energy then it can undergo only those transformations to other states with
the same energy and maximal value of entropy. In practice, all macroscopic processes are irre-
versible (running of engines etc.). In other words, in ‘real’ isolated physical systems, entropy is
strictly increasing with time. So even if there is another state with the same maximum entropy,
a real system cannot access it. Thus, a maximum entropy state of an isolated system is a stable
state: once in such a state, the system remains in it if isolated.

5.5 Boltzmann’s statistical interpretation of entropy

• Thermodynamics provides a macroscopic description of systems independent of their mi-
croscopic structure (atomic/molecular structure of matter). Statistical mechanics (SM) is a
framework based on the dynamics of microscopic constituents. Boltzmann gave a statistical
interpretation for entropy and the law of its increase for isolated systems.

• SM begins with the microscopic dynamical state of a system (say a gas), specified by positions
and momenta of a large number of molecules. On the other hand, the thermodynamic state of
the same system is defined by the values of a few macroscopic variables such as p, V, T (or
p, V, U ). There are typically very many microstates that correspond to a given macrostate,
since for example, different molecular motions can result in the same total energy and pressure
in a fixed volume. Suppose π is the fraction of microscopic states corresponding to a given
macrostate, it is interpreted as the statistical probability of the given macrostate, assuming
that all microstates with a common energy are equally probable (this is one of the postulates
of statistical mechanics). Boltzmann related the probability π of a macrostate to its entropy:
S = kB log π where kB = R/NA is Boltzmann’s constant. Based on this relation, we see that
the entropy of an isolated system is non-decreasing provided transformations of the system to
states of lower probability are forbidden.

• We can be a bit more precise. The microscopic state space is the phase space of the gas.
If the gas has N molecules and is in a three-dimensional room, then the phase space is M =
R3N × (room)3N . There is a many-to-one projection map Π from this mechanical state space to
the thermodynamic state space. If we take p, V, U as coordinates on the thermodynamic state
space, then the inverse image of a macrostate Π−1(p, V, U) is the set of all microstates that
correspond to those values of macroscopic variables.

• There is a natural Liouville volume element (measure) on this phase space,

dµ = ΠN
i=1dp

x
i dq

xidpyi dq
yidpzi dq

zi (95)
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that allows us to assign volumes to subsets Ω of the phase space

Vol(Ω) =

∫
Ω
dµ. (96)

Though the volume of the whole phase space M is typically infinite, the volume of the set of
macrostates of a fixed energy U is finite since the positions are confined inside the room and
the momenta cannot become too large in magnitude. Then Boltzmann’s statistical probability
π is defined as the ratio

π(p, V, U) =
Vol(Π−1(p, V, U))

Vol(MU )
. (97)

Notice that π (and consequently the statistical entropy) has only been defined for macrostates.
Unlike the energy of a microstate, we do not define the entropy of a microstate.

• To make Boltzmann’s relation plausible, let us show that if there is a functional relation
S = f(π) between entropy and probability, then assuming f is differentiable, it must be of the
logarithmic form given by Boltzmann. Following Fermi, consider a thermodynamic system s in
a particular state with entropy S = f(π) where π is the probability of the state. Suppose s is
composed of two separate parts s1 and s2 with entropies S1 = f(π1) and S2 = f(π2) where
π1,2 are the probabilities of the corresponding states. Then under the conditions for extensivity,
S = S1 +S2 while π = π1π2 so that f(π1π2) = f(π1)+f(π2). This functional relation must hold
for any probabilities π1,2 = x, y , i.e. f(xy) = f(x) + f(y) for all 0 ≤ x, y ≤ 1. To determine f
we assume it is differentiable and suppose that y = y0 + ε for small ε . Then Taylor expanding,

f(x(y0 + ε)) = f(x) + f(y0 + ε) ⇒ f(xy0) + εxf ′(xy0) = f(x) + f(y0) + εf ′(y0). (98)

By the functional relation f(xy0) = f(x) + f(y0) so we have

xf ′(y0x) = f ′(y0) or y0xf
′(y0x) = y0f

′(y0) = const. = k. (99)

Now denoting y0x as χ and integrating we have

χf ′(χ) = k or f(χ) = k logχ+ const. (100)

As desired, we find that S = f(π) = k log π upto an undetermined additive constant. The con-
stant k can be fixed by requiring that this formula agrees with the thermodynamic one already
derived for an ideal gas, one finds that k = kB . The actual task of calculating Boltzmann’s en-
tropy of an ideal gas starting from the mechanics of free particles is left to a course on statistical
mechanics.

5.6 Thermal expansion, compressibility and tension coefficients for an ideal gas

• Some measurable coefficients we have defined for a gas/fluid are (here H = U+pV is enthalpy):

heat capacity at constant volume CV =

(
δQ

dT

)
V

=

(
∂U

∂T

)
V

and pressure Cp =

(
δQ

dT

)
p

=

(
∂H

∂T

)
p

compressibilities: isothermal κT = − 1

V

(
∂V

∂p

)
T

and isentropic κS = − 1

V

(
∂V

∂p

)
S

coefficient of thermal expansion α =
1

V

(
∂V

∂T

)
p

and tension β =
1

p

(
∂p

∂T

)
V

. (101)
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• For an ideal gas we may determine the coefficients of thermal expansion α and tension β as
well as the isothermal compressibility κT directly from the EOS pV = nRT :

α =
1

V

(
∂V

∂T

)
p

=
nR

pV
=

1

T
, β =

1

p

(
∂p

∂T

)
V

=
nR

pV
=

1

T
and κT = − 1

V

(
∂V

∂p

)
T

=
nRT

V p2
=

1

p
. (102)

We see that an ideal gas is more compressible at low pressures. At very high pressures, gases
liquify and may often be treated as incompressible. The coefficients of thermal expansion and
tension are both equal to 1/T . At high temperatures, there is hardly any fractional change in
volume or pressure of an ideal gas when the temperature is slightly increased. Exercise: Find a
formula for the adiabatic compressibility κS of an ideal gas.

6 Thermodynamic potentials

A potential (in mechanics, fluid mechanics and electrostatics) is a function whose derivative
gives the force, velocity or electric field. Thermodynamic potentials such as the internal energy,
Helmholtz free energy, Enthalpy and Gibbs free energy play a similar role. They differ in the
independent variables that they depend on.

6.1 Legendre transform from internal to free energies and enthalpy

Combining the first and second laws of thermodynamics for infinitesimal reversible transforma-
tions of a gas, the increase in internal energy is dU = TdS − pdV . Thus the internal energy,
which is our first example of a thermodynamic potential, is naturally a function of entropy and
volume14. The other two conjugate variables are given by its partial derivatives T =

(
∂U
∂S

)
V

and

p = −
(
∂U
∂V

)
S

. The change in internal energy is particularly simple for adiabatic (dS = 0) or iso-
choric (dV = 0) processes. However, many processes take place at constant temperature (room
temperature) or at constant pressure (atmospheric pressure). Thus, it would be convenient to
have thermodynamic potentials with other independent variables.

• The Legendre transform (LT), familiar from Lagrangian and Hamiltonian mechanics15 al-
lows us to change independent variables16. For instance, to switch from (S, V ) to (T, V ) as
independent variables, we define the Helmholtz free energy F = U − TS . It follows that
dF = dU −TdS−SdT = −pdV −SdT . Thus F is naturally a function of (V, T ) with the other
two given by17

p = −
(
∂F

∂V

)
T

and S = −
(
∂F

∂T

)
T

. (103)

14Of course, we may view U as a function of p and V as we did in deriving the TdS equations. What we
mean here are the independent differentials that appear in dU directly as a consequence of the 1st and 2nd laws.

15The Lagrangian is a function of coordinates q and velocities q̇ , while the Hamiltonian is a function of
coordinates and momenta p . H = pq̇ − L with p = ∂L

∂q̇
or H(q, p) = extq̇(pq̇ − L(q, q̇)) . Calculate the Legendre

transform of L = 1
2
mq̇2 +V (q) . In particular, show that the Legendre transform of a quadratic function velocities

is again a quadratic function of momenta.
16Changing independent variables here does not simply mean expressing the same scalar function, say f(p, T )

in terms of V and T using the equation of state. In particular, at a given equilibrium state the numerical values
of the state function U and its Legendre transform F are in general unequal.

17In statistical mechanics one derives a formula for the Helmholtz free energy by averaging over microscopic
motions. The thermodynamic relation p = −

(
∂F
∂V

)
T

then gives a relation among p, V and T and thus gives a
way of deriving the equation of state from microscopic considerations.

37



We will see that the free energy may be interpreted in terms of the work that a system can do
at constant temperature. To obtain F = U(S, V )− TS as a function of T, V we must express
S in terms of T and V using the relation T = ∂U

∂S . Since this is just the condition for U − TS
to be extremal, we may write

F (T, V ) = extS (U(S, V )− TS) (104)

• Enthalpy is the thermodynamic potential that depends on (S, p). It is defined via the relation
H = U + pV so that dH = dU + pdV + V dp = TdS + V dp and

T =

(
∂H

∂S

)
p

and V =

(
∂H

∂p

)
S

. (105)

It is a Legendre transform of the internal energy

H(S, p) = extV (U(S, V ) + pV ) (106)

• Gibbs free energy is the last thermodynamic potential, with independent variables (T, p). It
may be obtained from U(S, V ) by a succession of two Legendre transforms

G = U − TS + pV = F + pV = H − TS (107)

Evidently dG = dF + pdV + V dp = −SdT + V dp so that

S = −
(
∂G

∂T

)
p

and V =

(
∂G

∂p

)
T

. (108)

Gibbs free energy may be obtained as a Legendre transform of U,F or H :

G(T, p) = extV,S (U(S, V )− TS + pV ) = extV (F (T, V ) + pV ) = extS (H(S, p)− TS) (109)

• In summary, we have defined three new state functions (thermodynamic potentials) via Leg-
endre transforms from the internal energy:

F = U − TS, H = U + pV and G = U − TS + pV. (110)

Note that we cannot obtain thermodynamic potentials with (p, V ) or (T, S) as natural indepen-
dent variables via Legendre transformation from U(S, V ). This is because the LT only allows
us to replace a variable by its conjugate, i.e., p ↔ V or T ↔ S . Note also that U and H are
defined up to additive constants. On the other hand, the Helmholtz and Gibbs free energies are
defined up to a linear function of temperature, since entropy has been defined only up to an
additive constant. We will return to this issue when we discuss the third law of thermodynamics.

• The first and second laws of thermodynamics for infinitesimal reversible processes may be
expressed in terms of any one of the four thermodynamic potentials:

dU(S, V,N) = TdS − pdV + µdN, dF (T, V,N) = −SdT − pdV + µdN,
dH(S, p,N) = TdS + V dp+ µdN and dG(T, p,N) = −SdT + V dp+ µdN. (111)
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Ideal gas: Let is consider a calorically perfect ideal gas. Its internal energy is given by U =
CV T + U0 . To express U in terms of the natural variables S and V we recall the formula for
entropy

S = S0 + CV log T + nR log V (112)

and use it to express T as a function of S an V :

T = exp[(S − S0 − nR log V )/CV ]. (113)

Thus we obtain
U(S, V ) = CV exp[(S − S0 − nR log V )/CV ]. (114)

We may now obtain the Helmholtz free energy via a Legendre transform. Show that

Fperfect gas(T, V ) = U − TS = CV T − T (CV log T + nR log V ) + U0 − S0T. (115)

In particular, the Legendre transform of an exponential function of S is T times a logarithm
of T . It is easily verified that p = −

(
∂F
∂V

)
T

leads to the ideal gas equation of state while its

entropy is recovered by computing −
(
∂F
∂T

)
V

. Similarly, the Gibbs free energy G(T, p) of perfect
gas is

G = U − TS + pV = CV T + U0 − T (CV log T + nR log V + S0) + nRT
= CpT + U0 − T (Cp log T − nR log(p/nR) + S0). (116)

Notice that both free energies are undetermined upto a linear function of temperature due to
additive constants in S and U .

• Why are F and G called free energies? Let us find out.

6.2 Interpretation of Helmholtz free energy

• For a mechanical system, the law of conservation of energy says that the work done is equal to
the decrease in internal energy. For a thermodynamic system, the work done ∆W = −∆U+∆Q
may be less/more than the decrease in internal energy depending on whether heat is absorbed
or given up by the system. We seek a replacement for internal energy that will allow us to give
a bound on the work that a thermodynamic system can do. The second law allows us to use
the Helmholtz free energy to get an upper bound on the work that a system in contact with a
reservoir at constant temperature can do.

• Consider a transformation of a system from state A to B while in contact with a heat reservoir
at temperature Tres . By the second law∫ B

A

δQ

Tres
≤ S(B)− S(A). (117)

Since the temperature Tres of the reservoir is fixed, we have an upper bound on the heat received
by the system

∆Q =

∫ B

A
δQ ≤ Tres(S(B)− S(A)). (118)
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Note that the temperature of the system need not equal Tres , and the process need not be
isothermal. By the first law ∆W = ∆Q−∆U , so we get an upper bound on the work done

∆W ≤ −U(B) + U(A) + Tres(S(B)− S(A)). (119)

This about as much as we can say in general. However, it is tempting to write the RHS in terms
of the Helmholtz free energy of the system. If we assume that the initial and final absolute
temperatures (TA, TB ) of the system are equal to Tres , then the RHS is just the difference in
Helmholtz free energies

∆W ≤ F (A)− F (B) = −∆F. (120)

Thus the maximum work that a system can do while in contact with a reservoir at constant
temperature is the decrease in free energy. In this sense, F is the energy freely available to
do work, hence the name. If the process is reversible, then the inequality is saturated and
F (A)− F (B) is the actual amount of work done. Note that to be reversible, the system would
have to have the same temperature T as the reservoir throughout. If the process is irreversible,
we have a strict upper bound on the work done.

6.3 Gibbs’ criteria for thermodynamic equilibrium

• We observed that the entropy of an isolated system is a non-decreasing function of time. What
is more the change in entropy of an isolated system ∆S > 0 if the process is irreversible, with
equality for reversible processes. All macroscopic natural processes are found to be irreversible
and are observed to proceed towards increasing entropy. What is more, any state of an isolated
system with maximal entropy consistent with its conserved internal energy is particularly stable
since there is no thermodynamic process that can further increase its entropy. The foregoing
considerations lead us to Gibbs’ criterion for thermodynamic equilibrium: an isolated system
with fixed energy and number of particles is in equilibrium if its entropy is maximal. Gibbs
also gave another criterion for thermodynamic equilibrium that traces its origins to mechanical
equilibrium. We are familiar with the fact that a particle moving in a potential is in equilibrium
if it is at a minimum of the potential. Gibbs’ second criterion states that if the entropy of an
isolated system is held fixed, then it is in equilibrium when its energy is minimized.

• Neither entropy nor internal energy is an easily measured property of thermodynamic systems.
Moreover, U is naturally a function of S and V , but entropy is not easily controlled in the
lab. Properties that are more easily controlled are temperature, pressure and volume. This is
where the other thermodynamic potentials come in handy. Recall that the natural variables
of Helmholtz free energy, and Gibbs free energy are (T, V ) and (p, T ) respectively. Thus it is
useful to reformulate the condition for thermodynamic equilibrium in terms of F and G .

• Now in an infinitesimal process, dS ≥ δQ/T (irrespective of whether the system is isolated
or not, with equality if it is reversible. Here T is the temperature of the reservoir). So by the
first law, TdS ≥ dU + pdV . If the system is mechanically isolated, then no work is done and so
TdS ≥ dU or dU − TdS ≤ 0. But this is just the condition dF (T, V ) ≤ 0 for a system at con-
stant temperature (equal to that of the reservoir). Thus we see that the Helmholtz free energy
is a decreasing (precisely non-increasing) function of time for a mechanically isolated system
at constant temperature. The same applies to finite transformations of a mechanically isolated
system at constant temperature: from the previous section, ∆W = 0 ≤ F (A) − F (B). As a
consequence, a system at constant temperature (equal to that of its environment) undergoing
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isochore transformations (mechanically isolated, e.g. if p is constant and dV = 0) is in equi-
librium when its free energy is a minimum. Recall that a mechanical system is in equilibrium
when the potential is a minimum. F being a thermodynamic analogue, is sometimes called the
thermodynamic potential at constant volume.

• We may also view the principle of minimization of Helmholtz free energy as a constrained
minimization problem. Recall Gibbs’ second criterion for equilibrium: minimize internal energy
holding entropy fixed. This is equivalent to minimizing U−TS where T is a Lagrange multiplier
enforcing the constraint on entropy.

• Similarly, let us consider a system at constant pressure and temperature. This applies to
chemical reactions happening at room temperature and at atmospheric pressure. Now G =
U − TS + pV , so at constant T, p ,

dG = dU − TdS − SdT + pdV + V dp = dU − TdS + pdV ≤ 0 (121)

as TdS ≥ δQ . Thus, Gibbs’ free energy decreases for infinitesimal transformations of a system
at constant T and p . [Note: We cannot use dG = −SdT + V dp (which would suggest dG = 0)
here, since this formula is only valid for reversible transformations.]

• We could arrive at the same result by considering finite transformations. Suppose our system
undergoes a thermodynamic transformation A → B at constant temperature T and pressure
p . The work done is simply ∆W =

∫ B
A pdV = p(V (B)− V (A)), which must be bounded above

by the drop in free energy: ∆W ≤ F (A)− F (B). So

F (B) + pV (B) ≤ F (A) + pV (A) or G(B) ≤ G(A). (122)

In particular, a system at constant T and p is in equilibrium if G is a minimum.

6.4 Maxwell relations

The first law for infinitesimal reversible processes dU = TdS − pdV implies
(
∂U
∂S

)
V

= T and(
∂U
∂V

)
S

= −p . The equality of second mixed partials of U leads to the first Maxwell identity:(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(123)

The differential of Helmholtz free energy dF = −SdT−pdV implies
(
∂F
∂T

)
V

= −S and
(
∂F
∂V

)
T

=
−p . Thus we get a second Maxwell relation(

∂S

∂V

)
T

=

(
∂p

∂T

)
V

(124)

Enthalpy is naturally a function of S and p with dH = TdS + V dp . Thus
(
∂H
∂S

)
p

= T and(
∂H
∂p

)
S

= V which implies the Maxwell relation(
∂T

∂p

)
S

=

(
∂V

∂S

)
p

. (125)
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Finally, for the Gibbs free energy, dG = V dp− SdT , so
(
∂G
∂p

)
T

= V and
(
∂G
∂T

)
p

= −S and(
∂V

∂T

)
p

= −
(
∂S

∂p

)
T

. (126)

• We may obtain additional Maxwell relations by allowing the number of particles to vary
by including a chemical potential term in the first law dU = TdS − pdV + µdN .

• The Maxwell relations provide surprising connections among thermodynamic coefficients. We
will see an application in the context of the third law of thermodynamics.

6.5 Extensivity, Euler equation and Gibbs-Duhem relation

• We have mentioned before that if surface effects can be ignored, then the internal energy, work
done, heat absorbed and entropy may be taken to be extensive. What this means is that if the
volume (and consequently the number of particles) is doubled, then U , S etc are also doubled.
More precisely, extensivity of internal energy is the condition

U(λS, λV, λN) = λU(S, V,N) for any real λ > 0. (127)

Such a function is called homogeneous of degree one.

• Euler’s theorem on homogeneous functions: More generally, f(x, y, · · · ) is a homoge-
neous function of degree n , if for all x, y, · · · for which f is finite, it satisfies

f(λx, λy, · · · ) = λnf(x, y, · · · ) ∀ λ. (128)

Euler’s theorem on homogeneous functions gives an alternate characterization of homogeneous
functions, assuming differentiability. For definiteness, consider two independent variables. Ex-
amples of homogeneous functions include f(x, y) = 2x2 − 7y2 + xy (degree two) and g(x, y) =
4x − 7y or g = x2/y (degree one) or h(x) = log(x) − log(y) + exp(x/y) (degree zero). Now
define the scaling or dilatation/dilation operator D = x ∂

∂x + y ∂
∂y . Notice that Df = 2f and

Dg = g . Euler’s theorem states that a homogeneous function is an eigenfunction of the scaling
operator with eigenvalue equal to the degree of homogeneity.

Df =

(
x
∂

∂x
+ y

∂

∂y

)
f(x, y) = nf(x, y). (129)

Let us sketch a proof for one variable, essentially the same applies to any number of variables.
So suppose f(λx) = λnf(x) for all λ, x . Differentiating in λ and putting λ = 1 we get
xf ′(x) = nf(x). What this means is that we consider an infinitesimal scaling by taking λ = 1+ε
where ε is small. Then we must have

f(x+ εx) = (1 + ε)nf(x) ≈ (1 + nε)f(x) (130)

Rearranging,

f(x+ εx)− f(x) = nεf(x) or x

(
f(x+ εx)− f(x)

εx

)
= nf(x). (131)
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Taking ε → 0 holding x 6= 0 fixed, the LHS tends to xf ′(x). Thus, we get Df(x) = nf(x) as
advertised. Alternatively we may use the Taylor expansion on the LHS

f(x) + εxf ′(x) +O(ε2) = f(x) + nεf(x) +O(ε2) (132)

to conclude that xf ′ = nf .

• Now, extensivity implies that the internal energy is homogeneous of degree one, so it must
satisfy (

S
∂

∂S
+ V

∂

∂V
+N

∂

∂N

)
U = U. (133)

The above three partial derivatives of U may be obtained from the first law:

dU = TdS − pdV + µdN ⇒ ∂U

∂S
= T,

∂U

∂V
= −p, ∂U

∂N
= µ. (134)

Thus
U = ST − pV + µN. (135)

Now recall that we had defined the Helmholtz free energy, enthalpy and Gibbs free energy via
successive Legendre transforms of the internal energy:

F = U − TS, H = U + pV, G = F + pV = U − TS + pV. (136)

As a consequence, when energy is extensive

F = µN − pV, H = TS − µN and G = µN (137)

In other words, the chemical potential is simply the Gibbs free energy per particle.

• The above formulae for thermodynamic potentials (in particular G = µN ) leads to the Gibbs-
Duhem relations. Indeed, equating dG = µdN + V dp− SdT with dG = µdN +Ndµ we get
the Gibbs Duhem relation in the energy representation

dµ =
V

N
dp− S

N
dT = vdp− sdT (138)

Here v = V/N is the specific volume and s = S/N is the entropy per particle. We could also
obtain this relation by equating dU computed from U = TS − pV + µN with the expression
given by the first law.

7 Phase transitions

7.1 General features of 1st and 2nd order transitions

• When water freezes or boils, it undergoes a phase transition. We have also encountered the
transition from the ferro- to paramagnetic phases of iron. These are examples of so-called first
and second-order phase transitions. A first order transition is characterized by a non-zero latent
heat which vanishes for a 2nd order transition. For instance, suppose we start with water at
30◦ C and heat it at constant atmospheric pressure, its temperature rises till we hit 100◦ C.
The water starts to boil, with water being converted to vapour. However, the temperature
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remains constant till all the water has been converted to vapour. The amount of heat required
to vapourize unit mass of water at 100◦ C is the latent heat of vaporization. The ice to water
melting transition also involves a latent heat. The boiling/condensation transitions can also be
examined at constant temperature rather than pressure (See Fig 7(b)). For instance, suppose we
begin with water vapour at T = 105◦ C and atmospheric pressure. As we isothermally compress
the vapour (decrease the volume of the container), the pressure increases until it reaches the
so-called saturated vapour pressure, when the vapour starts condensing. Further compression
does not lead to an increase in pressure. Instead, more and more of the vapour condenses
isothermally at the fixed vapour pressure. At this stage, the vapour and liquid phases coexist in
equilibrium. Phase coexistence is another characteristic feature of first order transitions. When
all the vapour has condensed, further compression results in an a steep increase in pressure,
since liquids are not as compressible as gases.

• Fig 7 shows the equation of state surface in the pV T thermodynamic state space showing
both the melting and boiling transitions. Note that the gas and liquid phases is each described
by an equation of state, though the EOS relation f(p, V, T ) = 0 is different for the two phases.
Isotherms for a liquid to vapour transition are shown in a pV diagram.

(a) (b) (c)

Figure 7: (a) From K Huang: (b) From E Fermi: Isotherms for liquid to vapour transition in a pV diagram (c)
From K Huang: Phase boundaries for solid-liquid-gas system in a pT diagram. The line of first order transitions
ends at the critical point representing a second order transition. At the triple point, all three phases coexist.

• Notice from the pV T and pV diagrams that the range of volumes over which the liquid
and vapour coexist shrinks as we move to isotherms at higher temperatures. At the critical
temperature Tc (374◦C for water) the coexistence region of the isotherm shrinks to a point with
the critical saturated vapour pressure pc (217.7 atm for water). At this critical point, vapour
and liquid coexist with the same density and specific entropy and the latent heat vanishes.
The transition changes from first to second order. This may be seen in a pT diagram (Fig
7(c)) showing coexistence curves that demarcate the boundaries between the various phases.
The phase boundaries correspond to first order phase transitions. It is seen that the line of
first order liquid-gas phase transitions ends at the critical point. A line of first order phase
transitions often ends at a second order transition. At temperatures higher than Tc , water
exists in a single phase with continuously varying properties. Note that the melting transition
is always first order, there is no critical point for the solid to liquid transition. Instead we have
a triple point on the pT diagram (projection of the triple-line isotherm in pV T space) where
solid, liquid and vapour can coexist at a first order transition. At temperatures less than the
triple point temperature, there is no liquid phase and vapour directly condenses to a solid via
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a first order transition (this sublimation transition may be familiar from the vapourization of
solid camphor when heated).

• We will see that for two phases to coexist in equilibrium, their free energies (Gibbs or Helmholtz
depending on context) must be equal. Thus, free energies are continuous across a first order
phase transition. On the other hand, the densities and specific entropies of vapour and liquid
phases that coexist at a common temperature and pressure are vastly different. Specific entropy
of a gas is significantly more than that of the liquid (or solid): there are many more microstates
corresponding to a given macrostate of a gas. Since specific volume and specific entropy are
derivatives of the specific Gibbs free energy with respect to pressure and temperature, we infer
that the first derivatives of the free energy are discontinuous across a first order phase transition.

• This motivates Ehrenfest’s classification of phase transitions. A phase transition is of order
n = 1, 2, . . . if an nth partial derivative of free energy is the first one to be discontinuous.

• Specific heats typically diverge at a second order phase transition (T = Tc ). Recall that
cV = T

(
∂s
∂T

)
V

where s is specific entropy and that entropy S = −
(
∂F
∂T

)
V

. Thus specific heats
are given by second derivatives of the free energy. In a second order transition, the free energy
and its first derivative are continuous across the transition but its second derivative suffers a
divergence. Interesting phenomena in the neighbourhood of the critical point of water were
discovered in building and working with steam engines (detailed measurements were collected in
steam tables, which are like star charts in celestial mechanics). One such phenomenon is critical
opalescence, steam at the critical temperature was found to be opaque to light of practically
any wave length. Usually, a medium is transparent to light of wavelengths different from the
typical length scales of disturbances in the medium. Critical opalescence is interpreted as a
demonstration of the existence of fluctuations on all length scales in steam at Tc . It turns
out that specific heats measure fluctuations18, so diverging specific heats go hand in hand with
fluctuations on all length scales (we say that 2nd order phase transitions display scale-invariance,
there is no characteristic length scale).

• The ferromagnetic to paramagnetic transition as T is increased beyond the Curie-Weiss
temperature is another example of a second order phase transition. In this case, the Helmholtz
free energy and its first derivative (the spontaneous magnetization) are continuous, but the
second derivatives of free energy, (the magnetic susceptibility and specific heat) diverge at the
critical temperature.

7.2 Clausius-Clapeyron equation from energy equation

• The Clapeyron equation (developed by French engineer and physicist Benoit Clapeyron ex-
tending work of Clausius) gives a formula for the variation of saturation vapour pressure with
temperature when liquid and saturated vapour coexist at the boiling point (in terms of the
latent heat of vaporization associated to the first order transition). It determines the shape of
the phase boundary between vapour and liquid phases in a pT diagram.

The key idea is to use the energy equation to express ∂p
∂T at constant volume in terms of ∂U

∂V

18Roughly, equilibrium is determined by a local minimum of free energy. To study fluctuations around equilib-
rium, we may Taylor expand the free energy around its minimum F = F0 +(∂F/∂T )0(T−T0)+ 1

2
(∂2F/∂2T )0(T−

T0)2 + · · · . As in mechanics, the curvature of the graph of the thermodynamic potential around its minimum
controls oscillations/fluctuations. This curvature is proportional to the second derivative of free energy, which is
the specific heat.
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at constant temperature. Following Fermi, we consider the region (below the critical point) of
the pV diagram where vapour and liquid coexist. The isotherms are horizontal, so the pressure
(saturated vapour pressure p(T ), which is also the pressure of the coexisting liquid) is a constant,
depending only on temperature (and not volume). Similarly, the densities (or specific volumes vg
and vl ) of the vapour and liquid are functions only of temperature. As the mixture is compressed
isothermally, vapour condenses without changing the density of either phase. Similarly, let ug
and ul be the specific internal energies. At a particular volume along the horizontal isotherm,
suppose mg and ml are the masses, so that the total mass m = mg + ml . The total volume
and internal energy are given by

V = mgvg(T ) +mlvl(T ) and U = mgug(T ) +mlul(T ). (139)

Now, if the system is expanded, the pressure and temperature do not change but a mass dm of
the liquid is converted to vapour. To apply the energy equation to this transformation, we find
the change in volume and internal energies:

V + dV = (ml − dm)vl + (mg + dm)vg = V + (vg − vl)dm ⇒ dV = (vg − vl)dm. (140)

Similarly dU = (ug − ul)dm . Since both these are under isothermal conditions,(
∂U

∂V

)
T

=
ug − ul
vg − vl

. (141)

By the energy equation, (
∂p

∂T

)
V

=
1

T

(
∂U

∂V

)
T

+
p

T
. (142)

In our case, the pressure is independent of volume so we may write dp/dT in the energy equation.
It is possible to express

(
∂U
∂V

)
T

in terms of the latent heat. The heat needed to vapourize a mass
dm of liquid that coexists with saturated vapour at temperature T is

δQ = dU + pdV = (ug − ul + p(vg − vl)) dm (143)

The heat of vapourization per unit mass is called the latent heat λ . Thus

λ(T ) =
δQ

dm
= ug(T )− ul(T ) + p(T )(vg(T )− vl(T )) or

(
∂U

∂V

)
T

=
λ

vg − vl
− p. (144)

Combining with the energy equation, we arrive at the Clapeyron equation

dp

dT
=

λ(T )

T (vg − vl)
. (145)

The latent heat and vg−vl are positive, so the slope of the liquid-gas phase boundary is positive.
The Clapeyron equation may also be applied to the solid to liquid transition, with λ denoting
the latent heat of melting and vg − vl replaced with vl − vs . For most materials the slope is
again positive. Water is an exception, it expands on freezing, so that the slope is negative in
this case.

• In the liquid to gas case, the Clapeyron equation may be simplified. We assume, following
Clausius, that the density of the gas is much less than that of the liquid vg � vl and treat the
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vapour as an ideal gas satisfying pvg = RT/M where M is mass per mole of the vapour. The
resulting Clausius-Clapeyron equation is

dp

dT
≈ Mλ(T )p

RT 2
or

d log p

dT
≈ Mλ(T )

RT 2
. (146)

If we further assume that the latent heat does not vary much with temperature, we may integrate
to get an approximate formula for the saturated vapour pressure as a function of temperature

p(T ) ≈ p0e
−λM/RT . (147)

7.3 Condition for phase coexistence and Clapeyron’s equation from Gibbs free energy

• We will apply the principle that the Gibbs free energy is an extremum in equilibrium to re-
derive the Clapeyron equation. As before, we have a liquid and its saturated vapour coexisting at
a constant temperature T and vapour pressure p(T ). Let ul, ug, sl, sg, vl, vg, gl, gg (all functions
of T ) be the specific internal energies, entropies, volumes and Gibbs potentials of the liquid and
gas per unit mass. If ml,mg are the masses of the two phases, then the total Gibbs potential
is the sum G = mlgl + mggg . If the volume is slightly increased isothermally, the pressure is
unchanged but a mass δm of liquid is converted to gas. The change in Gibbs potential δm(gg−gl)
must vanish since the mixture was in equilibrium. Thus, the specific Gibbs potentials of the
two phases must be equal in equilibrium, i.e., the Gibbs potential is continuous across a first
order phase transition19. This is the condition for phase coexistence. In other words, using
g = u− Ts+ pv we get at any given temperature:

gg − gl = (ug − ul)− T (sg − sl) + p(vg − vl) = 0. (148)

• Since we seek a formula for dp/dT , we differentiate with respect to temperature:

d

dT
(ug − ul)− T

d

dT
(sg − sl)− (sg − sl) +

dp

dT
(vg − vl) + p

d

dT
(vg − vl) = 0. (149)

By the first law, Tds = du+ pdv , so dividing by dT three of the terms cancel leaving

dp

dT
(vg − vl) = (sg − sl) or

dp

dT
=
T (sg − sl)
T (vg − vl)

. (150)

However, T (sg− sl), the heat required to vapourize unit mass of liquid is simply the latent heat
λ , so we arrive at Clapeyron’s equation

dp

dT
=

λ

T (vg − vl)
. (151)

7.4 van der Waals gas

7.4.1 vdW equation of state, virial expansion, isotherms

The ideal gas EOS works well at high temperatures and low pressures. However, significant
deviations are observed as the gas gets closer to condensation. van der Waals proposed the

19Note that the derivatives of the specific Gibbs potential with respect to temperature and pressure (negative
specific entropy and specific volume) are discontinuous across the phase boundary for a first order phase transition.
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Figure 8: Interatomic potential energy V (R) between two identical atoms as a function of
separation R between their nuclei.

simplest equation of state that qualitatively accounts for the first order vapour to liquid con-
densation transition. Condensation is due to intermolecular forces. Recall that the molecules
of an ideal gas are assumed point-like and to not interact with each other. Real gas molecules
strongly repel when they get closer than about a tenth of a nanometer (sometimes modeled as
a ‘hard-sphere’ core). The intermolecular potential is attractive (‘cohesive forces’) at slightly
larger separations (which can lead to condensation) and goes to zero asymptotically. The ar-
bitrary additive constant in the potential is chosen so that the potential vanishes at infinite
separation.

• Consider n moles of a gas in a container of volume V . Suppose nb is the total volume
occupied by the hard cores of the molecules (b is the volume of the cores of a mole of the gas).
The molecules therefore have only an effective volume Veff = V − nb to move around. The
pressure of the gas on an outer wall (or a membrane in the gas) is due to the force exerted by
molecules as they collide with the wall. The attractive interaction between pairs of molecules
could be expected to reduce this pressure compared to its ideal gas value pideal . van der Waals
argued that the reduction in pressure would thus be proportional to the number of pairs20 of
particles, i.e., ∼ n2 . However, since pressure is intensive, we must divide by the square of an
extensive quantity. Thus, van der Waals proposed that the actual pressure is given by

p = pideal −
n2a

V 2
. (152)

Here, a is a (dimensional) constant depending on the strength of the inter-molecular force, but
independent of n . We may call n2a/V 2 the cohesion pressure.

• van der Waals postulated that in such a real gas, the ideal pressure and the available volume
continue to be related via the ideal equation of state:

pidealVeff = nRT or

(
p+

n2a

V 2

)
(V − nb) = nRT. (153)

What we measure and control are the actual pressure and volume of container. When the EOS is
expressed in terms of these, interesting new phenomena become possible. When a and b vanish,
the effects of intermolecular forces and molecular size are not accounted for and we return to
the ideal EOS.

Virial expansion of vdW EOS: At low density n/V the vdW EOS should approach that
of the ideal gas. The virial expansion quantifies the deviations from ideal behavior through an

20Of course, only a fraction of the total number of molecules which are close enough to a given molecule would
have a significant attractive influence. The information in this fraction is absorbed into the constant a .
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Figure 9: From K Huang: vdW isotherms in a PV diagram.

expansion in powers of n/V . To obtain it, we rewrite the vdW EOS(
p+

n2a

V 2

)
(V−nb) = nRT as p =

nRT

V − nb
−n

2a

V 2
or

pV

nRT
=

(
1− nb

V

)−1

− na

V RT
. (154)

Expanding in powers of the small dimensionless quantity nb/V we get

pV

nRT
= 1 +

nb

V

(
1− a

bRT

)
+

(
nb

V

)2

+

(
nb

V

)3

+ · · · (155)

When the molecular volume nb� V we recover the ideal gas law. The first deviation is encoded
in the ‘virial coefficient’ b−a/RT , which can be measured. Its temperature dependence contains
information on the molecular parameters a and b .

van der Waals isotherms: The vdW isotherms are plotted on the p-V plane in Fig 9. For
large T they approach the hyperbolae pV = constant of the ideal gas. It is convenient to
multiply (153) by V 2 and regard the vdW EOS as a cubic equation for V for any given p, n
and T :

(pV 2 +n2a)(V −nb) = nRTV 2 or f(V ) = pV 3− (nbp+nRT )V 2 +n2aV −n3ab = 0. (156)

Being a cubic with real coefficients, there is either one or three real roots V (the latter possibility
includes cases where two or all three roots coincide). To analyze the possibilities, we sketch
a graph of f(V ) based on the following observations: (a) f(V ) → ±∞ as V → ±∞ , (b)
f(0) = −n3ab < 0, (c) f(V ) is monotonically decreasing for V < 0 so real roots of f are
non-negative, (d) f ′(0) = n2a > 0 so f has a positive slope near V = 0, (e) the coefficient
of the V 2 term (−n(bp + RT )) is negative, so f increases with V from negative values and
eventually reaches a maximum (f) f has a root before this local maximum if T is small and
no such root if T is large: this is due to a competition between the linear and quadratic terms,
which increase/decrease with V , (g) f then decreases due to the negative quadratic term and
could encounter another zero (g) as the effects of the V 3 term kick in, f reaches a local minimum
and then monotonically increases (f →∞) as V →∞ . Thus for large T there is a unique root
V for any p while for small T there may be either one or three roots V . It is instructive to
plot f(V ) for different values of p and T to better understand the various possibilities.

For high temperatures, there is a unique volume for any given pressure. As the temperature
is decreased, this continues to be true till we approach a critical temperature Tc and a critical
isotherm with a horizontal point of inflection C . As the temperature is further lowered, there
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Figure 10: van der Waals isotherm on a PV diagram and Maxwell construction from E Fermi, Thermodynamics.
The saturated vapour pressure for the temperature of the indicated vdW isotherm GFEDCBA is the one for
which the areas above and below the horizontal coexistence line FIDHB are equal.

are three volumes corresponding to a given pressure. Comparing with the isotherms of a real gas
shown in Fig. (7) we see that they are qualitatively similar to the vdW isotherms for T ≥ Tc .
For T < Tc the vdW isotherms have a local maximum and minimum pressure while the real
isotherms have a constant saturated vapour pressure corresponding to an inhomogeneous stable
phase with vapour and liquid coexisting. If an unsaturated gas is compressed isothermally, till
the saturated pressure is reached, condensation normally sets in and the gas phase separates
into a liquid-vapour mixture. Under further compression, the pressure remains constant with
more and more of the vapour condensing until the system consists of pure liquid. It is only on
further isothermal compression that the pressure again starts to rise.

• What then is the nature of the physical states along vdW isotherms for T < Tc? If a saturated
vapour is free of impurities21 and is carefully compressed, it is possible for higher pressures to
be reached without condensation setting in. This corresponds to a homogeneous but labile
(somewhat unstable) supersaturated gas which would condense if perturbed (the portion FE in
Fig. 10). The corresponding homogeneous labile state approached from the liquid end of the
vdW isotherm is called undercooled (the portion BC in Fig. 10). It may be achieved by heating
a liquid in a container that is free of vibration to a temperature a little higher than the boiling
point. The vdW isotherm thus corresponds to homogeneous but somewhat unstable states.

• Remarkably, it is possible to apply Maxwell’s construction to the vdW isotherms to obtain
the stable horizontal isotherms. Before discussing this, let us analytically find the critical values
of T, p and V .

7.4.2 Critical isotherm and critical point

• The isotherms for n moles of a vdW gas are curves of constant T on the pV plane defined
by the EOS

(p+
n2a

V 2
)(V − nb) = nRT. (157)

It is convenient to multiply by V 2 and regard this as a cubic equation for V for any given p
and T :

(pV 2 + n2a)(V − nb) = nRTV 2 or f(V ) = pV 3 − n(bp+RT )V 2 + n2aV − n3ab = 0. (158)

21Impurities like dust would serve as nucleation sites for condensation. Supersaturated vapour is used in a Wil-
son cloud chamber to detect tracks of elementary particles, the particles serve as nucleation sites for condensation.
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For sufficiently high T the graph of the isotherm p(V ) must reduce to the hyperbola p = nRT/V
characteristic of an ideal gas. So for large T the isotherm has no local extrema and there is
a unique volume corresponding to any given pressure (see Fig. 9). For sufficiently low T , an
isotherm has both a local minimum pressure pmin and a local maximum pressure pmax and
three volumes V1,2,3 corresponding to any pressure in between (pmin < p < pmax ). The critical
isotherm (at the critical temperature Tc ) is the one where the three roots V1,2,3 coalesce at a
critical volume Vc , in other words, the critical isotherm has an inflection point:

∂p

∂V
= 0, and

∂2p

∂V 2
= 0. (159)

The corresponding pressure is pc and temperature Tc . To find these values, we put

∂p

∂V
= − nRT

(V − nb)2
+

2n2a

V 3
= 0 or

RT

(V − nb)2
=

2na

V 3
(160)

and
∂2p

∂V 2
=

2nRT

(V − nb)3
− 6n2a

V 4
= 0 or

RT

(V − nb)3
=

3na

V 4
. (161)

Combining we get

2na

V 3(V − nb)
=

3na

V 4
or

2

V − nb
=

3

V
⇒ Vc = 3nb. (162)

Putting this in the first condition we get RTc = 8a
27b and finally from the vdW EOS, pc = a/2nb2 .

Thus the critical pressure, volume and temperature for n moles of a vdW gas are

pc =
a

27b2
, Vc = 3nb and Tc =

8a

27Rb
. (163)

The critical volume is thrice the excluded volume nb , so the gas/liquid is quite dense at the
critical point.

7.4.3 Maxwell construction

As discussed, the vdW isotherms describe unstable homogeneous states (supersaturated vapour
for instance) in the region between volumes VB and VF (see Fig 10) where the vdW isotherms
display a local minimum and a local maximum. In this region, the stable equilibrium state is
a liquid-vapour mixture at the constant saturation vapour pressure. The Maxwell construction
gives an elegant method of identifying the constant saturated vapour pressure that corresponds
to a given vdW isotherm. The height of the horizontal coexistence isotherm BF is determined
by the condition that the areas DEFD and BDCB bounded by the horizontal and the the
vdW isotherm must be equal. To show this, we follow Maxwell (see Fermi) and consider the
reversible isothermal cycle BCDEFIDHB . In other words, we first expand the liquid from B
along the vdW isotherm BCDEF passing through homogeneous states ending with saturated
vapour at F . Then we return from F to B by compressing the vapour at constant saturated
vapour pressure via liquid-vapour mixtures FIDHB . Note that the point D corresponds to two
different states: a liquid-vapour mixture when approached horizontally and a labile homogeneous
state when approached via the vdW isotherm22. Being a reversible cyclic process

∮
δQ/T = 0

22The closed curves DHBCD and DIFED do not represent reversible cyclic processes.
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by Clausius’ theorem. Since it is isothermal as well, T is a constant, and the heat added
∮
δQ

must be zero. By the first law for a cycle, the work done is also zero. Since DEFID is traversed
clockwise while BCDHB us traversed anti-clockwise, the total work done is zero provided the
magnitudes of the areas are equal. In real gases, these areas are quite small. Note that the
Maxwell construction applies to any equation of state, not just the vdW gas.

7.4.4 Entropy and Caloric condition for vdW gas

Recall the caloric condition (∂U∂V )T = 0 for an ideal gas that followed from the Joule free
expansion experiment. We may view this as a consistency condition for δQ/T to be an exact
differential. Indeed, taking T, V as independent variables for an ideal gas, we have

δQ

T
=
dU + pdV

T
=

1

T

dU

dT
dT +

(
1

T

∂U

∂V
+
nR

V

)
dV. (164)

The integrability condition

∂

∂V

(
1

T

∂U

∂T

)
=

∂

∂T

(
1

T

∂U

∂V
+
nR

V

)
⇒ 1

T

∂2U

∂V ∂T
= − 1

T 2

∂U

∂V
+

1

T

∂2U

∂T∂V
or

(
∂U

∂V

)
T

= 0.

(165)
Similarly, let us derive the caloric condition for a vdW gas:

δQ

T
=
dU + pdV

T
=

1

T

∂U

∂T
dT +

1

T

(
∂U

∂V
+

nRT

V − nb
− an2

V 2

)
dV (166)

As before, we get

1

T

∂2U

∂V ∂T
= − 1

T 2

∂U

∂V
+

1

T

∂2U

∂T∂V
+

an2

V 2T 2
or

(
∂U

∂V

)
T

=
an2

V 2
. (167)

So, for entropy to exist as a state function for a vdW gas, the caloric condition must be satisfied.
In particular, the EOS does not completely determine the thermodynamic nature of a vdW gas,
it must be supplemented by the caloric condition.

• The above caloric condition implies that the internal energy of a vdW gas is not independent
of volume, unlike for an ideal gas (a→ 0). However, it is possible to show that the heat capacity
at constant volume is independent of volume CV = CV (T ), just as for an ideal gas!

Entropy of vdW gas: Assuming the caloric condition is satisfied, the entropy of a vdW gas
is determined by

dS =
δQ

T
=

1

T

(
∂U

∂T

)
V

dT +
nR

V − nb
dV =

CV (T )

T
dT +

nR

V − nb
dV. (168)

As in the case of an ideal gas, the temperature dependence of CV is not fixed by thermodynamics.
If it is assumed roughly constant, then we may integrate from T0, V0 to T, V to obtain

S(T, V ) ≈ CV log

(
T

T0

)
+ nR log

(
V − nb
V0 − nb

)
. (169)
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7.5 Remarks on paramagnetic to ferromagnetic phase transition

• Consider a magnetic material like iron. Recall that the magnetization M is the total dipole
moment of the sample per unit volume. The thermodynamic state space of a magnet is
parametrized by three variables H,M, T , the applied external magnetic field, magnetization
and temperature. A paramagnet is one which has zero magnetization in the absence of an
external magnetic field H , but which develops an induced magnetization when an external H
is turned on. For small |H| , the induced M is linear in H and satisfies the Curie-Weiss law
M = χH where χ is the temperature-dependent susceptibility. In other words, the external
field tends to align23 the atomic dipoles in the direction of H . This linear relation ceases to hold
for large |H| , indeed there is a non-linear saturation (see Fig. 11). The magnetization cannot
increase indefinitely, it has a maximal value, which is attained when all the atomic dipoles are
aligned. Now χ is a function of temperature. If the temperature of the paramagnet is increased
χ decreases: thermal agitation decreases the alignment brought about by the external field. For
convenience let us suppose H = Hẑ and M = Mẑ are in the z -direction. Then the isotherm
M(H) for a higher temperature lies below the earlier one, with saturation occurring at a higher
H (see Fig.11). On the other hand, if the temperature is decreased, the susceptibility (slope
of M(H) at H = 0) grows and in fact diverges at a critical Curie temperature Tc (see Fig.
12). Below Tc , the sample possesses a non-zero residual ‘spontaneous magnetization’ Msp(T )
even when the external field H → 0+ : it is a ferromagnet like the familiar bar magnet. The
spontaneous magnetization grows as the temperature is decreased below Tc . We have just de-
scribed a second order phase transition from a paramagnet to ferromagnet. The free energy,
internal energy, specific entropy and magnetization are continuous across the transition24, but
the susceptibility and specific heat (which are second derivatives of the Helmholtz free energy
with respect to H and T respectively) diverge at the critical point.

• It is found that in the neighbourhood of Tc , there are fluctuations on a whole variety of
length scales in the sample and even far separated atomic spins are strongly correlated - this
is the analogue of critical opalescence at the critical point in the vapour to liquid transition in
water. Moreover, the spontaneous magnetization, specific heat and susceptibility have power
law behaviors for T . Tc . For instance:

M(T,H = 0) ∼ (Tc−T )β, C(T,H = 0) ∼ (Tc−T )α, and χ(T,H = 0) ∼ (Tc−T )γ . (170)

The exponents α, β, γ are called critical exponents (there are similar exponents for T > Tc ).
These exponents have been measured and found to display universality - they are the same for a
wide variety of materials undergoing the second order phase transition. A remarkably successful
theory of second order phase transitions (which predicts the values of critical exponents and
much more, based on the method of the ‘renormalization group’) has been developed beginning
in the 1960s (Nobel prize to American physicist Kenneth G Wilson in 1983).

• A simple microscopic model for a magnet was proposed by Heisenberg25. In the Heisenberg
model we have a crystal with atomic magnetic dipole moments mi located at the sites of the
crystal lattice; i labels the sites. The magnetic moments arise from the electronic spin (and

23A diamagnet is one where the induced magnetization points in the direction opposite to H .
24Second order phase transitions are often referred to as continuous phase transitions. There is no latent heat.
25A related simplified model is called the Ising model, in which the magnetic moment on each site can only

take the values ±1 in appropriate units, these are the z -components of the magnetic moment.
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Figure 11: Plot of magnetization vs applied magnetic field for various temperatures in a magnetic domain. For
T > Tc (paramagnetic phase) M = χH for small H (linear response regime) while M saturates for large H . For
T ≤ Tc (ferromagnetic phase) there is a residual (spontaneous) magnetization even when H → 0± . The memory
effect (hysteresis loop) is also shown.

orbital motion). The Hamiltonian is

H = −
∑
i

Hi ·mi −
∑
〈i,j〉 n.n

J mi ·mj . (171)

The first term represents the magnetic dipole energy due to the external magnetic field. Here,
Hi is the external magnetic field at the location of the ith dipole. The dipole energy is minimized
when the dipoles are aligned with the external field, as we expect for a paramagnet (reversing
the sign of this term would be relevant to a diamagnet). The second term represents the energy
of interaction between nearest neighbor atomic dipoles (denoted n.n or 〈ij〉). J is an interaction
strength. We have assumed that the dipolar interactions decay rapidly with separation, so that
we may restrict attention to nearest neighbors. Notice that for J > 0, the interaction energy is
minimized when all the dipoles point in the same direction, as we expect for a ferromagnet (if
J < 0 we have an anti-ferromagnet, whose energy is lowest when neighboring dipoles point in
opposite directions). Since the interaction energy involves dot products of dipoles, it is rotation
invariant (the dot product of two vectors does not depend on the orientation of the frame, but
only on the angle between the vectors and their lengths). The direction of the external magnetic
field H breaks this rotation symmetry and determines the direction in which the dipoles align.

8 Third law of thermodynamics

• Our definition of the entropy of a state B depended on the choice of a reference state A :
S(B) =

∫ B
A δQ/T where the integral is along any reversible process. The arbitrariness in the

choice of reference state leads to an undetermined constant S0 in the entropy. This does not
matter as long as we are only concerned with differences in entropies. On the other hand, the
free energies F = U − TS and G = U − TS + pV are undetermined up to a linear function
of temperature, reducing their utility in dealing with states at different temperatures. We also
noticed that an appropriate choice of S0 (depending on some dimensional physical quantities)
would be necessary to make the formula for the entropy of an ideal gas dimensionally consistent
as well as extensive. There are other situations where the value of S0 is important (E.g. the
equations for chemical and gaseous equilibria).
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Figure 12: Numerically and analytically calculated (dots/solid curve) spontaneous magnetization, internal
energy, specific heat and susceptibility at zero external field for a planar square lattice Ising magnet with J = 1
plotted as a function of kT . The transition temperature is at kTc = 2.27. From H. Senapati, B.Sc. thesis CMI
(2013).

• The third law was originally formulated by Walther Nernst (1912) in terms of the maximum
available work or Helmholtz free energy. He discovered it in the context of electrochemical
reactions and experimentally verified its consequences for the behavior of specific heats.

• The third law of thermodynamics, as reformulated by Planck, states that as the temperature
of a system approaches absolute zero, its entropy approaches a constant value independent of
pressure/volume/density, state of aggregation etc. This constant value may be taken to be
zero. In particular, all states of the system at T = 0 have S = 0. We consider some simple
consequences of the third law.

• Since S approaches a constant independent of volume and pressure as T → 0, its derivatives
with respect to p, V must vanish. We may use the Maxwell relations to relate derivatives of
entropy to certain measurable coefficients. For example(

∂S

∂p

)
T

= −
(
∂V

∂T

)
p

= −αV and

(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

= pβ. (172)

Thus, the coefficients of thermal expansion α and tension β must vanish at absolute zero
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(assuming V and p do not).

• Specific heats approach zero at absolute zero. Consider the specific heats at constant
pressure and volume expressed as derivatives of the specific entropy

cp = T

(
∂s

∂T

)
p

and cV = T

(
∂s

∂T

)
V

(173)

Now by the third law, s → 0 as T → 0. Assuming a power law behavior, s → T ε for some
ε > 0 as T → 0. It follows that the specific heats also go to zero as T ε .

• Alternatively, integrating from T = 0, we may express the specific entropy at temperature T
as

s(T, p) =

∫ T

0

cp(T
′)

T ′
dT ′ + s̃0(p) and s(T, v) =

∫ T

0

cv(T
′)

T ′
dT ′ + ˜̃s0(v). (174)

In the first case we regard s as a function of T, p and in the second as a function of temperature
and specific volume. For the integrals to be finite, cp and cv must vanish as T → 0 in view of the
division by T ′ . The ‘constants’ of integration s̃0(p) and ˜̃s0(v) are independent of temperature,
we will assume they are finite. For s to have a finite limit (independent of p and v ) as T → 0,
both s̃0(p) and ˜̃s0(v) must vanish.

• As a consequence, the simplifying assumption of temperature-independent specific heats is
not consistent with the third law. There are significant deviations at low temperatures. At low
T , quantum effects become important since the intermolecular spacing can become comparable
to the (thermal) de Broglie wavelength of the molecules. The exponent ε in the power-law
above depends on the nature of the material (i.e. whether the particles are fermions or bosons
and the forces between them). The vanishing of specific heats as T → 0 is in agreement with
experiments.

9 Fourier’s equation for heat conduction

• We have largely dealt with thermodynamic systems in equilibrium, where the temperature
is the same throughout the system. However, it is also interesting to know how a system
approaches equilibrium. For example, a metal rod (or a fluid) may be heated at one end and left
to itself (and thermally insulated). It is observed that the initially inhomogeneous distribution
of temperature gradually tends to a uniform distribution through the conduction or diffusion of
heat. We seek to determine the time dependence of the distribution of temperature.

• Empirically it is found that the heat flux between bodies (or parts of a body) grows with the
temperature difference and is in the direction of decreasing temperature. Joseph Fourier’s law
(1822) of heat conduction/diffusion states that the heat flux density vector (energy crossing unit
area per unit time) is proportional to the negative gradient in temperature

q = −k∇T where k = thermal conductivity. (175)

• Consider material in a fixed volume V . The rate of increase in internal energy per unit time

dU

dt
=

∫
V
ρcv

∂T

∂t
dr (176)
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must equal the rate of influx of heat across the surface S that bounds V .∫
V
ρcv

∂T

∂t
dr =

∫
S
k∇T · n̂ dS = k

∫
V
∇ · ∇T dr. (177)

Here cv is the specific heat/mass (at constant volume, no work) and ρ = mass density, both of
which are assumed constant during the process.

• V is arbitrary, so the integrands must be equal. The heat equation follows:

∂T

∂t
= κ∇2T where κ =

k

ρcv
is thermal diffusivity. (178)

Heat diffusion/conduction is dissipative, temperature differences even out (subject to boundary
conditions) and heat flow stops at an equilibrium temperature. The heat equation is a linear
partial differential equation that is second order in space derivatives and first order in time
derivatives. Fourier used the series that now bear his name to solve the heat equation.
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