Thermal Physics, Autumn 2019 CMI Problem set 2 Due by the beginning of lecture on Tuesday, Sep 3, 2019 Exact & Inexact differentials, First Law of Thermodynamics

- 1. $\langle \mathbf{9} \rangle$ Consider the Pfaffian differential expression in two variables $\omega(x, y) = y \, dx x \, dy$. Find whether it satisfies the integrability condition to be exact. If it does, find a function $\sigma(x, y)$ such that $\omega = d\sigma$. If not, find an integrating denominator $\tau(x, y)$ and function $\sigma(x, y)$ such that $\omega/\tau = d\sigma$ is exact. In the latter case comment whether τ is unique/not unique.
- 2. $\langle \mathbf{3} \rangle$ Taking p and V as independent variables for the internal energy U of a gas, use the first law of thermodynamics to obtain an expression for the infinitesimal heat δQ added reversibly to a fixed mass of a gas. We do not assume the gas to be ideal.