Thermal Physics, Autumn 2016 CMI

Problem set 5
Due by the beginning of lecture on Monday, Oct 3, 2016
Maxwell relations, Energy equation

1. $\langle\boldsymbol{7}\rangle$ We used the exactness of $\delta Q / T$ to derive the Maxwell relation

$$
\begin{equation*}
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V} \tag{1}
\end{equation*}
$$

Now use the triple product identity and rules for partial differentiation to convert this into a different Maxwell relation

$$
\begin{equation*}
\left(\frac{\partial T}{\partial p}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{p} \tag{2}
\end{equation*}
$$

Hint: On the LHS of (1) regard T as a function of p and S. And use an appropriate triple product identity on the RHS.
2. $\langle\mathbf{7}\rangle$ We derived the (T, V) form of the energy equation in the class. Here derive the (p, T) form. Then specialize to a gas satisfying the ideal EOS $p V=n R T$ and comment on what the energy equation implies.

