Thermal Physics, Autumn 2016 CMI Problem set 4 Due by the beginning of lecture on Monday, Sep 12, 2016 Carnot Cycle, Second Law of Thermodynamics

- 1. $\langle \mathbf{9} \rangle$ Since the Carnot cycle *ABCDA* (introduced in the lecture) is reversible, we may run a Carnot engine E in reverse between low and high temperature reservoirs at temperatures t_1 and t_2 . It is denoted \overline{E} .
 - (a) $\langle \mathbf{5} \rangle$ Suppose Q_1 , Q_2 and W are the heats absorbed and expelled at the high and low temperature reservoirs of E and the work done. State how much heat \overline{E} absorbs/expels at the various reservoirs and what work it does/is done on it (as an integral). Give a relation among these quantities. Illustrate \overline{E} by an *oriented* closed curve in a pV diagram indicating the axes, temperatures and heat absorbed/expelled.
 - (b) $\langle 4 \rangle$ Identify a household appliance that \overline{E} models and say what the two reservoirs are in practice. What is the effect of the work done or source of the work absorbed? At which reservoir is heat of a larger magnitude exchanged?
- 2. $\langle 4 \rangle$ Suppose the working substance of a Carnot engine operating between gas temperatures $T_2 > T_1$ is an ideal gas. Show that the ratios of volumes V_B/V_A and V_C/V_D are equal. Here AB is the isothermal expansion at high temperature T_2 and CD the isothermal compression at T_1 . BC and DA are the adiabatic expansion and compression respectively.
- 3. (6) We showed that the Clausius postulate implies Kelvin's postulate. Show the converse. Assume that the Clausius postulate is false and say what this would permit. Then obtain a violation of the Kelvin statement. Hint: Use a Carnot engine. Proceed without looking up the answer!