Thermal Physics, Autumn 2016 CMI

Problem set 2
Due by the beginning of lecture on Monday, Aug 29, 2016
First Law of Thermodynamics

1. $\langle\mathbf{2}\rangle$ Taking p and V as independent variables, use the first law of thermodynamics to obtain an expression for the infinitesimal heat δQ added reversibly to a fixed mass of a gas. We do not assume the gas to be ideal.
2. $\langle\mathbf{5}\rangle$ Use the first law to show that the difference in heat capacities is given by

$$
\begin{equation*}
C_{p}-C_{V}=\left(\left(\frac{\partial U}{\partial V}\right)_{T}+p\right)\left(\frac{\partial V}{\partial T}\right)_{p} . \tag{1}
\end{equation*}
$$

3. $\langle\mathbf{2}\rangle$ Now suppose a gas satisfies the ideal equation of state $p V=n R T$ and the 'Caloric condition' $\left(\frac{\partial U}{\partial V}\right)_{T}=0$. Evaluate the difference $C_{p}-C_{V}$ for such an ideal gas.
4. $\langle\mathbf{4}\rangle$ Suppose a fixed mass of a gas with heat capacity at constant volume $C_{V}(T)$ is reversibly heated at constant volume from state $\left(T_{1}, p_{1}\right)$ to a state $\left(T_{2}, p_{2}\right)$. Find expressions for the work done by the gas ΔW, heat added to the gas ΔQ and increase in internal energy of the gas ΔU.
