
Problems on Quantum Theory of Scattering
Workshop of the Academy of Physics Teachers, Kerala

23-24 June, 2018 at Christ College, Irinjalakuda
Govind Krishnaswami, Chennai Mathematical Institute
Tutorials: T R Vishnu, Chennai Mathematical Institute

govind@cmi.ac.in, updated: July 5, 2018

Problems concerning basic theoretical developments and examples are marked 〈B〉 and
〈BE〉 . They would be useful in following the lectures.

Probability current in 1D scattering

1. 〈B〉 Consider scattering in 1D with asymptotic wave function ψ(x) = Aeikx + B−ikx as
x→ −∞ . Show that the probability current density j(x, t) = ~

2mi(ψ
∗∂xψ−∂xψ∗ψ) as

x = −∞ is sum of the probability current densities of the incoming and outgoing waves:
i.e., show that j = jA + jB and give formulae for jA,B bearing in mind that they are
vectors.

S -Matrix for scattering in 1D

2. 〈BE〉 Consider scattering from an attractive δ well in one dimension, H = p2

2m −
gδ(x).

(a) Find the S -matrix. You may use the known results for the transmitted and reflected
amplitudes t and r for the standard scattering problems.

(b) Verify that the S -matrix for the delta potential well is unitary.

(c) Find the pole(s) of the S -matrix in the complex k -plane and compare the energy
E = ~2k2/2m at the pole(s) with the energies of the bound states in this potential.

3. 〈B〉 Unitarity of S -matrix Consider the 1d scattering problem for an asymptotically
vanishing real potential V (x) with asymptotic amplitudes

ψ(x)→

{
Aeikx +Be−ikx as x→ −∞
Ceikx +De−ikx as x→ +∞

(1)

Show that the S -matrix is unitary, i.e.,〈(
A
D

)
,

(
A′

D′

)〉
=

〈
S

(
A
D

)
, S

(
A′

D′

)〉
(2)

Hint: Consider the Wronskian W (ψ∗1(x), ψ2(x)) where ψ1, ψ2 are two scattering eigen-
states with the same energy E

ψ1(x)→

{
Aeikx +Be−ikx as x→ −∞
Ceikx +De−ikx as x→ +∞

, ψ2(x)→

{
A′eikx +B′e−ikx as x→ −∞
C ′eikx +D′e−ikx as x→ +∞.

(3)

Scattering in 3D
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4. 〈B〉 Consider scattering in 3d against a potential V (r). Calculate the gradient of the

scattered wave ψ(~r) = f(θ, φ) e
ikr

r and find its leading behavior as r → ∞ . Also show
that the scattered probability current as r →∞ is given by jsc = (~k|f |2/m)r̂/r2 .

5. 〈B〉 Spherical Bessel equation: radial equation for free particle energy eigenstates with
angular momentum quantum number l .

(a) Show that the radial equation for free particle energy eigenstates

−~2

2m

1

r

d2(rR)

dr2
+

~2l(l + 1)

2mr2
R =

~2k2

2m
R (4)

becomes the spherical Bessel equation

− d2ul(ρ)

dρ2
+
l(l + 1)

ρ2
ul = ul (5)

where u = rR and ρ = kr .

(b) Find the two linearly independent solutions of this equation for l = 0.

6. 〈B〉 Method of Infeld for jl and nl : The radial Schrodinger eigenvalue problem for a
free particle in spherical coordinates (for u(ρ) = rR(r) where ρ = kr ) takes the form of
the spherical Bessel equation(

− d2

dρ2
+
l(l + 1)

ρ2

)
ul(ρ) = ul(ρ). (6)

We seek to build up the solutions for l ≥ 1 using ‘raising operators’ applied to the orthog-
onal solutions for l = 0, namely j0(ρ) = u0/ρ = sin ρ/ρ and n0(ρ) = u0/ρ = − cos ρ/ρ .

(a) In what sense are j0(ρ) and n0(ρ) orthogonal, and why is this reasonable?

(b) Suppose we define the ‘lowering operator’ dl = d
dρ + l+1

ρ . Find the raising operator

d†l which is its Hermitian adjoint with respect to the inner product on the solutions
ul(ρ).

(c) Show that the spherical Bessel equation can be ‘factorized’ as dld
†
lul = ul .

(d) Show also that d†l dl = dl+1d
†
l+1 .

(e) Use this to deduce that
(
dl+1d

†
l+1

)
(d†lul) = d†lul . What is the use of this result?

(f) Suppose we normalize so that d†lul = ul+1 , then show that Rl+1 =
(
− d
dρ + l

ρ

)
Rl(ρ).

(g) Further simplify this result to conclude that Rl = (−ρ)l
(

1
ρ
d
dρ

)l
R0(ρ). Hint: First

show that
Rl+1

ρl+1 =
(
−1
ρ
∂
∂ρ

)
Rl
ρl

.

(h) Use this to find the spherical Bessel & Neumann functions j1(ρ), j2(ρ), n1(ρ), n2(ρ).

(i) Try to argue why they must have the asymptotic behaviors

jl(ρ)→
sin
(
ρ− lπ

2

)
ρ

and nl(ρ)→ −
cos
(
ρ− lπ

2

)
ρ

as ρ→∞. (7)
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(j) Show that the asymptotic behavior (as ρ → ∞) of the spherical Hankel functions
h±l (ρ) = jl(ρ)± i nl(ρ) is given by (∓i)l+1e±iρ/ρ .

Partial wave expansion

7. 〈B〉 Use the partial wave expansion in terms of phase shifts to relate the total cross section
σ for scattering by a spherically symmetric potential V (r) to the imaginary part of the

forward scattering amplitude f(θ = 0). Hint: To find f(0) use Pl(x) = 1
2ll!

dl(x2−1)l

dxl
where

x = cos θ , work out the cases l = 0, 1, 2 and observe a pattern.

8. 〈B〉 We wish to find the coefficients Cl appearing in the expansion of a plane wave as a
linear combination of spherical waves:

eikr cos θ =

∞∑
l′=0

Cl′(2l
′ + 1)Pl′(cos θ)jl′(kr). (8)

(a) If ρ = kr , show that Cl must satisfy the following identity for each l = 0, 1, 2, . . .
and ρ ≥ 0: ∫ 1

−1
eiρx Pl(x) dx = 2 Cl jl(ρ) where x = cos θ. (9)

(Hint: Use the orthogonality relation
∫ 1
−1 Pl(x)Pl′(x)dx = 2

2l+1δll′ )

The above identity must in particular be true as ρ → 0. So we will compare the
leading behavior of both sides as ρ→ 0 to extract the constants Cl . For this we use
the formulae

Pl(x) =
1

(2l)!!

dl

dxl
(x2 − 1)l and jl(ρ)→ ρl

(2l + 1)!!
as ρ→ 0. (10)

(b) Integrating by parts, express the LHS of (9) in terms of the lth derivative of eiρx .

(c) Find nmin and show that

dl

dxl
eiρx =

∞∑
n=nmin

inρn

(n− l)!
xn−l. (11)

(d) Find the leading behavior of dl

dxl
eiρx for small ρ .

(e) Use this to show the behavior of the LHS of (9) for small ρ is given by∫ 1

−1
eiρx Pl(x) dx → (−1)lilρl

(2l)!!

∫ 1

−1
(x2 − 1)l dx. (12)

(f) Comparing with the behavior of the RHS, find Cl given that∫ π
2

0
sin2l+1 θ dθ =

(2l)!!

(2l + 1)!!
. (13)

9. 〈BE〉 Consider scattering of plane waves of wave number k (incident along z from z =
−∞) against an infinitely hard sphere potential:

V (r) =

{
∞ for r ≤ a
0 for r > a

(14)
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(a) Show that the partial wave phase shifts are given by

δl = arctan
jl(ka)

nl(ka)
. (15)

(b) Find the S-wave phase shift δ0 and partial wave amplitude a0 .

(c) Show that the S-wave scattering cross section is given by

σ0(k) =
4π

k2
sin2(ka). (16)

(d) Find the S-wave cross section in the limit of very low energies (k → 0) and compare
it with the classical cross section.

(e) Show that the S-wave scattering length α = a .

Rutherford cross section for Coulomb scattering

10. 〈B〉 The differential cross section for Coulomb scattering of a projectile of charge q and
incident angular wave number k by a fixed charge Q located at r = 0 is given by

dσ

dΩ
=

(
2mQq

16πε0~2k2

)2 1

sin4(θ/2)
. (17)

(a) Check that the differential cross section has the correct dimensions.

(b) Find the total cross section for Coulomb scattering. Does it matter whether the
charges are of the same or opposite signs?

(c) In a polar plot, roughly sketch the angular distribution of scattered particles (differ-
ential cross section). In which direction do most of the scattered particles go?

(d) What is the classical limit of the differential cross section for Coulomb scattering?

Born approximation

11. 〈B〉 Show that ∇2(1
r ) = −4πδ3(~r). The Laplacian in spherical polar coordinates is

∇2f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin θ

∂2f

∂φ2
. (18)

Hint: First consider r > 0. To deal with r = 0, integrate both sides and use Gauss’
divergence theorem.

12. 〈B〉 Prove the identity |r− r′| = r− r̂ · r′+O( r
′2

r2
) for | r′r | � 1. Hint: Compute (r− r′)2 .

13. 〈B〉 Derive the formula q = 2k sin θ
2 , for the magnitude q of the ‘momentum transfer’

q = kf−ki . Here ki and k are the wave vector and wave number k = |ki| of the incoming
plane wave and kf = kr̂ is the ‘outgoing wave vector’ in the direction of interest. θ is
the angle between incident and ‘scattered’ directions ki and kf . This formula is used
in obtaining the Born approximation for spherically symmetric potentials. Hint: Draw a
figure.

4



14. 〈B〉 Show that ∫ ∞
0

dr e−µr sin qr =
q

q2 + µ2
for µ > 0. (19)

This integral with q the magnitude of the momentum transferred appears in the Born
approximation for the scattering amplitude in a screened Coulomb potential ∝ −e−µr/r .

15. 〈BE〉 Consider scattering from a finite spherical barrier V (r) = Voθ(r < a) with
Vo > 0, at relatively high energies E > Vo where the Born approximation may be appli-
cable. θ is the Heaviside step function.

(a) Find the scattering amplitude f(θ, φ) and total cross-section at zero momentum
transfer in the Born approximation.

(b) Generally speaking, under what circumstances (concerning physical/geometric pa-
rameters) might the momentum transfer ~q be small?

(c) Evaluate the scattering length αBorn at zero ~q in the Born approximation, check it
has the correct dimensions and expected sign.

i. The S-wave phase shift for small δ0 and ka is δ0 ≈ ka
(

tanhκa
κa − 1

)
for κ2 =

2m
~2 (Vo − E). Find the corresponding scattering length α . Compare this α with
αBorn in the limit of small V0 , where the Born approximation may be expected
to be more trustworthy.

(d) Evaluate the scattering amplitude f(θ) and differential cross section dσ(θ)
dΩ in the Born

approximation (for arbitrary momentum transfer). Notice the partial resemblance to
the Rutherford differential cross section.

(e) Check that in the limit of zero momentum transfer, the scattering amplitude matches
the result of 15a.

(f) What is the Rutherford differential cross section in the limit of zero momentum
transfer?

(g) On qualitative physical grounds, argue whether the total cross section for the potential
V (r) = Voθ(r < a) is finite or infinite.

(h) Use the above Born approximation for dσ(θ)
dΩ to argue whether the total cross section

for V (r) is finite or infinite. Argue based on the angular dependence of the differential
cross section in the appropriate directions, there is no need to evaluate the integral
exactly.
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