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2 Schrödinger-Pauli equation for spin half electron

• A spin half non-relativistic particle (electron) is described by a wave function ψ±(x) which
gives the probability amplitude of finding the particle at x with spin projection Sz = ±1

2~ .
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This wave function lives in the Hilbert space L2(R3)⊗C2 . The hamiltonian for such a particle

in a potential V is H = ( p
2

2m + V (x)) ⊗ I and is proportional to the identity in spin space
(spin-independent). Now if such a particle has charge e and is in a magnetic field, by analogy
with the classical dipole interaction, we add the spin magnetic dipole moment energy

Hmd = −g e

2m
~S · ~B = −ge~

4m
~σ · ~B ≈ − e~

2m
σ ·B. (1)

The dimensionless factor g in the spin gyromagnetic ratio is g ≈ 2 for the electron, based
on experiment. Note that Hmd is not just proportional to the identity in spin space, though
it acts as the identity on the translational degrees of freedom (position-independent but spin
dependent)

• On the other hand, we know that the interaction of a charged (spin zero) particle with
electromagnetic fields is given by replacing ~p → ~p − e ~A and E → E − eφ in the hamiltonian
H = p2/2m+ V(

p2

2m
+ V

)
ψ = Êψ −→

(
(p− eA)2

2m
+ V + eφ

)
ψ = Êψ = i~

∂ψ

∂t
(2)

Now we wish to generalize this hamiltonian to the case of a spin half particle. The hamiltonian
cannot simply be proportional to the identity in spin space as that would not give rise to a
magnetic moment interaction, which we expect to arise as a consequence.

• Notice that for a free particle, the hamiltonian H = p2

2m ⊗ I could equally well be written
H = 1

2m(~σ ·~p)2 on account of σiσj = δij+
√
−1εijkσk . This suggests a hamiltonian for a spin-half

charged particle in an electromagnetic field, acting on two-component spinor wave functions

H =
1

2m
(σ · (p− eA))2 + e φ⊗ I. (3)

The corresponding Schrödinger equation for this hamiltonian is called the Pauli equation (1927).
Of course, it is just a guess for the appropriate hamiltonian. But it is a good guess. To see why,
we use the above identity in the form (σ ·A)(σ ·B) = A ·B + iσ · (A×B) to write (show this!)

H =
1

2m
(p− eA)2 +

i

2m
σ · (p− eA)× (p− eA) + eφ =

1

2m
(p− eA)2 − e~

2m
σ ·B + eφ. (4)

In addition to the usual (spin-independent) electromagnetic interactions we also get the expected
spin magnetic moment coupling with the approximately correct gyromagnetic ratio g = 2 for
the electron.

3 Relativistic quantum mechanics

• The Schrödinger and Schrödinger-Pauli equations with the above hamiltonians can be used
to describe non-relativistic particles of spin zero (no internal degrees of freedom) and half.
Schrodinger in 1926 looked for a wave equation that was appropriate to a particle that might
travel at speeds approaching that of light. Though he had an electron in mind, he did not
consider its spin as that concept was still being developed. He obtained a relativistic wave
equation now called the Klein-Gordon (KG) equation; it is of some relevance to a spin zero
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particle like a pion. A relativistic wave equation relevant to a spin half particle was subsequently
discovered by Dirac (1928).

• In hindsight, both the KG and Dirac relativistic wave equations are flawed in that they cannot
provide a self-consistent description of a single relativistic particle. The number of particles is
not a conserved quantity in a relativistic setting, due to the processes of particle production
and annihilation. Despite their inconsistencies, these equations are approximately valid when
appropriately interpreted in the context of many-particle quantum mechanics. They also lead
to many correct physical predictions, such as the existence of anti-particles and relativistic
corrections to the hydrogen spectrum and approximately correct electron gyromagnetic ratio.

• On the other hand, the Schrödinger eqn i~∂ψ∂t = Hψ has stood the test of time. For appropriate
hamiltonians and Hilbert spaces, it is, to this day, believed to exactly describe both relativistic
and non-relativistic situations in the framework of quantum field theory. But it requires more
sophistication (and is rather cumbersome) to derive the strikingly simple physical results of the
KG and Dirac equations, by solving the SE for a quantum field. So, for historical and practical
reasons, we discuss the KG and Dirac equations in attempts to develop a relativistic quantum
mechanics of spin-0 and 1

2 particles.

3.1 Klein-Gordon equation

• Recall that the Schrödinger equation could be obtained by the so-called correspondence rule.
This involves replacing E → i~ ∂

∂t , ~p → −i~∇ and x → x̂ in the expression H = E where H
is the classical hamiltonian of a non-relativistic particle. Then we ask that the quantum wave
function satisfy the resulting differential equation:

E =
p2

2m
+ V (x) −→ i~

∂ψ

∂t
= − ~2

2m
∇2ψ + V (x)ψ(x). (5)

We want to do the same thing for a free massive relativistic particle, whose energy is given by
E =

√
p2c2 +m2c4 . The resulting differential equation is

i~
∂ψ

∂t
=
√
−~2c2∇2 +m2c4 ψ (6)

To make sense of the operator on the rhs, we could expand in inverse powers of m (around the
non-relativistic limit)

i~
∂ψ

∂t
= mc2

[
1− ~2∇2

2m2c2
− ~4∇4

8m4c4
+ . . .

]
ψ. (7)

At leading order we get the non-relativistic SE where the hamiltonian includes an additive
constant mc2 coming from the rest energy. However, this new equation is first order in time
derivatives but of infinite order in space derivatives. It is not a differential equation in the
usual sense, making it a bit hard to work with. Moreover, relativistic covariance is not manifest
since space and time derivatives appear very differently. The above equation could be useful in
working out relativistic corrections to the SE by truncating the series. But due to the difficulties
in dealing with a differential operator of infinite order, and lack of manifest relativistic covariance,
a simpler relativistic wave equation was investigated.

• The relativistic energy-momentum relation can also be written E2 = p2c2+m2c4 , though this
includes negative energies E = ±

√
p2c2 +m2c4 , which are not admissible in classical physics.

3



But we set aside this objection for now and work with this form due to its simplicity, largely on
aesthetic grounds. Applying the correspondence rule, we get the Schrödinger relativistic wave
equation or (massive) Klein-Gordon equation

− ~2
∂2ψ

∂t2
= −~2c2∇2ψ +m2c4ψ or

(
~2�+m2c2

)
ψ = 0. (8)

� = 1
c2

∂2

∂t2
−∇2 is the d’Alembert or wave operator. Notice that the KG equation is 2nd order

in both space and time derivatives unlike the SE which is first order in time. Notice that the KG
equation admits every solution of (6) as a solution. So even if our aim was to exclusively study
(6), it could be technically easier to do so by solving the KG equation first and then discarding
the ‘unwanted’ solutions. But we wish to study the KG equation in its own right for now, even
if only for aesthetic reasons.

• To decide whether KG is a physically correct equation and what it might physically describe,
we need to study its features. With the benefit of hindsight, we can say that suitably inter-
preted, the predictions of KG are in reasonable agreement with experimental findings concerning
relativistic spin-less particles (such as pionic atoms). Ultimately, this is the physical justification
to study it. The KG equation also forms the foundation of scalar quantum field theory upon
second quantisation. In that form and with some additional features, it is used to describe the
Higgs field in particle physics.

3.1.1 Plane wave solutions of KG

• To get a feeling for what the KG equation describes, let us look for separable solutions
Ψ(r, t) = ψ(~r)T (t). We find

− ~2
T̈

T
=
m2c4ψ − ~2c2∇2ψ

ψ
= E2 (9)

where we introduced a separation constant E2 independent of both ~r and t and having di-
mensions of energy-squared. ψ(~r) must be an eigenfunction of the Laplacian (i.e., satisfy the
Helmholtz equation) (

−~2c2∇2 +m2c4
)
ψ = E2ψ. (10)

The operator −~2c2∇2 +m2c4 coincides with the hamiltonian of a non-relativistic particle in a
constant potential. So its eigenfunctions are free particle energy eigenstates (e.g. plane waves
propagating in any direction). It is a positive operator. So the separation constant E2 must be
positive, which justifies the notation E2 with E real. This then guarantees that the solutions
be oscillatory in time, for if we denote by E either the positive or negative square-root of E2 ,
then we have

T (t) = AeiEt/~ +Be−iEt/~ (11)

Now E2−m2c4 , being the eigenvalue of a positive operator −~2c2∇2 must be non-negative. Let
us denote the quantity E2−m2c4 by p2c2 for some positive number p2 . We of course recognize
that the above Helmholtz equation arises from the relativistic energy-momentum dispersion
relation E2 − m2c4 = ~p2c2 upon use of the correspondence rule ~p → −i~∇ . The general
solution of the Helmholtz equation is a linear combination

ψ(~r) = Fei~p·~r/~ +Ge−i~p·~r/~ (12)
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where ~p is any ‘momentum’ vector that satisfies the so-called mass-shell condition c2~p2 =
E2 −m2c4 . The mass shell condition defines a hyperboloid in the space of 4-momenta.

Thus, separable solutions of the KG equation take the form

Ψ(~r, t) =
(
Fei~p·~r/~ +Ge−i~p·~r/~

)(
AeiEt/~ +Be−iEt/~

)
(13)

These solutions are bounded over all of space at all times, and to that extent, could potentially
describe the amplitude of some disturbance. We may synthesize the general solution of the KG
equation by taking an arbitrary linear combination of separable solutions. But a peculiar feature
is that for a fixed momentum vector ~p , there is both a plane wave that moves in the direction of
~p and in the opposite direction. This is at variance with our experience from classical mechanics
as well as non-relativistic quantum mechanics where a particle with given momentum moves in
the direction of the momentum vector. The current peculiarity is a reflection of the fact that we
started with E2 − ~p2c2 = m2c4 , which includes both positive and negative energies for a given
momentum vector. This problem did not arise for the Schrödinger equation as it is first order
in time, while the KG equation is second order in time.

• Another way of looking at this: The KG equation admits (check by substitution) plane wave

solutions ei(
~k·~r−Et/~) where ~k = ~p/~ is an arbitrary wave vector and

E = ±
√
m2c4 + ~2c2~k2. (14)

E may be called energy. We may call the mode with E > 0 or ω = E/~ > 0 a positive
energy/frequency mode and one with ω < 0 a negative energy mode. This nomenclature is

somewhat arbitrary since we could have written the plane wave as ei(
~k·~r+Et/~) . Independent of

convention, for every plane wave with ‘energy’ E , there is one with energy −E . In this sense,
the spectrum of energies of the massive KG equation is continuous and comes in two disjoint
pieces (−∞,−mc2]∪ [mc2,∞). So the energy spectrum is not bounded below, there is no least
value of E .

• Calculate the group speed cg = ∂ω
∂k of disturbances that propagate according to the dispersion

relation E = ~ω(k) =
√
m2c4 + ~2k2c2 . Show that the group speed is less then the speed of

light and approaches c when m→ 0. The group speed is the speed at which signals propagate.
The phase speed cp = ω/k can exceed the speed of light. Physical signals do not travel at the
phase speed. The different planes waves that combine to form a wave packet can have phase
speeds that exceed the speed of light, they destructively interfere at most locations except in
the vicinity of the wave packet, which travels at the group speed.

• One option is to simply disallow the negative energy solutions. For example, we might
implement this for plane waves by allowing only those initial conditions which ensure that the
wave moves in the direction of the momentum vector, ensuring that E > 0. Within the context
of the KG equation, this is seemingly ok, since the particle will then remain in that stationary
state for ever. However, under the influence of external perturbations, the particle could make
a transition to a lower energy state. And since there is no ground state, the particle could keep
dropping down in energy while emitting radiation. The system is unstable to perturbations as
it does not have a ground state. This is problematic since we could extract an infinite amount
of energy from such a particle as it makes transitions to states of arbitrarily negative energy.

• Despite this difficulty with trying to interpret solutions of the KG equation as the wave
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function of a particle, the equation exhibits several physically desirable features, such as a local
conservation law and Lorentz invariance, which we describe next.

3.1.2 Lorentz invariance of the Klein-Gordon equation

The principles of special relativity say that there is no way of physically distinguishing between
different frames of reference related by Lorentz transformations. A way of ensuring this is for the
differential equations describing the laws of physics to take the same form in all such frames i.e.,
to be Lorentz invariant/covariant. For example, the terms in an equation could all be scalars
(no-uncontracted indices), in which case the equation would be Lorentz invariant (KG is an
example as we will see below). More generally the terms could all be tensors of the same sort
(e.g. one uncontracted upper index - a vector equation as in the case of Maxwell’s equations
∂µFµν = jν ), in this case the equation is said to be Lorentz covariant and to transform as a
vector. Negative energy solutions are in a sense the price we have to pay for manifest Lorentz
covariance.

• To discuss the Lorentz invariance of KG, we define the Minkowski metric ηµν = diag(1,−1,−1,−1)

and the 4-vector coordinate and gradient

xµ = (x0, ~x) = (ct, ~x), ∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,∇
)
. (15)

A Lorentz transformation1 x′ = Λx is one that preserves inner products 〈x, y〉 = xtηy of
4-vectors: 〈x, y〉 = 〈x′, y′〉 . So Lorentz transformations preserve lengths and angles between
4-vectors. This is the condition that for any 4-vectors x, y

xtΛtηΛy = xtηy. (16)

In other words, the Lorentz transformation matrix must satisfy ΛtηΛ = η . In components, this
reads

x′µ = Λµνx
ν and Λµν ηµρ Λρσ = ηνσ. (17)

We say that the Lorentz transformation preserves the metric.

• xµ is called a contravariant vector or the contravariant components of the position and ∂µ is
a covariant vector or covariant components of the gradient. The terminology is because of the
way they behave under a Lorentz transformation (transforming via Λ and Λt ):

x′µ = Λµνx
ν and ∂′µ = Λνµ∂ν (18)

Indices are raised by the (inverse) Minkowski metric ηµν = diag(1,−1,−1,−1) and lowered by
its inverse ηµν = diag(1,−1,−1,−1). The vectors with raised/lowered indices are denoted by
the same symbols

xµ = ηµνx
ν = (ct,−~x), ∂µ =

∂

∂xµ
=

(
1

c

∂

∂t
,−∇

)
(19)

1For example, a Lorentz boost in the x direction leads to x′ = γ(x− vt), t′ = γ(t− xv/c2), y′ = y, z′ = z and
E′ = γ(E − pxv), p′x = γ(px − vE/c2), p′y = py, p

′
z = pz . The nontrivial part of the corresponding transformation,

in matrix form, is

(
ct′

x′

)
= γ

(
1 −β
−β 1

)(
ct
x

)
and

(
E′/c
p′

)
= γ

(
1 −β
−β 1

)(
E/c
p

)
so that Λ = γ

(
1 −β
−β 1

)
where γ = (1 − β2)−1/2 and β = v/c . A Lorentz transformation matrix is symmetric for a boost but not for a
rotation.
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are the covariant components of the position 4-vector and the contravariant components of the
gradient.

• Then it is seen that the d’Alembert wave operator is � = ∂µ∂
µ . The wave operator is Lorentz

invariant as it is the inner product of a 4-vector with itself. Under a Lorentz transformation Λ,
c is unchanged and any expression where the space-time indices of 4-vectors (or more generally
tensors) are contracted is Lorentz invariant, e.g. x′µx′µ = xµxµ . So �x = �x′ . Thus, the KG
equation (~2�x + m2c2)ψ(x) = 0 is Lorentz invariant as long as ψ(x) transforms as a scalar
under Lorentz transformations ψ′(x′) = ψ(x). Since we have not considered any internal (spin)
degrees of freedom, the KG equation may be of relevance to spin zero scalar particles, such as
pions.

• We also have the covariant and contravariant components of the momentum 4-vector

pµ = (E/c, ~p) and pµ = ηµνp
ν = (E/c,−~p) =

(
i~
c

∂

∂t
, i~∇

)
= i~∂µ. (20)

where we used the correspondence rule, to write the 4-momentum operator in quantum me-
chanics in terms of the 4-gradient. In terms of the 4-momentum pµ check that we may write
the KG equation as (

pµp
µ −m2c2

)
ψ(x) = 0. (21)

3.1.3 Non-relativistic limit

It is possible to obtain the Schrödinger equation in a non-relativistic limit of the KG equation.
However, one cannot do this by simply putting c =∞ in the KG equation. Classically, a non-
relativistic situation is one where the energy is mostly rest energy. For a free particle, this would

mean E = mc2 +KE ≈ mc2 + p2

2m . In this case, the primary time dependence of a plane wave

ψ(x, t) = ei(
~k·x−Et/~) is given by putting E ≈ mc2 . Of course, there would be some residual

time dependence due to the remaining energy. So to facilitate taking the non-relativistic limit,
let us change variables to a new wave function φ(r, t)

ψ(r, t) = e−imc
2t/~φ(r, t) (22)

We have in mind that the factor e−imc
2t/~ takes care of the fast time dependence (high frequency)

and φ(r, t) only has a residual slow time dependence. Putting this form in KG, one finds that
φ satisfies

i~φ̇− ~2

2mc2
φ̈ = − ~2

2m
∇2φ. (23)

So far we have made no approximation. Now we may take a non-relativistic limit by letting
c→∞ , the term second order in time derivatives drops out (φ has slow time dependence) and

we get the usual free particle SE. An energy eigenstate is then of the form φ(r, t) = ei(
~k·r−Enrt/~)

where Enr = ~2~k2/2m . Thus for an energy eigenstate, the original wave function is ψ(r, t) ≈
ei
~k·~r−iEt/~ where E = mc2 + Enr .

3.1.4 Coupling to electromagnetic field

We can study the KG equation in the presence of an electromagnetic field defined by the scalar
and vector potential φ, ~A in the same way as we did for the Schrödinger equation. We apply
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the ‘minimal coupling’ prescription

E → E − eφ and ~p→ ~p− e ~A. (24)

to the relativistic energy momentum dispersion relation E2 = ~p2c2 +m2c4 . This is a consistent
thing to do since it is shown in electrodynamics that Aµ = (φ/c,− ~A) transform under Lorentz
transformations in the same manner as pµ = (E/c,−~p) = i~∂µ , i.e. as the covariant components
of a 4-vector. Thus πµ = pµ − eAµ is a covariant 4-vector under Lorentz transformations.

• To get a wave equation we then use the correspondence rule E → i~ ∂
∂t , ~p→ −i~∇ and treat

~A and φ as multiplication operators on the wave function ψ(x, t). The resulting wave equation
is (

i~
∂

∂t
− eφ

)2

ψ = c2
(
−i~∇− e ~A

)2
ψ +m2c4ψ. (25)

This equation can be written in manifestly Lorentz invariant form. Recall that KG could be
written as (pµpµ −m2c2)ψ = 0. Coupling to an electromagnetic field simply means we replace
pµ → πµ = pµ−eAµ . The resulting equation is (πµπµ−m2c2)ψ = 0. Check that this is the same
as the above equation. We will say more about the electromagnetic interaction of a relativistic
particle when we discuss the Dirac equation.

3.1.5 Local conservation law and physical interpretation

• Recall that a key feature of the SE that made it acceptable as a quantum mechanical wave
equation is its physical probability interpretation: the presence of a positive probability density
and a current which together satisfy a local conservation law (continuity equation) ∂P

∂t +∇·j = 0.
We seek a probability density P (x, t) and current j(x, t) for the KG equation that satisfy a
continuity equation and reduce to the known non-relativistic quantities in the appropriate limit.
Since the non-relativistic probability density and current

Pnr(x, t) = |ψ(x, t)|2 and jnr(x, t) =
~

2mi
(ψ∗∇ψ − ψ∇ψ∗) (26)

are bilinear, it is simplest to look for a local conservation law bilinear in ψ . We multiply the
KG equation −~2ψ̈ = −~2c2∇2ψ+m2c4ψ by ψ∗ and the complex conjugate equation by ψ and
subtract the two to get

∂

∂t

(
ψ∗ψ̇ − ψψ̇∗

)
= c2∇ · (ψ∗∇ψ − ψ∇ψ∗) . (27)

To match the Schrodinger probability current, if we define

P (x, t) =
i~

2mc2

(
ψ∗ψ̇ − ψψ̇∗

)
and j(x, t) =

~
2mi

(ψ∗∇ψ − ψ∇ψ∗) (28)

then ∂tP (x, t) +∇ · j(x, t) = 0 is a local conservation law for the KG equation.

• What is more, this continuity equation is Lorentz invariant. Let us define the current density

jµ =
(
cP,~j

)
= − ~

m
=
(
ψ∗

1

c

∂ψ

∂t
,−ψ∗∇ψ

)
(29)
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Since ψ is a scalar under Lorentz transformations, jµ transforms in the same manner as the
4-vector ∂µ =

(
1
c
∂
∂t ,−∇

)
. So jµ are the contravariant components of a 4-vector. Contracting

with the covariant 4-divergence, ∂µj
µ is a Lorentz invariant quantity, which by the continuity

equation must vanish ∂µj
µ = 0.

• We check via the substitution ψ = e−imc
2t/~φ that

P =
i~

2mc2

(
−2imc2

~
|φ|2 + φ∗φ̇− φφ̇∗

)
→ |φ|2 = Pnr and ~j = ~jnr (30)

in the non-relativistic limit c→∞ where φ solves the non-relativistic SE.

• So we have a Lorentz-invariant local conservation law for the KG equation, with the correct
non-relativistic limit! But can P (x, t) be interpreted as a probability density? No, since it can
be negative. Notice that P = − ~

mc2
=ψ∗ψ̇ . Since KG is second order in time, both ψ(x, 0)

and ψ̇(x, 0) may be freely specified as initial conditions. E.g., we could take ψ(x, 0) ∈ R and
=ψ̇(x, 0) > 0. Then P (x, 0) would be negative. As another example, let us calculate P for a
plane wave solution of KG

ψ(x, t) = ei(
~k·r−ωt) where ~ω = ±

√
c2~2~k2 +m2c4. (31)

We find P (x, t) is positive for positive energy plane waves and negative for negative energy
plane waves:

P (x, t) =
~ω
mc2

= ±
√

1 +
p2

m2c2
. (32)

Thus we may not interpret P (x, t) as a probability density.

• What is more, P (x, t) is identically zero at all times if the initial conditions φ(x, 0) and φ̇(x, 0)
are chosen to be real. A real initial condition is a perfectly legitimate initial condition, and one
checks that a real initial wave function remains real at all times under Klein-Gordon evolution.
It is hard to understand why the KG equation should assign zero ‘probability’ to such a wave
function.

• The lack of a non-negative P and thus the absence of a probability interpretation arises from
the fact that the KG equation is second order in time, unlike the SE which is first order in
time. Thus, the KG equation cannot be interpreted as a quantum mechanical wave equation
for the probability amplitude of one relativistic particle in the same way as the SE is a qm
wave equation for one non-relativistic particle. For this reason, as well as due to the spectrum
being unbounded below, the KG equation was discarded as a consistent description of a single
relativistic spin zero particle.

• In retrospect, it was unreasonable to expect to find a consistent quantum mechanical relativis-
tic wave equation for one particle (or even any fixed number of such particles). This is because
it was found experimentally that if a particle is accelerated to an energy significantly in excess of
its rest energy, then by the process of particle production and destruction, an indefinite number
of additional particles are produced. The number of particles is not fixed in time. However,
even in such a situation, one finds that total electric charge is conserved.

• Later, the Klein-Gordon equation was resurrected by Pauli and Weisskopf (1934), who inter-
preted P as proportional to electric charge density and j as proportional to charge current and
the negative energy solutions could be interpreted in terms of particles of opposite charge. In the
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context of scalar π -mesons, P,~j could be interpreted as isospin charge and current. However,
in its new incarnation, the KG equation for a complex-valued wave function ψ(x, t) was not
a quantum mechanical wave equation at all, but rather an equation for some sort of charged
relativistic ‘fluid’ (field). A situation in which φ(x, t) is real is then interpreted as an uncharged
fluid! Looked at this way, the KG equation could be incorporated as an ingredient in a larger
framework of quantum fields, applicable to the relativistic quantum mechanics of an indefinite
number of spin-0 particles, rather than to a single spin-0 particle.

• Even aside from its use in the quantum theory of fields, the KG equation has been successfully
applied to calculate relativistic corrections to the spectrum of pionic atoms. These are atoms
consisting of π− -mesons bound to a nucleus. X-rays are emitted when the π− makes a transition
between levels of such atoms and the spectra are in good agreement with those computed using
the KG equation in a Coulomb potential. Rather than describe pionic atoms, we will describe
such relativistic corrections for ordinary atoms when we discuss the Dirac equation for electrons.

3.2 Dirac equation

• Some of the difficulties with the KG equation as a relativistic wave equation for the probability
amplitude of a single scalar particle (especially the lack of a positive locally conserved probability
density) stem from the fact that it is second order in time. Dirac (1928) looked for a relativistic
wave equation that is first order in time and admits a non-negative conserved density which could
be interpreted as a probability. The simplest first order equation, which follows by applying the
correspondence rule to E =

√
p2c2 +m2c4 , is however not manifestly Lorentz invariant. Indeed

it is not of finite order in space-derivatives though it is first order in time. Dirac looked for some
other way of ‘taking this square-root’ so that the equation is first order in space derivatives.
This would make it easier to ensure Lorentz invariance. He found a remarkable solution to this
problem. However, there is a necessary condition for the consistency of any relativistic wave
equation: the wave function must satisfy the KG equation. This would ensure that wave packet
solutions in the classical limit obey the energy momentum dispersion relation E2 = p2c2 +m2c4

which must hold for any relativistic particle in classical mechanics. We will use this consistency
condition to obtain Dirac’s relativistic wave equation for the spin-half electron. Recall that the
Pauli equation for a non-relativistic electron was for a two component wave function. So we
expect to need at least a two component wave function to account for two linearly independent
spin projections. We seek a wave equation of the form

i~
∂ψ

∂t
= Hψ for H hermitian (33)

and linear in momenta. For a free particle, any such linear hamiltonian can be written

H = c~α · ~p+ βmc2 = −i~c~α · ∇+ βmc2 (34)

where ~α and β are dimensionless and independent of x, t, p, E . Dimensional analysis implies
the constant term must be linear in mass and also fixes the factors of ~ and c . H is called the
Dirac hamiltonian or the Dirac operator. We expect ψ to have at least N = 2 components,
so ~α and β must be constant N × N hermitian matrices2. Since they are constant matrices,

2If N = 1, the hamiltonian wouldn’t be rotation-invariant as there would be a preferred vector ~α involved in
its specification.
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they will commute with the momentum operator p . Other such matrices already appeared in
the hamiltonian of the Pauli equation

i~
∂ψ

∂t
=

1

2m
(~σ · ~p)2ψ. (35)

But the Pauli equation is not Lorentz invariant, it is second order in space derivatives and first
order in time derivatives. It is a non-relativistic equation but can serve as inspiration for the
Dirac equation.

• A solution of the Dirac equation automatically satisfies the second order equation

− ~2
∂2ψ

∂t2
= H2ψ =

[
−~2c2αiαj∂i∂j + β2m2c4 +mc3(αiβ + βαi)pi

]
ψ. (36)

Comparing with the KG equation

− ~2
∂2ψ

∂t2
=
[
−~2c2∂i∂i +m2c4

]
ψ (37)

we find the consistency conditions for Dirac’s matrices

α2
i = β2 = I, [αi, β]+ = 0 and [αi, αj ]+ = 0 for i 6= j. (38)

In other words, the hermitian α and β matrices must square to the identity and anti-commute
in pairs. So their eigenvalues must be ±1. What is more, we can show that they must be
traceless

αiβ + βαi = 0 ⇒ αi = −βαiβ ⇒ tr αi = − tr β2αi = − tr αi ⇒ tr αi = 0. (39)

Similarly, we show that tr β = 0. Since they are traceless, they must each have an equal number
of +1 and −1 eigenvalues, so they must be of even dimension N . N = 2 is however disallowed
since we cannot find four such 2×2 matrices (show this!). The next simplest possibility is N = 4,
and it turns out to be possible to find four 4× 4 matrices satisfying the above conditions. This
also means that the wave function ψ(x, t) must be a four-component column vector (called a
‘Dirac’ spinor) rather than a two-component vector (sometimes called a ‘Pauli’ spinor). The
adjoint ψ† is a four component row vector. While we expected to need two components to
describe the two spin projections of a spin half particle, the additional two components are
unexpected, but forced upon us by internal consistency.

3.2.1 Dirac’s 4× 4 representation of ~α, β matrices

• Just as it is convenient to express the spin operators of a non-relativistic particle in a particular
basis (say one where Sz is diagonal), it is convenient to pick a basis to represent ~α, β as specific
numerical matrices to facilitate working out explicit solutions of the Dirac equation etc. The
representation chosen by Dirac is one where β is diagonal. It facilitates passage to the non-
relativistic limit, discussion of spin etc. It is a basis where β is diagonal and its +1 eigenvalues
precede its −1 eigenvalues:

β =

(
I 0
0 −I

)
(40)
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is clearly hermitian, traceless and squares to the identity. The condition that αi anti-commute
with β may be used to show that αi must be block off diagonal. To do so, use hermiticity to
write

αi =

(
ai bi
b†i di

)
(41)

where ai, di, bi are 2× 2 matrices. Then

αiβ + βαi =

(
2ai −bi + bi

b†i − b
†
i −2di

)
= 0 ⇒ ai = di = 0 ⇒ αi =

(
0 bi
b†i 0

)
. (42)

The conditions [αi, αj ]+ = 2δij imply that

bib
†
j+bjb

†
i = 0 and b†ibj+b

†
jbi = 0 for i 6= j while bib

†
i = b†ibi = I for i = 1, 2, 3. (43)

The latter conditions say that bi are unitary matrices. Let us now see if we can identify three
matrices bi with these properties. It is simplest to try to pick bi to be hermitian. Then the
conditions become

[bi, bj ]+ = 0 for i 6= j and b2i = 1 for i = 1, 2, 3. (44)

So we seek three hermitian and unitary 2 × 2 matrices that square to the identity and anti-
commute in pairs. The Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
(45)

satisfy these conditions and so we may take bi = σi . Thus we have the four Dirac matrices

~α =

(
0 ~σ
~σ 0

)
and β =

(
I 0
0 −I

)
. (46)

There are other ways to represent the 4×4 Dirac matrices, though they lead to the same physics.

3.2.2 Local conservation law and probability interpretation

• We seek a locally conserved density (hopefully positive) and current for the Dirac equation.
By analogy with what worked for the Schrodinger and KG equations, we look for a bilinear
conservation law by taking the difference of the Dirac equation and its adjoint after multiplying
by ψ† from the left and ψ from the right respectively. The Dirac equation and its adjoint are

i~
∂ψ

∂t
= −i~cα · ∇ψ +mc2βψ, and − i~∂ψ

†

∂t
= i~c∇ψ† · α+mc2ψ†β (47)

So we get

i~ψ†ψ̇ = −i~cψ†α · ∇ψ +mc2ψ†βψ and − i~ψ̇†ψ = i~c∇ψ† · αψ +mc2ψ†βψ. (48)

Subtracting, we get a local conservation law

∂

∂t

(
ψ†ψ

)
+∇ ·

(
ψ†c~α ψ

)
= 0 or

∂P

∂t
+∇ ·~j = 0 (49)

where P (x, t) = ψ†ψ and ~j(x, t) = ψ†cαψ . Dirac interpreted P (x, t) as a probability density as
it is non-negative and j as a probability current density by analogy with Born’s interpretation of
the Schrödinger wave function. Thus, the problem of negative probabilities in the KG equation
could be avoided in the case of the Dirac equation.
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3.2.3 Plane waves: Energy and momentum eigenstates of free Dirac Hamiltonian

• Each component of the Dirac wave function Ψ(~r, t) satisfies the KG eqn, which admits plane
wave solutions. So it is reasonable to expect the Dirac equation to admit plane waves. We
are also interested in energy eigenstates of the Dirac hamiltonian. These are plane waves, as
expected of a free particle.

• To find solutions of the Dirac equation, let us proceed by separation of variables. Ψ depends
on ~x, t as well as spinor degrees of freedom. We make the SOV ansatz

Ψ(r, t) = uψ(r)T (t) (50)

where u is a constant (independent of r, t), dimensionless 4-component Dirac spinor. Insertion
in the Dirac equation i~Ψ̇ = (cα · p+ βmc2)Ψ and division by ψ(r)T (t) gives

i~u
Ṫ

T
= −i~c∇ψ

ψ
· ~αu+mc2βu = Eu. (51)

Lhs is a function of t while rhs a function of r , so both must equal a constant (spinor), which
must be proportional to u from the lhs. We denote the proportionality constant E . Thus
T (t) ∝ exp(−iEt/~) and

− i~c∇ψ
ψ
· ~αu = (E −mc2β)u (52)

Now the rhs is independent of r while the lhs depends on r . So the lhs must be a constant
spinor. The dependence of the lhs on r is entirely via the vector −i~∇ψ/ψ . So this vector must
be a constant vector, which we denote ~p . Thus ψ(r) and u must satisfy

− i~∇ψ = ~pψ or ψ ∝ ei~p·r/~ and
(
cα · p+ βmc2

)
u = Eu (53)

Thus, separable solutions of the Dirac equation are plane waves

ψ(~r, t) ∝ u ei(~p·~r−Et)/~. (54)

where u is a constant spinor satisfying
(
cα · p+ βmc2

)
u = Eu . This is a system of four

homogeneous linear equations in four unknowns, the components of u = u(E, ~p), which are
constant in space and time, but could depend on the separation constants E and ~p as well as
m and c . For non-trivial solutions to exist, the determinant of the 4× 4 matrix of coefficients
must vanish.

det

(
(mc2 − E)I cσ · p

cσ · p −(mc2 + E)I

)
= det


mc2 − E 0 cp3 c(p1 − ip2)

0 mc2 − E c(p1 + ip2) −cp3
cp3 c(p1 − ip2) −(mc2 + E) 0

c(p1 + ip2) −cp3 0 −(mc2 + E)

 = 0.

This determinant is a quartic polynomial in E namely (E2− ~p2c2−m2c4)2 (show this!). Thus,
for non-trivial energy and momentum eigenstates to exist, E and ~p must satisfy (E2 − ~p2c2 −
m2c4)2 = 0, so the eigenvalues are E = E+, E+, E−, E− where E± = ±

√
~p2c2 +m2c4 .

• Alternatively, we could obtain this relation by recalling that every component of a Dirac wave
function must solve the KG equation, and this will be the case for the plane wave only if E
and ~p satisfy the above mass-shell condition. We will obtain this condition in yet another way
below.
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• E is named energy as plane waves are eigenfunctions of the Dirac hamiltonian with eigenvalue
E

HΨ = i~Ψ̇ = EΨ. (55)

~p is called momentum since the above plane waves are eigenfunctions of the momentum operator
−i~∇ψ = ~pψ with eigenvalue ~p . Thus the plane waves are simultaneous eigenfunctions of the
energy i~ ∂

∂t , momentum −i~∇ and hamiltonian H operators. This is to be expected, since the
free particle hamiltonian is space and time-translation invariant.

• To find the eigenstates and energy spectrum of the Dirac hamiltonian we must find those
values of E for which there are non-trivial eigenspinors u(~p) satisfying(

mc2I cσ · ~p
cσ · ~p −mc2I

)
u = Eu. (56)

We are interested in a massive m 6= 0 particle (the electron). The simplest case is ~p = 0,
when the plane wave does not travel, i.e., the particle is at rest. In this case, the hamiltonian
H = βmc2 is diagonal and the eigenspinors can be taken as the standard basis spinors

u(1) =


1
0
0
0

 =

(
↑
0

)
, u(2) =


0
1
0
0

 =

(
↓
0

)
, u(4) =


0
0
1
0

 =

(
0
↑

)
, u(4) =


0
0
0
1

 =

(
0
↓

)
. (57)

with energy eigenvalues E = mc2,mc2,−mc2,−mc2 . The first two u(1), u(2) are positive energy
eigenspinors with energy equal to that of a particle at rest. The presence of two linearly indepen-
dent positive energy solutions is to be welcomed, since we wished to model the electron, which
is a spin half particle. So without a priori assuming anything about spin, Dirac’s formalism,
which is based on the relativistic energy momentum dispersion relation, automatically produces
an equation for a spin half particle. However, it produces some seemingly unwanted things as
well, u(3), u(4) are negative energy eigenspinors. Despite the Dirac equation being first order in
time, negative energy solutions remain. Suitably interpreted, they turn out to be necessary, to
accommodate anti-electrons, which are inevitably produced even if a single electron is acceler-
ated to energies much more than its rest energy. So we retain the negative energy solutions, in
anticipation of their physical utility.

• More generally, when ~p is not necessarily zero, we suspect that the top two components
of u might be significant for positive energy plane waves while the lower components may be

significant for negative energy solutions. So it makes sense to write u =

(
φ
χ

)
, they satisfy the

coupled equations

φ =
cσ · p

E −mc2
χ and χ =

cσ · p
E +mc2

φ. (58)

Eliminating χ we get

c2(σ · ~p)2φ = (E2 −m2c4)φ or (E2 −m2c4 − p2c2)Iφ = 0 (59)

Similarly we get
(E2 −m2c4 − p2c2)Iχ = 0. (60)
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Each is (the same) homogeneous linear equation for a two-component spinor. We have non-trivial
solutions provided the determinant of the coefficient matrix (E2−p2c2−m2c4)2 vanishes. Thus
there are two distinct energy eigenvalues and each has multiplicity two

E± = ±
√
~p2c2 +m2c4 (61)

As the momentum ~p is varied, the spectrum of energies of a Dirac particle extends over the range
(−∞,−mc2] ∪ [mc2,∞). This is just as for the Klein Gordon equation, except that here each
energy level is twice as degenerate, due to the additional spin degrees of freedom. All energy
levels (except E = ±mc2 ) are of course infinitely degenerate, as the same energy is obtained
irrespective of the direction of momentum.

• Let us obtain the corresponding eigenvectors. Clearly, every two component vector ϕ solves
(E2

+ − m2c4 − p2c2)Iϕ = 0 and we could choose the standard basis ↑= (1, 0)t and ↓= (0, 1)t

for the eigenvectors ϕ , though any other pair of linearly independent φ would also do. The
corresponding χ′s are fixed as χ = cσ·p

E+mc2
ϕ . Thus we have found two (orthogonal - check this!)

eigenspinors corresponding to the positive energy eigenvalue E = E+ (check that (cα · p +
βmc2)u(1,2) = E+u

(1,2) .)

u(1) =

(
↑

cσ·p
E++mc2

↑

)
and u(2) =

(
↓

cσ·p
E++mc2

↓

)
(62)

• Similarly, we find two orthogonal negative energy E = E− eigenspinors

u(3) =

(
c(σ·p)

E−−mc2 ↑
↑

)
and u(4) =

(
c(σ·p)

E−−mc2 ↓
↓

)
(63)

Notice that these eigenspinors reduce to the previously determined expressions in the limit ~p = 0
where the particle is at rest.

• Combining, separable solutions of the Dirac equation are plane waves. They are simultaneous
eigenstates of energy and momentum, so they may be labelled by the corresponding eigenvalues
E, ~p which must however satisfy the mass shell condition E2 = p2c2 + m2c4 . An orthogonal
basis for these plane waves is

Ψ(j)(r, t) = u(j)ei(~p·~r−Et)/~ for j = 1, 2, 3, 4. (64)

So we can regard the plane waves as labelled by ~p and the sign of E . The corresponding energies
are E = E+ =

√
p2c2 +m2c4 for j = 1, 2 and E = E− = −E+ for j = 3, 4. There however

remains a two-fold degeneracy even after E and ~p have been specified, which may be traced
to two possible spin projections, to be discussed below. The spectrum of energies is unbounded
both above and below and continuous except for a gap (−mc2,mc2) separating positive from
negative energy eigenstates. For the electron, the size of this gap is 2mc2 = 2 × 511 = 1022
KeV. The presence of negative energy solutions and a spectrum unbounded from below mean
that the Dirac equation suffers from some of the same problems as the KG equation. More on
this later.

3.2.4 Non-relativistic limit of plane waves

• What happens to the above plane waves in the non-relativistic limit? We consider a situation
in which the energy eigenvalue is mostly rest energy and the velocity is small compared to the
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speed of light, v � c or p/mc � 1. For positive energy solutions (which are our primary
interest) this would mean E = E+ ≈ mc2 . For negative energy solutions. E = E− ≈ −mc2 .

• Recall that the eigenvalue problem (56) for the Dirac spinor u = (ϕ χ)t could be written as

χ =
cσ · p

E +mc2
ϕ, ϕ =

cσ · p
E −mc2

χ (65)

For a positive energy solution, We see that the components of χ are suppressed compared to
those of ϕ by a factor of order p/mc � 1. So χ is called the small component and ϕ the
large component in the non-relativistic limit. In fact, in this limit, the positive energy solutions
obtained above tend to the non-relativistic spin wave functions with the lower component playing
no role

u(1) →
(
↑
0

)
and u(2) →

(
↓
0

)
. (66)

Thus the two degenerate positive energy solutions incorporate the two linearly independent spin
projections in the non-relativistic limit. In effect the Dirac spinors for plane waves reduce to
Pauli spinors.

• For negative energy solutions, χ dominates over ϕ in the non-relativistic limit. The degenerate
negative energy eigenstates u(3) → (0 ↑)t and u(4) → (0 ↓)t are again distinguished by their
spin projections.

3.2.5 Spin and helicity

• In the non-relativistic limit, degenerate positive energy plane wave solutions of the Dirac
equation with fixed momentum ~p differ by their spin projections; ditto for negative energy
solutions. This is a reflection of the fact that momentum p̂ and spin ~S commute with the
non-relativistic free particle hamiltonian and we may use momentum and spin projection to
label the different degenerate energy eigenstates ((H, p, S2, Sz) are commuting observables).
This degeneracy persists in the relativistic case and we have seen that energy and momentum
commute. We seek an observable that commutes with both energy and momentum and can
be used to label the plane wave eigenstates. What about spin? Based on the non-relativistic
analogy, it is reasonable to introduce the Dirac spin (vector) operator, the 4× 4 matrix (it acts
as the identity on translational degrees of freedom)

~S =
1

2
~~Σ =

1

2
~
(
~σ 0
0 ~σ

)
(67)

The components Sx, Sy and Sz obviously satisfy the angular momentum commutation relations
and S2 = (3/4)~2I as for a spin half particle, except that here we have a doubling of the degrees
of freedom. The component of spin in any direction, such as Sz, Sx, Sy or n̂ · S for any unit
vector n̂ has the eigenvalues ±~/2 each with two-fold degeneracy.

• The free particle Schrödinger hamiltonian H = 1
2mp

2 ⊗ I was proportional to the identity in
spin space. However, even for a free Dirac particle, the hamiltonian H = cα · p + βmc2 is not
proportional to the identity in spin space, this situation is forced on us by the relativistic energy
momentum dispersion relation which implies α and β cannot be proportional to the identity.
A consequence is that the components of spin are in general not conserved in time. Indeed, spin
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does not commute with the Dirac hamiltonian in general3. We find using [~σ · ~p, ~σ] = 2i~σ × ~p
that

[H, ~S] =
~
2

[cα · p+ βmc2, ~Σ] =
~
2

(
0 c[σ · p, ~σ]

c[σ · p, ~σ]

)
= i~c~α× ~p. (68)

It is not just the cartesian components of spin that do not in general commute with H , but also
the component of spin in any direction n̂ . We find that

[H, n̂ · ~S] = −i~c~α · n̂× ~p. (69)

However, the component of spin in the direction of momentum, which is called helicity h = p̂ ·S
does commute with H and is conserved

h = ~S · p̂ =
~
2

(
~σ · p̂ 0

0 ~σ · p̂

)
⇒ [H, p̂ · ~S] = 0. (70)

The eigenvalues of helicity are ±~/2 = λ~ with λ = ±1
2 . Thus, we may choose a basis for the

two-dimensional subspace of positive energy E+ plane waves with given momentum ~p in which
helicity is also diagonal. However, u(1,2,3,4) are not helicity eigenstates in general, but positive
energy helicity eigenstates may be obtained from linear combinations of u(1) and u(2) and neg-
ative energy helicity eigenstates from linear combinations of u(3) and u(4) . The positive energy
helicity eigenstates are obtained by choosing ϕ to be eigenvectors of p̂ · S . If we use spherical
polar coordinates for ~p = (p, θ, φ) we recall (from spin in a ~B field!), that the eigenvectors of
p̂ · S corresponding to eigenvalues ±~/2 are

ϕ+ = χ+ =

(
cos 1

2θ
eiφ sin 1

2θ

)
and ϕ− = χ− =

(
e−iφ sin 1

2θ
− cos 1

2θ

)
(71)

Thus the helicity eigenspinors with positive energy E = E+ are

λ = +
1

2
: u+ =

(
ϕ+

cσ·p
E++mc2

ϕ+

)
and λ = −1

2
: u− =

(
ϕ−

cσ·p
E++mc2

ϕ−

)
(72)

Similarly, the negative energy helicity eigenspinors are

λ = +
1

2
: v+ =

( cσ·p
E−−mc2χ+

χ+

)
and λ = −1

2
: v− =

( cσ·p
E−−mc2χ−

χ−

)
(73)

Unlike the component of spin in a general direction, its component in the direction of momentum
(~p) is in a sense adapted to its own motion. So helicity is a very natural observable in addition
to being a conserved quantity.

3.2.6 Dirac equation coupled to an EM field and non-relativistic limit

• In the presence of an external electromagnetic field arising from the potentials φ, ~A , the Dirac
equation is modified by the replacements

E → E − eφ and ~p→ ~π = ~p− e ~A (74)

3However, the components of spin are conserved in the rest frame where ~p = 0.

17



Thus, for a spin half particle of charge e in an electromagnetic field, we get the wave equation

(Ê − eφ)ψ = cα · (~p− e ~A)ψ +mc2βψ or i~
∂ψ

∂t
=
[
cα · (p− eA) + eφ+ βmc2

]
ψ (75)

In order to examine the non-relativistic limit, we write ψ =

(
ϕ
χ

)
in terms of the so-called large

and small components and get the equation

i~
∂

∂t

(
ϕ
χ

)
= c~σ · ~π

(
χ
ϕ

)
+mc2

(
ϕ
−χ

)
+ eφ

(
ϕ
χ

)
. (76)

• To study the non-relativistic limit, we concentrate on a situation where the energy (or its
expectation value) is positive and mostly rest energy E = mc2 + ∆E where ∆E � mc2 .
Change variables to (

ϕ
χ

)
= e−imc

2t/~
(
ϕ̃
χ̃

)
(77)

where we have in mind that χ̃, ϕ̃ are relatively slowly varying in time. Moreover, we anticipate
that χ̃ is relatively small and hope to eliminate it and get a self-contained equation for ϕ̃ . But
first we get the coupled pair of equations

i~∂t
(
ϕ̃
χ̃

)
= −2mc2

(
0
χ̃

)
+ c~σ · ~π

(
χ̃
ϕ̃

)
+ eφ

(
ϕ̃
χ̃

)
or

i~
∂ϕ̃

∂t
= cσ · πχ̃+ eφϕ̃ and i~

∂χ̃

∂t
= −2mc2χ̃+ cσ · πϕ̃+ eφχ̃ (78)

The equation for χ in the non-relativistic approximation becomes

2mc2χ̃ ≈ cσ · πϕ̃, (79)

assuming χ̃ is slowly varying in time and the rest energy mc2 is much more than the electric
potential energy. To understand the slowly varying assumption, imagine we have an energy
eigenstate ψ with E = mc2 + ∆E , then i~ ∂tχ̃ = ∆E χ̃ which is small compared to the 2mc2χ̃
term above. Eliminating

χ̃ =
~σ · ~π
2mc

ϕ̃ we get i~
∂ϕ̃

∂t
=

[
(~σ · (~p− e ~A))2

2m
+ eφ

]
ϕ̃ (80)

which we recognize as the Pauli equation for the wave function ϕ̃(~r, t) of a non-relativistic spin
half charged particle interacting with an electromagnetic field. The latter equation predicts the
correct spin magnetic moment of the electron. This gives us some confidence in the correctness
of the Dirac equation, at least in the non-relativistic limit and in the manner it incorporates
spin.

3.2.7 Negative energy states, holes and anti-particles

• The negative energy solutions of the Dirac equation have not admitted any physical interpre-
tation. They are problematic since the energy spectrum is not bounded below. If an electron
is really described by the Dirac equation, then it is unstable to radiative decay to indefinitely
lower energies, in the process radiating an infinite amount energy.
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• To avoid this unobserved instability, Dirac (1929) proposed that the zero energy state (the
vacuum) is not the one where all states are empty, but one where the negative energy states
are all filled with electrons, one per available state (Pauli exclusion), and the positive energy
states are empty. This is as in a multi-electron atom, where the inner shells are all filled with
electrons. This vacuum state is called the Dirac vacuum, the filled negative energy states are
called the filled Dirac sea. A single electron at rest (say from ionizing a hydrogen atom) would
then occupy the positive energy state E = mc2, ~p = 0, and would be stable against radiative
decay, since the negative energy states are all filled. Thus the instability problem is addressed.
Physically realizable situations are regarded as finite departures from the Dirac vacuum. We
specify energy and charge by mentioning their values relative to the Dirac vacuum, which by
definition is a zero energy, zero charge state.

• For instance, a radiative excitation (induced by a photon of energy > 2mc2 ) could promote
an electron from the Dirac sea to a positive energy state. In this process, we would have both
the excited electron and a hole in the sea, this process is called pair creation. The hole could
move around the Dirac sea by exchanging places with one of the electrons there. Since the
motion of the hole corresponds to the oppositely directed motion of the electron it displaces,
holes behave like particles of positive charge. Thus, holes have energy and momentum and
behave like particles of positive charge and positive energy and the same mass as electrons. A
hole is called an anti-electron or positron. On the other hand, if we had a hole in the Dirac
sea, then an electron in a positive energy state could suffer radiative decay, and fall into the
hole. As a result, the hole and electron both vanish leaving the Dirac vacuum along with 2 or
more photons that are emitted. This process is called electron positron annihilation. Positrons
were experimentally observed in cloud chamber experiments by Anderson (1932) and Blackett
(1932). Since positrons have opposite electric charge, they bend in the opposite direction to
electrons in a constant magnetic field that is applied across the cloud chamber. An annihilation
event is identified by two such tracks in a cloud chamber, which meet at a point and abruptly
end. At least two photons are produced, which is understandable as a single photon would not
conserve momentum (most easily seen in the c.m. frame of the colliding electron and positron).
In pair creation, two oppositely bending tracks start all of a sudden from a point. The photons
do not leave a track in the cloud chamber since they are uncharged. e+ e− pair production from
cosmic ray photons was observed when the gamma ray interacted with a nucleus. The nucleus
is necessary, again for conservation of momentum.

• Note that we may not freely extract an infinite amount of energy from this system. Suppose
we are in a state with one positron at rest, corresponding to a vacancy at the top of the Dirac
sea. This state has energy mc2 more than the Dirac vacuum and charge +e . Now an electron
deeper in the sea with momentum |~p| could move up and fill this vacancy, thereby shifting
the positron to a state with higher momentum |~p| . This process costs energy, which has to be
supplied from outside. The positron has in effect been accelerated by an external agency. So we
see that if the hole moves lower down in the Dirac sea, then this costs energy. Indeed, all states
that we can produce from the Dirac vacuum have energy more than that of the Dirac vacuum.
The Dirac vacuum is the state of lowest energy. There is no free lunch!

• The process of e+e− pair production is reversible, the pair could annihilate giving leaving
behind two photos. So there is no entropy production in this process. Alternatively, the process
of pair annihilation e+e− → 2γ is a transformation from one microscopic state to another
microscopic state. The entropy in the initial and final states are equal, there is no violation of
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the second law of thermodynamics. Entropy increases when there are more ways of constructing
the final macroscopic state in terms of microstates than there are ways of constructing the initial
state.

• In this new interpretation, the number of electrons is not conserved, due to the processes
of pair creation and annihilation, though electric charge is conserved. The Dirac equation by
itself is not adequate to describe a system with an indefinite number of particles. For one
thing, our interpretation of

∫
ψ†ψ d3x as the conserved total probability of finding an electron

in the system, would not be consistent, since the number of electrons is not conserved. A new
formalism, allowing for creation and annihilation of particles is needed. This is the framework
of quantum field theory, which was developed beginning in the 1930s. In the new formalism,
there is no need for a filled Dirac sea or for holes in the sea, one directly deals with creation
operators for electrons and positrons. However, the physical picture of a filled Dirac sea is still
valuable as an aid to thought.

• There are some situations where the contributions of the negative energy solutions of Dirac’s
equation can be ignored. For instance, we have seen that in the nearly non-relativistic limit,
(where energies involved are small compared to electron rest energy 511 KeV) pc � mc2 , the
Dirac equation reduces to the Pauli equation for the upper two components of the Dirac spinor,
plus small relativistic corrections.

• Alternatively, suppose we want to build an electron wave packet localized in space with a width
of order |~r| . d , by superposing plane wave solutions of the Dirac equation. The localization
in position implies a certain spread of momenta of plane waves that enter the superposition, of
order |p| . h/d . It turns out that for localization in position, one necessarily has to include some
negative energy plane waves in the superposition, this is seen by Fourier decomposing a wave
packet. However, it can be shown that the amplitudes of the negative energy plane waves become
appreciable only when their momenta are of order p ∼ mc . So, as long as mc� h

d , the negative
frequency components contribute negligibly. This is the condition d� λCompton = h/mc . Thus,
as long as we are studying a system where an electron is localized over a region whose linear
dimension is large compared to the electron Compton wave length, we may ignore the effects of
the negative energy solutions. This condition is satisfied in most of atomic physics, where the
electron is localized roughly within a Bohr radius .5× 10−10m of the nucleus, which is about 20
times its Compton wavelength 2.4× 10−12m . Note that h = 4.135× 10−15 eV-s and me = .511
KeV/c2 . Thus, the predictions of the Dirac equation are expected to be accurate in most of
atomic physics.

3.2.8 Lorentz covariance of the Dirac equation

• Consider two frames (observers) related by a Lorentz transformation x′ = Λx . To implement
the principles of relativity, we wish to specify how the wave function in the transformed frame
ψ′(x′) may be constructed from the wave function used by the original observer ψ(x), so that
both observers can describe the same physical state. For the laws of physics to be the same for
both observers, we want to know whether the Dirac equation and the law of local conservation
of probability can be written in such a way that they take the same form in both frames.

• As a first step towards examining the transformation of Dirac’s equation under Lorentz trans-
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formations, we introduce new notation. Recall the local conservation law

1

c
∂tψ
†ψ +∇ · ψ†~αψ = 0 or ∂µj

µ = 0 where jµ = (ψ†ψ,ψ†~αψ) = ψ†β(β, β~α)ψ (81)

For this equation to be Lorentz invariant, we want to choose the law of transformation ψ(x) 7→
ψ′(x′) in such a way that jµ transforms as a contra-variant 4-vector. In particular we want
ψ†ψ to transform as the zeroth component of a 4-vector. For this to be the case, ψ could not
possibly transform as a scalar, as then ψ′†(x′)ψ′(x′) = ψ†(x)ψ(x) which is not the way the
zeroth component of a four vector transforms.

• To find the appropriate transformation law for ψ , it is convenient to define the ‘Pauli adjoint
spinor’ ψ̄ = ψ†γ0 and four new Dirac γ -matrices γµ = (γ0, γ1, γ2, γ3)

γ0 = β and γi = βαi (82)

so that the conserved probability density and current density may be written

jµ = ψ̄γµψ. (83)

ψ̄ = ψ†γ0 is interesting since unlike ψ†ψ , ψ̄ψ turns out to be Lorentz invariant. Despite
appearances, γµ is not a four-vector. The γ -matrices are constant matrices, just like αi and
β . There is only one 4× 4 representation of Dirac matrices up to unitary equivalence (change
of basis in Dirac spinor space). For simplicity, we use the same basis in all frames and take
the same set of γ -matrices in every frame of reference4. One checks that they anti-commute in
pairs and (γ0)2 = −(γi)2 = I . So their anti-commutation relations may be written succinctly
in terms of the (inverse) Minkowski metric

{γµ, γν} ≡ [γµ, γν ]+ = 2ηµνI. (84)

The invariance of γ -matrices under Lorentz transformations is consistent with the fact that the
Minkowski metric is unchanged under Lorentz transformations. While γ0 is hermitian, γi are
anti-hermitian, they are all traceless.

• In Dirac’s basis, the γ -matrices are

γ0 = β =

(
I 0
0 −I

)
and γi = βαi =

(
0 σi
−σi 0

)
. (85)

• The advantage of the γµ over αi, β is that now Dirac’s equation can be written in terms of
pµ = i~∂µ , whose behaviour under Lorentz transformations is known. The Dirac equation

i~
∂ψ

∂t
+ c i ~ αi∂iψ − βmc2ψ = 0, (86)

upon multiplying from the left by the non-singular matrix β/c becomes,

i~
(
γ0∂0ψ + γi∂iψ

)
−mcψ = 0 or (i~γµ∂µ −mc)ψ = 0 or (γµpµ −mc)ψ = 0 (87)

Sometimes the Feynman slash notation /∂ = γµ∂µ is used to write the Dirac equation as (i~/∂ −
mc)ψ = 0. Since γµ does not transform as a 4-vector, γµpµ is not Lorentz invariant. So

4One could choose different γ matrices in each frame γµ(Λ) = U(Λ)γµU(Λ)−1 , but this is an unnecessary
complication and still would not imply that the γµ transform as the components of a four-vector.
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far, we only introduced new notation. Contraction of indices does not in itself imply that the
Dirac equation is Lorentz invariant. Indeed we have seen that ψ(x) cannot transform as a
scalar (otherwise ψ†ψ would not transform as the zeroth component of the current 4-vector),
so mcψ(x) cannot be Lorentz invariant. So Dirac’s equation is not Lorentz invariant. The
next best thing is Lorentz covariance, i.e. every term transforms in the same way so that the
equation takes the same form in frames related by Lorentz transformations. It turns out that
the Dirac equation is Lorentz covariant with each term transforming as a Dirac spinor under
Lorentz transformations.

• Note that the free particle Dirac equation is manifestly space- and time-translation invariant,
as neither x nor t appears explicitly in the hamiltonian, indeed both P̂ and Ê commute with
Ĥ .

• Now we want to demand that the Dirac equation take the same form in frames related
by Lorentz transformations. The question is whether we can prescribe suitable rules for the
transformation of the Dirac spinor ψ(x) so that the Dirac equation is Lorentz covariant. Let us
make a Lorentz transformation x′ = Λx or x′µ = Λµνxν so that x = Λ−1x′ and

∂x′µ

∂xν
= Λµν ,

∂xν

∂x′µ
= (Λ−1)νµ and ∂′µ =

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
= (Λ−1

ν
µ)∂ν . (88)

Under this Lorentz transformation ψ(x) 7→ ψ′(x′). Since the Dirac equation is linear we sup-
pose that the new spinor wave function is related to the old one by some non-singular linear
transformation so that its linearity may be preserved. Let S(Λ) be a 4 × 4 matrix acting on
the old Dirac spinor, then

ψ′(x′) = S(Λ)ψ(x) and ψ(x) = S(Λ)−1ψ′(x′). (89)

• If the Dirac equation takes the same form, then we must have in the old and new frames:

(i~γµ∂µ −mc)ψ(x) = 0 and (i~γµ∂′µ −mc)ψ′(x′) = 0. (90)

Can we choose S(Λ) appropriately so that the former implies the latter?

• Writing ∂′µ = ∂
∂x′µ = ∂xν

∂x′µ
∂
∂xν = (Λ−1)νµ∂ν the Dirac equation in the new frame becomes

(i~γµ(Λ−1)νµ∂ν −mc)S(Λ)ψ(x) = 0. or (i~S(Λ)−1γµS(Λ)(Λ−1)νµ∂ν −mc)ψ(x) = 0 (91)

on multiplying by S(Λ)−1 . For this to be implied by the Dirac equation in the old variables, we
need

S(Λ)−1γµS(Λ)(Λ−1)νµ = γν or S(Λ)−1γµS(Λ) = Λµνγ
ν . (92)

The question is whether we can find a Λ-dependent 4× 4 matrix S(Λ) with this property.

• Given an infinitesimal Lorentz transformation Λµν ≈ δµν +ωµν (ω are infinitesimal real parame-
ters) it is possible to show that the matrix that implements the Lorentz transformation on Dirac
spinors is5

S(Λ) ≈ I − i

4
σµνωµν where σµν =

i

2
[γµ, γν ] and S(Λ)−1 ≈ I +

i

4
σµνωµν . (93)

5And S(Λ) = exp− i
4
σµνω

µν for the corresponding finite transformation.
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Let us sketch why this S(Λ) satisfies S−1γµS = Λµνγν . First, for an infinitesimal LT, ωµν are
small and we can certainly write S(Λ) ≈ I− i

4σ
µνωµν for some constant 4×4 matrices σµν with

µ, ν = 0, 1, 2, 3. Moreover, the condition that Λ preserve the metric ΛµρΛνσηµν = ηρσ implies
that ωµν is anti-symmetric

(δµρ + ωµρ)(δ
ν
σ + ωνσ)ηµν = ηρσ ⇒ ωρσ + ωσρ = 0. (94)

Thus, the part of σµν that is symmetric in µ and ν , does not contribute to S(Λ) and we may
take σµν to be anti-symmetric in µ, ν . The commutator [γµ, γν ] is anti-symmetric in µ, ν and
it is checked by a direct calculation that S−1γµS = Λµνγν up to terms quadratic in ω . For this,
use is made of the identity

[γα, [γµ, γν ]] = 4(ηαµγν − ηανγµ) (95)

• Thus, it can be shown that the Dirac equation takes the same form in all frames related by
Lorentz transformations that can be built from infinitesimal ones, provided ψ transforms as a
spinor under Lorentz transformations:

ψ′(x′) = S(Λ)ψ(x) = e−
i
4
σµνωµνψ(x) ≈

(
I − i

4
σµνωµν + · · ·

)
ψ(x). (96)

3.2.9 Lorentz invariance of the continuity equation

• Let us now see whether the local conservation law for probability ∂µj
µ = 0 is Lorentz invariant

if ψ transforms as a Lorentz spinor

ψ′(x′) = S(Λ)ψ(x) and ψ′†(x′) = ψ†(x) S(Λ)†. (97)

For this we need to check whether jµ(x) = ψ†(x)γ0γµψ(x) transforms as a four vector.

• The transformed probability and current density are

j′µ = ψ′†(x′)γ0γµψ′(x′) = ψ†(x)S†γ0γµSψ(x) = ψ†S†γ0SS−1γµSψ(x) = ψ†S†γ0SΛµνγ
νψ(x).

(98)
where use has been made of S−1γµS = Λµνγν . The question is whether j′µ(x′) = Λµν jν(x)?

• For this to be the case, we need to show that6

S†γ0S = γ0 or γ0S†γ0 = S−1. (99)

We will show that S†γ0S = γ0 for infinitesimal L.T. We first observe that as ωµν are real,

S = I − i

4
σµνωµν ⇒ S† ≈ I +

i

4
(σµν)†ωµν where σµν =

i

2
[γµ, γν ] (100)

It can be checked that σij are hermitian while σ0i are anti-hermitian. Thus we can write

S† ≈ I +
i

4
(σijωij − σ0iω0i − σi0ωi0) and S−1 = I +

i

4

(
σijωijσ

0iω0i + σi0ωi0
)
. (101)

More over, γ0 commutes with σij while it anti-commutes with σ0i and so also with σi0 (show
this!).

6Note that in general S(Λ) is not unitary. It is unitary for rotations, but not for boosts.
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• With these facts, we may now calculate to leading order in ω

γ0S†γ0 ≈ γ0I +
i

4
γ0
[
σijωij − σ0iω0i − σi0ωi0

]
γ0

=

[
γ0 +

i

4

(
σijωijγ

0 + σ0iω0iγ
0 + σi0ωi0γ

0
)]
γ0 = S−1(γ0)2 = S−1 (102)

Thus we have shown γ0S†γ0 ≈ S−1 or S†γ0S ≈ γ0 for infinitesimal LT. A similar proof
of S†γ0S = γ0 also works for finite Lorentz transformations where S(Λ) = exp− i

4σ
µνωµν . It

follows that the current transforms as a contravariant four vector. Hence the law of conservation
of probability ∂µj

µ = 0 is Lorentz invariant!

3.2.10 Dirac equation in a Coulomb potential: relativistic corrections

• The mean speed v/c of an electron (as a fraction of the speed of light) in the g.s. of the

hydrogen atom is of order the fine-structure constant α = e2

4πε0~c . To see this quickly, use the

Bohr model. Let k = (4πε0)
−1 . Balance between centripetal acceleration and electrostatic force

and quantisation of angular momentum give

mv2

r
=
kZe2

r2
and L = mvr = n~ ⇒ rn =

n2~2

mkZe2
and vn =

nkZe2

~
= ncZα. (103)

So in the ground state of a hydrogenic atom, β = v/c ∼ Zα ≈ Z/137. Thus, the effects
of c being finite are small (as long as Z � 137), so we might treat them in perturbation
theory. But they could not be ignored, since discrepancies between the non-relativistic spectrum
En = −R/n2 = −mc2α2

2n2 and experimental measurements were found. Recall that the energy of
an electron in the Bohr atom is its rest energy minus the binding energy

E = mc2 − mc2α2

2n2
(104)

We will find the next order correction to this formula, the fine-structure correction of order α4 .

• To find relativistic corrections to the hydrogen spectrum, we study energy eigenstates of
the Dirac hamiltonian in the spherically symmetric potential V (r) in the centre of mass frame
of the electron-nucleus system. m = (m−1e + m−1N )−1 is the reduced mass of the electron.

For a hydrogen atom V (r) = − e2

4πε0r
, but we will work with a general V (~r) to begin with.

It is possible to solve the Dirac equation in a Coulomb potential by separation of variables.
However, we will not pursue this approach here. Rather we find the leading corrections to the
non-relativistic hamiltonian implied by the Dirac equation. These corrections have interesting
physical interpretations and lead to the so-called fine-structure of the hydrogen spectrum. The
fine structure effects produce corrections of order α4mc2 to the Bohr spectrum which is of order
α2mc2 .

• We look for eigenstates with energies a little more than the electron rest energy E = mc2 +E
where E � mc2 . Writing the Dirac equation i~∂tΨ = (cα · p + βmc2 + V )Ψ in terms of
two-component spinors,

Ψ(~r, t) = e−iEt/~
(
ϕ(~r)
χ(~r)

)
⇒ E

(
ϕ
χ

)
=

(
V I cσ · p
cσ · p (V − 2mc2)I

)(
ϕ
χ

)
(105)
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we get the system

V ϕ+ cσ · p χ = E ϕ and cσ · p ϕ− (2mc2 − V )χ = E χ. (106)

In the non-relativistic limit, the electric potential energy from V (r) as well as E are small
compared to mc2 , so we expect χ to be suppressed relative to ϕ by a factor of order v/c . But
rather than make any approximation, we eliminate χ by expressing it in terms of ϕ

χ = (2mc2 + E − V (r))−1c(σ · p)ϕ (107)

Here (2mc2+E−V (r)) is a diagonal operator in position space, and we have its inverse appearing
above.

• Thus the self-consistent equation for ϕ prior to making any approximation is

c(σ · p)(2mc2 + E − V )−1cσ · pϕ+ V ϕ = E ϕ

or
1

2m
(σ · p)

[
1 +

E − V
2mc2

]−1
(σ · p)ϕ+ V ϕ = E ϕ. (108)

We treat the electric potential energy and E as small compared 2mc2 and expand the inverse
in a series keeping only the first two terms to get (the ‘hamiltonian’ operator HE below is
hermitian)

HE ϕ =

[(
p2

2m
+ V

)
− 1

2m
(σ · p)(E − V )

2mc2
(σ · p)

]
ϕ ≈ E ϕ. (109)

In the n.r. limit c→∞ , the second term in HE drops out and we recover Pauli’s equation for
two component spinors. The leading departure from the n.r. limit is obtained by analyzing this
new term.

The part of this term involving E is written

− 1

4m2c2
E(σ · p)2 = − 1

8m2c2
(p2E + Ep2). (110)

• The part involving the potential is is rewritten using ~pV (~r) = V (~r)~p − i~~∇V = V ~p + (~pV ).
We have

(σ · p)V (σ · p) = (~σ · (~pV ))(σ · p) + V p2 (111)

Though the lhs is manifestly hermitian, the two terms on the rhs are not individually hermitian
(though their sum is!). Since these two terms contribute to different physical processes, we
would like to write each in a manifestly hermitian form. We may do so by adding the adjoint
and dividing by two:

(σ · p)V (σ · p) =
1

2

(
V p2 + p2V

)
+

1

2
[(σ · (pV ))(σ · p)− (σ · p)(σ · (~pV ))] (112)

Show that the adjoint of (σ · (pV ))(σ · p) is as indicated. Now use (σ · a)(σ · b) = a · b+ iσ · a× b
to write this as

(σ · p)V (σ · p) =
1

2

(
V p2 + p2V

)
+

1

2
[(pV ) · p− p · (pV ) + iσ · (pV )× p− iσ · p× (pV )] . (113)

Furthermore, we simplify

~σ · (~pV )× ~p− ~σ · ~p× (~pV ) = 2~σ · (~pV )× ~p and (pV ) · p− p · (pV ) = −(p2V ) = ~2∇2V. (114)

25



Thus

(σ · p)V (σ · p) =
1

2

(
V p2 + p2V

)
+

1

2

[
~2∇2V + 2i~σ · (~pV )× ~p

]
. (115)

So the hamiltonian becomes

HE =
p2

2m
+ V − 1

8m2c2
(
p2E + Ep2 − V p2 − p2V

)
+

~2

8m2c2
∇2V +

~
4m2c2

~σ · (~∇V )× ~p. (116)

Since the 3rd term is suppressed by 1/c2 we may approximate (E − V )ϕ by its non-relativistic

value p2

2mϕ . So, at leading order beyond the n.r. limit, we have (writing H for HE as E no
longer appears in it)

Hϕ =

[
p2

2m
+ V (~r)− p4

8m3c2
+

~2

8m2c2
∇2V +

~
4m2c2

~σ · (~∇V )× ~p
]
ϕ = Eϕ. (117)

We recognize p4

8m3c2
as arising from expanding the square-root (m2c4 + p2c2)

1
2 = mc2 + p2

2m −
p4

8m3c2
+ · · · . But interestingly, the Dirac equation implies two additional relativistic corrections

(at order 1/c2 ), that are absent in this expansion. In particular, the last term is a spin-dependent
energy, which is absent in the n.r. hydrogen hamiltonian. Thus, it is possible to distinguish
between the relativistic corrections predicted by the Dirac equation from those predicted by the
KG equation or its ‘square-root’ i~∂tψ =

√
m2c4 − ~2c2∇2ψ . Of course, the KG equation and

its ‘square root’ do not incorporate spin half and therefore are somewhat inadequate to describe
an electron.

• The relativistic corrections predicted by the Dirac equation simplify for a central potential,
where ∇V = r̂∂rV and ∇V · ∇ϕ = ∂rV ∂rϕ and ∇V × ~pϕ = r−1∂rV (~r× ~p)ϕ . Thus eigenstates
must satisfy

Hϕ =

[
p2

2m
+ V (~r)− p4

8m3c2
+

~2

8m2c2
(∇2V ) +

1

2m2c2
1

r

∂V

∂r
~L · ~S

]
ϕ ≈ E ϕ. (118)

The last three terms in H , are all suppressed by c−2 compared to the non-relativistic hamil-
tonian. They lead to the so-called fine-structure of the hydrogen spectrum. The first of these
Hrel may be attributed to the relativistic energy momentum dispersion relation. The last term
HSO represents energy due to so-called spin-orbit coupling and the penultimate term is another
relativistic correction called the Darwin term HD .

3.2.11 Fine structure of hydrogen spectrum

• If we treat these relativistic corrections as perturbations to H0 = p2

2m+V (r), then in first order
perturbation theory, they lead to shifts in the energies of unperturbed eigenstates. The Bohr
spectrum is of course highly degenerate, for fixed principal quantum number n , there are 2n2

linearly independent states degenerate in energy −R/n2 . The first order correction to energies
in degenerate perturbation theory is given by the eigenvalues of the matrix of the perturbing
hamiltonian within the degenerate subspace. To find the matrix elements of the perturbing
hamiltonians HD, HSO, Hrel within the degenerate subspace of fixed n , we must pick a basis
for that subspace. A basis for the degenerate subspace can be chosen as common eigenstates
of the pairwise commuting operators H0, L

2, Lz, S
2, Sz leading to the labels n, l,ml, s = 1

2 ,ms
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corresponding to the ‘uncoupled’ basis. But there is nothing sacred about this basis. We
could also choose within a degenerate energy eigenspace a basis in which H0, J

2, Jz, L
2, S2 are

diagonal, leading to the labels njmjls .

• For hydrogen, V (r) = −ke2/r where k = 1/4πε0 . Since ∇2 1
r = −4πδ3(~r) we find

HDarwin =
~2

8m2c2
(∇2V ) =

πke2~2

2m2c2
δ3(~r). (119)

Thus the HD represents a point-like repulsion at the origin. HD is a spherically symmetric
perturbing potential, and it commutes with L2, Lz, S

2, Sz . So HD is in fact diagonal in the
uncoupled basis for a degenerate subspace of fixed n : 〈nl′m′lm′s|HD|nlmlms〉 ∝ δll′δmlm′lδmsm′s .
Its diagonal matrix elements are its eigenvalues and they are the 1st order shifts to the unper-
turbed energies. Since HD ∝ δ3(~r) the expectation value of HD vanishes in an unperturbed
state whose wave function vanishes at the origin. Since ψnlm ∝ rle−r/na0 , the Darwin term can
only affect the energies of S-wave states. So for l = 0,

∆ED =
πke2~2

2m2c2
〈ψn00|δ3(~r)|ψn00〉 =

πe2~2

2m2c2(4πε0)
|ψn00(~0)|2 (120)

Moreover, from tabulated hydrogen wave functions, |ψn00(~0)|2 = |Rn0(0)|2/4π = 1/(πa30n
3).

Thus

∆ED =
m(ke2)4

2~4c2n3
=

1

2
mc2α4 1

n3
δl0 as a0 =

~2

mke2
. (121)

• The perturbation due to relativistic dispersion relation Hrel = − p4

8m3c2
also commutes with

L2, Lz, S
2, Sz so it is diagonal within each degenerate subspace of H0 . At first order in P.T. it

leads to a correction in energies of ∆Erel = 〈ψ|Hrel|ψ〉 where ψnlm are the normalized eigenfunc-

tions of the n.r. hydrogen atom. Using hermiticity of p2 and the fact that
(
p2

2m + V
)
ψ = Enψ

where En = −R/n2 for the unperturbed hydrogen eigenstates, we have the first order correction

∆Erel = − 1

8m3c2
〈p2ψ|p2ψ〉 = − 1

2mc2
〈ψ|(E − V )2|ψ〉 = − 1

2mc2
[
E2
n + 〈V 2〉 − 2En〈V 〉

]
= − 1

2mc2
[
E2
n + k2e4〈r−2〉+ 2Enke

2〈r−1〉
]

where k =
1

4πε0
. (122)

The expectation value of 1/r and 1/r2 in hydrogen eigenstates can be calculated (the former
can also be obtained in a quick and dirty manner from the Bohr model7) and the results are
(see Liboff or Griffiths)

〈r−1〉 =
1

n2a0
and 〈r−2〉 =

1

n3
(
l + 1

2

)
a20

(123)

The resulting relativistic-p4 correction to energies at 1st order in PT is (use a0 = ~2

mke2
, En =

−mc2α2

2n2 )

∆Erel = − 1

2mc2

[
E2
n +

2Enmk
2e4

n2~2
+

(mk2e4)2

(l + 1
2 )n3~4

]
= − E2

n

2mc2

[
4n

l + 1
2

− 3

]
= −mc

2α4

8n4

[
4n

l + 1
2

− 3

]
(124)

7E = T +V = 1
2
mv2−ke2/r , mv2/r = ke2/r2 and mvr = n~ give Vn = −2Tn . So −ke2〈r−1〉 = −ke2/n2a0 .
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Thus, the relativistic correction to energy levels is down by a factor of α2 ∼ (1/137)2 ≈ 5×10−5

compared to the unperturbed energies. So the relativistic corrections are of order 10−4 – 10−5

eV.

• For the Coulomb potential, the perturbation due to spin-orbit coupling is8

HSO =
ke2

2m2c2
1

r3
~L · ~S. (125)

H0 = p2

2m + V (r) and L2, Lz, S
2, Sz are simultaneously diagonalizable. But L · S does not

commute with Lz nor Sz though it does commute with any function of the radial coordinate.
So ml , ms are no-longer good quantum numbers in the presence of spin orbit coupling. However,
~J = ~L+ ~S does commute with L2 , S2 and ~L · ~S . E.g. [ ~J, L2] = [~L,L2] = 0 and

[(L+S)i, L·S] = [Li, LjSj ]+[Si, LjSj ] = i~εijkLkSj+i~εijkLjSk = −i~εijkLjSk+i~εijkLjSk = 0.
(126)

So HSO is diagonal in the simultaneous eigenbasis of J2, Jz, L
2 and S2 . So we use the coupled

basis |n, j, l, s,mj〉 instead of the uncoupled one |n, l,ml, s,ms〉 . In the coupled basis, both
H0 and HSO are diagonal. So the shifts in energy due to spin-orbit coupling is given by the
expectation value of HSO in state |njmjls〉

L · S|njlmj〉 =
~2

2

(
j(j + 1)− l(l + 1)− 3

4

)
|njlmj〉. (127)

L · S has eigenvalue zero for S-wave states so there is no spin-orbit correction to the energy for
l = 0. Moreover, the expectation value of 1/r3 in the same unperturbed eigenstates is〈

njlmj

∣∣∣∣ 1

r3

∣∣∣∣njlmj

〉
=

1

l(l + 1
2)(l + 1)n3a30

, for l 6= 0. (128)

Thus the spin-orbit correction to energies at first order in perturbation theory is (a0 = ~2

mke2
)

∆ESO =
ke2

2m2c2
~2[j(j + 1)− l(l + 1)− 3/4]

2l(l + 1
2)(l + 1)n3a30

=
E2
n

mc2
n[j(j + 1)− l(l + 1)− 3/4]

l(l + 1
2)(l + 1)

=
1

4
α4mc2

[j(j + 1)− l(l + 1)− 3/4]

n3l(l + 1
2)(l + 1)

for l 6= 0. (129)

The spin-orbit correction vanishes for l = 0.

• Let us collect our results so far

∆Erel = −mc
2α4

8n4

[
4n

l + 1
2

− 3

]
,

8The spin-orbit energy can be motivated by a classical model, by considering the magnetic dipole energy
H = −µ · B of the electron spin in the magnetic field ~B produced by the proton. In the electron rest frame,
the proton goes round it uniformly in a horizontal circle, producing in effect a circular current loop of radius
r and current I = e/T where e is the proton charge and T is the period. The magnetic field so produced
at the electron is B = µ0I/2r = µ0e/2rT pointing vertically upwards. This B is proportional to the angular
momentum of the electron, in the rest frame of the proton, which also points vertically, ~L = mvr = 2πmr2/T . So
~B = µ0e~L

4πmr3
= ke~L

mc2r3
. On the other hand, the electron spin magnetic moment is ~µ = (−eg/2m)~S where g ≈ 2.

Combining these one gets a spin-orbit energy H = −µ · B = ke2

m2c2r3
~L · ~S . The result from this simple-minded

calculation is twice as big as that obtained from the Dirac equation. The discrepancy was explained by Thomas
and is due to fact that the electron’s rest frame is not an inertial frame compared to the proton rest frame.
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∆ED =
1

2
mc2α4 1

n3
δl0,

∆ESO = (1− δl0)
1

4
α4mc2

[j(j + 1)− l(l + 1)− 3/4]

n3l(l + 1
2)(l + 1)

. (130)

The fine-structure correction is the sum of these three. For l = 0 only ∆ED and ∆Erel

contribute, so

∆El=0 = ∆ED + ∆Erel = −1

2
mc2

α4

n2

[
1

n2

(
2n− 3

4

)
− 1

n

]
= −1

2
mc2

α2

n2
α2

n2

[
n− 3

4

]
. (131)

For l > 0 only ∆ESO and ∆Erel contribute, so

∆El>0 = ∆Erel+∆ESO =
mc2α4

2n4

[
3

4
− n

{
1

l + 1
2

− j(j + 1)− l(l + 1)− 3/4

2l(l + 1
2 )(l + 1)

}]
=

1

2

mc2α4

n4

[
3

4
− n

j + 1
2

]
.

The last equality follows by noting that ~J = ~L + ~S and s = 1
2 . By the rules for addition of

angular momentum, j = l ± 1
2 for l > 0. Consequently, it is possible to eliminate l in favor of

j and one finds the remarkably simple expression given. What is more, this formula reduces to
the previous expression for ∆El=0 when l = 0.

• Combining we get a common formula for the hydrogen spectrum including fine structure

En,j = mc2 − mc2α2

2n2

[
1 +

α2

n2

(
n

j + 1
2

− 3

4

)
+ · · ·

]
. (132)

• The energy eigenstates of hydrogen, after including first order effects of spin-orbit coupling,
relativistic p4 -correction and Darwin term, may be labelled by the good quantum numbers
n, j,mj , l, s , while ml,ms are no-longer good quantum numbers. However, the energies depend
only on n and j . So for fixed n and j , states with different values of mj and l are degenerate
in energy. For fixed n , l = 0, 1, · · · , n − 1, j = l − 1

2 , l + 1
2 (except when l = 0 when j = 1

2 ),
mj = −j,−j + 1, · · · , j − 1, j . The non-relativistic degeneracy among states with a common
value of n is partly lifted by relativistic effects. This is called fine structure splitting and its
magnitude is controlled by α , which was called the fine-structure constant by Sommerfeld. For
fixed ‘n′ , the n levels j = 1

2 , 3/2, · · · , n−
1
2 form a so-called fine structure multiplet. Since the

fine-structure correction is negative definite (as the smallest possible value of n/(j + 1
2) is 1),

the net effect of relativistic corrections is to increase the binding energy compared to what one
expects based on a non-relativistic treatment.

• It is conventional, following the non-relativistic spectroscopic notation, to denote the energy
levels by specifying n, l and j in the form nLj where L is the letter S, P,D, F,G . . . standing
for9 l = 0, 1, 2, 3, 4 . . . e.t.c. So the g.s. is 1S 1

2
. mj is not explicitly indicated.

• In general, within a fine structure multiplet, (fixed n), states with higher j have higher energy
(less binding energy). The spectroscopic notation for low-lying hydrogen energy levels are given
below in increasing order of energy, with degeneracy indicated by equality.

1S 1
2
< 2S 1

2
= 2P 1

2
< 2P3/2 < 3S 1

2
= 3P 1

2
< 3P3/2 = 3D3/2 < 3D5/2, . . . (133)

These energy levels are additionally degenerate since for each n, l, j , there are 2j + 1 linearly
independent degenerate states corresponding to distinct values of mj . For example, the g.s.

9S= sharp, P = principal, D = diffuse, F = fundamental denote the originating level in a spectral emission.
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1S 1
2

is doubly degenerate corresponding to mj = ±1
2 . This degeneracy can be broken by an

external ~B field (Zeeman effect).

• The fine structure splitting within the n = 2 multiplet is ∆E = E(2P3/2) − E(2S1/2) =
mc2α4

32 = 4.5 × 10−5 eV. A transition between 2P3/2 and 2S1/2 therefore corresponds to a
spectral line of wave length λ = hc/∆E = 2.8 cm or a frequency 10.9 GHz corresponding to
radio or radar waves.

• It is possible to get the hydrogen bound state spectrum by solving the Dirac equation without
expanding around the non-relativistic limit. The result is the same as that obtained by Som-
merfeld (1916) using the Bohr-Sommerfeld quantization conditions in the old quantum theory

E = mc2

1 +
α2(

nr +
√
n2φ − α2

)2

−1/2

(134)

where the ‘azimuthal’ quantum number nφ = (j + 1
2) and the ‘radial’ quantum number nr =

n − nφ = n − (j + 1
2). When expanded in powers of α for small α , the first three terms

reproduce the rest energy, Bohr spectrum and fine structure corrections obtained above. The
fine structure corrections are in good agreement with experimental measurements and there was
no known discrepancy till experiments by Lamb and Retherford (1948) showed that the2S 1

2
and

2P 1
2

levels were not degenerate, this is called the Lamb shift, it is not accounted for by the Dirac

equation. It required a quantum field theory of the electromagnetic field to explain the Lamb
shift.
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