Quantum Mechanics 3, Spring 2012 CMI

Problem set 8 Due by beginning of class on Monday Mar 12, 2012 Charged particle spin half particle, SHO

1. $\langle 11 \rangle$ A hamiltonian for a spin half particle (charge e, mass m) in an electromagnetic field is

$$H = \frac{1}{2m} \left[\vec{\sigma} \otimes (\vec{p} - e\vec{A}) \right]^2 + e \ I \otimes \phi \tag{1}$$

- (a) (8) Expand out the hamiltonian using properties of the Pauli matrices and identify its three terms: (i) the usual coupling to a vector potential as for a spin zero particle, (ii) a spin magnetic dipole energy and (iii) an electric potential energy as for a spin zero particle.
- (b) $\langle 3 \rangle$ Extract the value of the gyromagnetic ratio and g-factor for the spin magnetic moment predicted by this hamiltonian and compare with the experimental value for an electron.
- 2. $\langle 9 \rangle$ Infinite product formula for sine function.
 - (a) $\langle 1 \rangle$ Find all the zeros of the analytic function of a complex variable $f(z) = \sin \pi z$. Hint: write in terms of exponentials.
 - (b) $\langle 2 \rangle$ Based on the location of zeros of f(z) it is possible to write

$$\sin \pi z = e^{g(z)} z \prod_{n \neq 0} \left(1 - \frac{z}{n} \right) e^{z/n} \tag{2}$$

where g(z) is a function analytic everywhere, so that $e^{g(z)}$ is analytic and non-zero everywhere on the complex plane. Evaluate the logarithmic derivative of both sides.

(c) $\langle 1 \rangle$ Determine g'(z) by comparing with the infinite series

$$\pi \cot \pi z = \frac{1}{z} + \sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right).$$
(3)

- (d) $\langle 1 \rangle$ Determine g(z) by taking the limit of f(z)/z as $z \to 0$.
- (e) $\langle 1 \rangle$ Use the above results to write an infinite product formula for $\sin \pi z$ grouping together the *n* and -n factors.
- (f) $\langle 3 \rangle$ Use the infinite product for $\sin(\pi z)$ to find its first two non-zero Taylor coefficients. Compare with their known values.