Quantum Mechanics 3, Spring 2012 CMI

Problem set 6 Due by beginning of class on Monday Feb 13, 2012 Time evolution operator, Hamilton's principle

1. $\langle 3 \rangle$ Suppose the time-dependent hamiltonian of a system H(t) is hermitian at all times and is separable as a product of a complex function of time c(t) and a time-independent operator K (not-necessarily hermitian)

$$H(t) = c(t)K\tag{1}$$

Show that we can always define a new real function of time h(t) and a new hermitian operator H such that H(t) = h(t)H. Express h(t) and H in terms of c(t) and K and any other appropriate quantities.

- 2. $\langle 5 \rangle$ Consider the functional equation for a complex-valued function of one real variable f(t+s) = f(t)f(s) subject to the initial condition f(0) = 1. Find all possible solutions of this functional equation and give a quasi-physical interpretation of any new quantities that appear in your answer.
- 3. Consider the classical mechanics of a particle of mass m in an SHO potential $V(x) = \frac{1}{2}m\omega^2 x^2$. Suppose x(t) is a classical trajectory between $x_i(t_i)$ and $x_f(t_f)$ and let $x(t) + \delta x(t)$ be a neighboring path with $\delta x(t_i) = \delta x(t_f) = 0$.
 - (a) $\langle 2 \rangle$ Write the classical action of the path $x + \delta x$ as a Taylor polynomial in δx

$$S[x + \delta x] = S_0 + S_1 + \dots + S_k \quad \text{where } S_n \text{ are } n^{\text{th}} \text{ order in } \delta x.$$
(2)

- (b) $\langle 3 \rangle$ Show that Hamilton's principle of least action implies Newton's equation for this particle.
- (c) $\langle 4 \rangle$ Find the trajectory joining $x(t_i) = x_i$ and $x(t_f) = x_f$ using abbreviations like $s_{i,f} = \sin \omega t_{i,f}$.
- (d) $\langle 2 \rangle$ Express S_2 in the form given below and extract the operator A:

$$S_2 = \int_{t_i}^{t_f} \delta x(t) \, A \, \delta x(t) \, dt \equiv \langle \delta x | A | \delta x \rangle. \tag{3}$$

(e) $\langle 2 \rangle$ Show that A is bounded below, in the sense that

$$\langle \delta x | A | \delta x \rangle \ge -\frac{1}{2} m \omega^2 ||\delta x||^2 \quad \text{where} \quad ||\delta x||^2 = \int_{t_i}^{t_f} \delta x(t) \, \delta x(t) \, dt. \tag{4}$$

(f) $\langle 1 \rangle$ For what values of κ is $x(t) + \delta x(t)$ a legitimate neighboring path for the variation

$$\delta x(t) = \epsilon \sin \kappa (t - t_i) ? \tag{5}$$

- (g) $\langle 2 \rangle$ Evaluate $S_2[\delta x]$ for all the allowed values of κ .
- (h) $\langle 1 \rangle$ Take $T = t_f t_i = 10$ s and $\omega = 1$ Hz. Find a path that can be made arbitrarily close to the trajectory x(t), whose action is *less* than that of x(t).
- (i) $\langle 1 \rangle$ Take $T = t_f t_i = 10$ s and $\omega = 1$ Hz. Find a path that can be made arbitrarily close to the trajectory x(t), whose action is *more* than that of x(t).
- (j) $\langle 2 \rangle$ Explain the significance of the above two examples with regard to Hamilton's least action principle.