Quantum Mechanics 3, Spring 2012 CMI Problem set 5

Due by beginning of class on Monday Feb 6, 2012 Frequency-Time relation, charged particle in an electromagnetic field

- 1. Consider an ensemble of atoms in an unstable and unfamiliar state i, whose energy we do not know. Such atoms are found to decay via the emission of radiation to a more familiar state f, whose energy E_f is known to us. Suppose we wait a time $\Delta t = \tau$ equal to the life-time of the unstable state i.
 - (a) $\langle 2 \rangle$ On average, what remains after a time τ ?
 - (b) $\langle 6 \rangle$ Suppose we are able to find the energy carried away by radiation in each decay. Discuss the implications of the frequency-time relation for this situation. What does it predict for the distribution of frequencies of the emitted radiation? To what extent can we predict the energy of the mysterious state *i*?
- 2. $\langle 3 \rangle$ Consider the transformation of electromagnetic potentials by a scalar function $\chi(\vec{r},t)^{1}$

$$\vec{A} \to \vec{A}' = \vec{A} + \nabla \chi \quad \text{and} \quad \phi \to \phi' = \phi - \frac{\partial \chi}{\partial t}$$
 (1)

Find how the fields (a) \vec{E} , (b) \vec{B} and (c) $\oint_C \vec{A} \cdot d\vec{l}$ change under this transformation for a closed curve C.

3. Consider the Schrödinger equation for a charge e mass m particle in an electromagnetic field in three dimensions

$$i\hbar \frac{\partial \psi}{\partial t} = H\psi$$
 where $H = \frac{1}{2m} \left(\vec{p} - e\vec{A}\right)^2 + e\phi.$ (2)

- (a) $\langle 3 \rangle$ Find the dimensions of the quantities (a) $\frac{e}{\hbar}$ (b) χ and (c) $\frac{e\chi}{\hbar}$ with χ as in the previous problem.
- (b) $\langle 6 \rangle$ Find the equation satisfied by the new wave function $\psi' = e^{\frac{ie\chi}{\hbar}}\psi$ and new potentials $\vec{A'}, \phi'$ in as simple a form as possible.

¹Note that primes do not denote differentiation in this problem set.