Quantum Mechanics 3, Spring 2012 CMI

Problem set 4 Due by beginning of class on Monday Jan 30, 2012 Time evolution due to time-dependent hamiltonian

- 1. $\langle 3 \rangle$ Calculate the commutator of the hamiltonians $H_{1,2}$ of a pair of 1d simple harmonic oscillators with distinct frequencies $\omega_1 \neq \omega_2$. Does it matter (to the commutator) whether the masses are equal?
- 2. $\langle 3 \rangle$ Show that $[H_1, H_2] \neq 0$ by exhibiting a state on which this commutator is non-zero.
- 3. $\langle 3 \rangle$ Show that inner products are preserved by Schrödinger time evolution by a timedependent hamiltonian H(t). Describe the set up, before calculating anything.
- 4. $\langle 14 \rangle$ Consider a toy quantum system whose Hilbert space is one dimensional and whose hamiltonian H(t) is time-dependent.
 - (a) $\langle 3 \rangle$ What is [H(t), H(t')]?
 - (b) $\langle 1 \rangle$ Solve the Schrödinger initial value problem $i\hbar\dot{\psi}(t) = H(t)\psi(t)$ for $\psi(t)$ with initial condition $\psi(0)$ and extract the time evolution operator U(t).
 - (c) $\langle 1 \rangle$ Expand U(t) in an exponential series.
 - (d) $\langle 3 \rangle$ What do you think the radius of convergence of the above series as a function of t is? Why? You may assume that the hamiltonian is bounded $|H(t')| \leq E$ for $0 \leq t' \leq t$.
 - (e) $\langle 3 \rangle$ Show that the second term in the series can be expressed as

$$\frac{1}{(i\hbar)^2 2!} \left(\int_0^t H(t') dt' \right)^2 = \frac{1}{(i\hbar)^2} \int_0^t dt' \, H(t') \int_0^{t'} dt'' \, H(t'') \tag{1}$$

(f) $\langle 3 \rangle$ Argue that the series for U(t) can be expressed as

$$U(t) = \sum_{n=0}^{\infty} \frac{1}{(i\hbar)^n} \int_{t \ge t_1 \ge \dots \ge t_n \ge 0} dt_1 \cdots dt_n \ H(t_1) H(t_2) \dots H(t_n).$$
(2)

5. $\langle 7 \rangle$ Let us illustrate the idea that even though the hamiltonian may be periodic with period T, the wave function need not be. Consider the toy Schrödinger initial value problem on a 1d Hilbert space

$$i\psi = h(t) \ \psi(t), \quad \text{with periodic hamiltonian} \quad h(t+T) = h(t)$$
 (3)

subject to the initial condition $\psi(0)$.

- (a) $\langle 1 \rangle$ Find the solution $\psi(t)$ to the initial value problem.
- (b) $\langle 2 \rangle$ Find the condition on h(t) for $\psi(t)$ to be periodic with the same period T as the hamiltonian.
- (c) $\langle 1 \rangle$ Give an example of an h(t) that has the above-determined property.
- (d) $\langle 3 \rangle$ Discuss the example $h(t) = \sin^2 t$ and say how it illustrates the idea mentioned in the problem.