Quantum Mechanics 3, Spring 2012 CMI

Problem set 3 Due by beginning of class on Monday Jan 23, 2012 Spin in a rotating magnetic field & Normal modes

Consider a spin magnetic moment at rest at the origin subject to magnetic field of fixed magnitude whose direction sweeps out a cone of opening angle θ at a constant angular speed ω

$$\vec{B}(t) = B\hat{n}(t) = B\left[\hat{z}\cos\theta + \hat{x}\sin\theta\cos\omega t + \hat{y}\sin\theta\sin\omega t\right].$$
(1)

The hamiltonian is $H(t) = \omega_l \vec{S} \cdot \hat{n}(t)$ where $\omega_l = eB/m$ is the Larmor frequency. We wrote the spin wave function at time t in terms of the dynamical phases $\theta_{\pm}^D = \mp \omega_l t/2$

$$\psi(t) = c_+ \psi_+ e^{i\theta_+^D} + c_- \psi_- e^{i\theta_-^D}$$
(2)

and the instantaneous eigenstates of H(t)

$$\psi_{+}(t) = \begin{pmatrix} \cos(\theta/2) \\ e^{i\omega t} \sin(\theta/2) \end{pmatrix} \quad \text{and} \quad \psi_{-}(t) = \begin{pmatrix} e^{-i\omega t} \sin(\theta/2) \\ -\cos(\theta/2) \end{pmatrix}.$$
(3)

We showed that $c_{\pm}(t)$ satisfy the coupled system of ODEs with time-dependent coefficients

$$i\hbar\frac{\partial}{\partial t}\begin{pmatrix}c_{+}\\c_{-}\end{pmatrix} = -\frac{\hbar\omega}{2}\begin{pmatrix}-2\sin^{2}(\theta/2) & e^{i(\omega_{l}-\omega)t}\sin\theta\\e^{-i(\omega_{l}-\omega)t}\sin\theta & 2\sin^{2}(\theta/2)\end{pmatrix}\begin{pmatrix}c_{+}\\c_{-}\end{pmatrix}.$$
(4)

We endeavor to solve this system exactly in two steps: make the coefficients in the ODEs time independent and then transform to *normal modes*.

1. $\langle 4 \rangle$ Define the new variables $d_{\pm} = c_{\pm} e^{\pm i\phi/2}$ where $\phi = (\omega_l - \omega)t$. Show that in terms of $d_{\pm}(t)$ we get a system of coupled 1st order ODEs with *time-independent* coefficients

$$-2i\frac{\partial}{\partial t}\begin{pmatrix} d_+\\ d_- \end{pmatrix} = A\begin{pmatrix} d_+\\ d_- \end{pmatrix}, \quad \text{with} \quad A = \begin{pmatrix} -\omega_l + \omega\cos\theta & \omega\sin\theta\\ \omega\sin\theta & \omega_l - \omega\cos\theta \end{pmatrix}.$$
 (5)

- 2. $\langle 2 \rangle$ What is the physical significance of the hermiticity and tracelessness of A?
- 3. $\langle 2 \rangle$ Find the eigenvalues λ_{\pm} of A with $\lambda_{+} > 0$. Express λ_{\pm} in terms of $\lambda = \sqrt{\omega_{l}^{2} 2\omega_{l}\omega\cos\theta + \omega^{2}}$.
- 4. $\langle 3 \rangle$ Find the corresponding eigenvectors $Av_{\pm} = \lambda_{\pm}v_{\pm}$ and show that they can be expressed as

$$S = \begin{pmatrix} v_{+} & v_{-} \end{pmatrix} = \begin{pmatrix} \omega \sin \theta & \omega \sin \theta \\ \omega_{l} - \omega \cos \theta + \lambda & \omega_{l} - \omega \cos \theta - \lambda \end{pmatrix}.$$
 (6)

5. $\langle 3 \rangle$ Explain why the similarity transformation S is not orthogonal and check that the inverse matrix is

$$S^{-1} = \frac{1}{2\lambda\omega\sin\theta} \begin{pmatrix} \lambda - \omega_l + \omega\cos\theta & \omega\sin\theta\\ \lambda + \omega_l - \omega\cos\theta & -\omega\sin\theta \end{pmatrix}$$
(7)

6. $\langle 1 \rangle$ Write the solutions to the eigenvalue problem for A in terms of S, S^{-1} and $\Lambda = \text{diag}(\lambda_+, \lambda_-)$.

- 7. $\langle 3 \rangle$ Briefly explain the strategy 'passage to normal modes' by which the system (5) is to be solved.
- 8. $\langle 2 \rangle$ Find the system of ODEs satisfied by $f = \begin{pmatrix} f_+ \\ f_- \end{pmatrix}$ where d = Sf. Why are f_{\pm} good variables?
- 9. $\langle 2 \rangle$ Solve the Schrödinger initial value problem for f_{\pm} , express the answer in terms of $f_{\pm}(0)$ and λ .
- 10. $\langle 2 \rangle$ Work backwards to construct the general solution to the IVP for c_{\pm} , show that you get

$$c_{+}(t) = e^{i\phi(t)/2}\omega \sin\theta \left[f_{+}(0)e^{i\lambda t/2} + f_{-}(0)e^{-i\lambda t/2} \right] \text{ and}$$

$$c_{-}(t) = e^{-i\phi(t)/2} \left[(\omega_{l} - \omega\cos\theta + \lambda) f_{+}(0) e^{i\lambda t/2} + (\omega_{l} - \omega\cos\theta - \lambda) f_{-}(0) e^{-i\lambda t/2} \right] (8)$$

- 11. $\langle 4 \rangle$ Now suppose the initial condition is spin up $\psi(0) = \psi_+(0)$. From here on we work with this initial condition. Find the corresponding initial values $f_{\pm}(0)$ in terms of $\lambda, \omega, \omega_l$ and θ .
- 12. $\langle 3 \rangle$ For this initial condition, show that

$$c_{+}(t) = e^{i\phi/2} \left[\cos\left(\frac{\lambda t}{2}\right) + \frac{i}{\lambda} (\omega\cos\theta - \omega_l)\sin\left(\frac{\lambda t}{2}\right) \right] \quad \text{and} \quad c_{-}(t) = \frac{i\omega}{\lambda} e^{-i\phi/2} \sin\left(\frac{\lambda t}{2}\right) \sin\theta$$
(9)

13. $\langle 2 \rangle$ For a spin up initial condition deduce that

$$\psi(t) = \left[\cos\frac{\lambda t}{2} + \frac{i}{\lambda}(\omega\cos\theta - \omega_l)\sin\frac{\lambda t}{2}\right]e^{-\frac{i\omega t}{2}}\psi_+(t) + \left[\frac{i\omega}{\lambda}\sin\theta\sin\frac{\lambda t}{2}\right]e^{\frac{i\omega t}{2}}\psi_-(t).$$
 (10)

- 14. $\langle 1 \rangle$ Find the first two leading terms in an expansion of λ around the adiabatic limit $\omega/\omega_l \to 0$.
- 15. $\langle 4 \rangle$ Now take the adiabatic limit $\omega/\omega_l \to 0$ in $\psi(t)$ above and show that

$$\psi(t) = e^{i\theta_+^D} e^{i\gamma_+} \psi_+(t) \tag{11}$$

for appropriate dynamical and geometric phases to be identified.