Quantum Mechanics 3, Spring 2012 CMI

Problem set 2
Due by beginning of class on Monday Jan 16, 2012
Adiabatic approximation \& Spin

1. $\langle 4\rangle$ Show that the geometric phase angle occurring in the adiabatic theorem

$$
\begin{equation*}
\theta_{n}^{G}(t)=\gamma=\int_{0}^{t}\left\langle\psi_{n}\left(t^{\prime}\right) \left\lvert\, i \frac{\partial \psi_{n}\left(t^{\prime}\right)}{\partial t^{\prime}}\right.\right\rangle d t^{\prime} . \tag{1}
\end{equation*}
$$

is real, so that we are justified in calling it a phase angle. Here $\psi_{n}(t)$ are orthonormal eigenstates of the hamiltonians $H(t)$ for each t with eigenvalues $E_{n}(t)$.
2. $\langle 2\rangle$ With the same notation as above, show that

$$
\begin{equation*}
\dot{E}_{n}=\left\langle\psi_{n}\right| \dot{H}\left|\psi_{n}\right\rangle \tag{2}
\end{equation*}
$$

3. $\langle 2\rangle$ Find a matrix representation of the component of $\operatorname{spin} \vec{S} \cdot \hat{n}$ in the direction of the unit vector $\hat{n}=\left(n_{x}, n_{y}, n_{z}\right)$, for a spin half particle.
4. $\langle 3\rangle$ Find the eigenvalues of the component of $\operatorname{spin} \vec{S} \cdot \hat{n}$ in any direction \hat{n} for a spin-half particle by evaluating the square of this operator and its trace.
5. $\langle 4\rangle$ Find the corresponding normalized eigenvectors of the component of spin $\vec{S} \cdot \hat{n}$ where \hat{n} is a unit vector with spherical polar coordinates $(1, \theta, \phi)$.
