Quantum Mechanics 3, Spring 2012 CMI

Problem set 13 Due by beginning of class on Monday Apr 16, 2012 Dirac equation

- 1. Consider an infinitesimal Lorentz transformation $x' = \Lambda x$, where $\Lambda^{\mu}_{\nu} \approx \delta^{\mu}_{\nu} + \omega^{\mu}_{\nu}$.
 - (a) For an infinitesimal boost by velocity v ($\beta = v/c \ll 1$) along the direction x, find ω^{μ}_{ν} and write it as a matrix.
 - (b) For the above boost, find $\omega_{\mu\nu}$, write it as a matrix and verify that it is antisymmetric. Explicitly identify the value of ω_{01} .
 - (c) Consider now an infinitesimal rotation $\Lambda = R_{\theta}$ of x, y axes clockwise by angle θ about the z-axis. Find ω_{ν}^{μ} and express it as a 4×4 matrix and identify ω_{2}^{1} .
 - (d) For the above rotation, find $\omega_{\mu\nu}$, express it as a matrix and verify it is anti-symmetric, and give the value of ω_{12} .
 - (e) Find the matrix $S(R_{\theta}) = I \frac{i}{4}\sigma^{\mu\nu}\omega_{\mu\nu}$ that implements the above infinitesimal rotation on Dirac spinor space and express it in terms of the third Pauli matrix σ_3 .
 - (f) The corresponding finite rotation by angle θ is implemented by $S(R_{\theta}) = \exp\left[-\frac{i}{4}\sigma^{\mu\nu}\omega_{\mu\nu}\right]$. Find $S(R_{\theta})$ and express it in terms of σ_3 .
 - (g) Based on the above results, find and comment on how a Dirac spinor transforms under a spatial rotation of 2π and 4π about the z-axis.
- 2. Suppose $V(\vec{r})$ is a real potential, $\vec{p} = -i\hbar\nabla$ the momentum operator and $\vec{\sigma}$ the Pauli matrices.
 - (a) Find the adjoint of the operator $(\vec{\sigma} \cdot (\vec{p}V))(\vec{\sigma} \cdot \vec{p})$ acting on two component wave functions $\psi(\vec{r})$. Express the answer in terms of $\vec{\sigma}, \vec{p}, V$. Here $(\vec{p}V)$ denotes $-i\hbar(\nabla V)$.
 - (b) Express the operator $(\vec{p}V) \cdot \vec{p} \vec{p} \cdot (\vec{p}V)$ in as simple a form as possible.
 - (c) Show that

$$\vec{\sigma} \cdot (\vec{p}V) \times \vec{p} - \vec{\sigma} \cdot \vec{p} \times (\vec{p}V) = 2\vec{\sigma} \cdot (\vec{p}V) \times \vec{p}.$$
(1)

- 3. What is the Compton wavelength of a massive particle? Give a formula and physical interpretation. Numerically, what is the Compton wavelength of an electron, as a fraction of the Bohr radius?
- 4. Consider an electron in a Hydrogen atom, treated in the non-relativistic context of the Schrödinger equation. Its orbital, spin and total angular momentum operators are denoted $\vec{L}, \vec{S}, \vec{J} = \vec{L} + \vec{S}$. Suppose the eigenvalues of J^2, L^2, S^2 are denoted $\hbar^2 j(j+1), \hbar^2 l(l+1), \hbar^2 s(s+1)$. Show that the factor F (defined below) may be expressed as $F = (j + \frac{1}{2})^{-1}$, for $l \neq 0$:

$$F = \frac{1}{l + \frac{1}{2}} - \frac{j(j+1) - l(l+1) - s(s+1)}{2l\left(l + \frac{1}{2}\right)(l+1)}.$$
(2)