Quantum Mechanics 3, Spring 2012 CMI Problem set 12 Due by beginning of class on Monday Apr 9, 2012 Dirac equation

1. Consider the Dirac equation in a spherically symmetric electrostatic potential V(r)

$$i\hbar\frac{\partial\psi}{\partial t} = \left[c\vec{\alpha}\cdot\vec{p} + \beta mc^2 + V(r)\right]\psi\tag{1}$$

Suppose ψ, ϕ are states that evolve via the Dirac equation.

- (a) $\langle 5 \rangle$ Find whether the matrix elements of the components of orbital angular momentum $\langle \psi | L_i | \phi \rangle$ are conserved in time.
- (b) $\langle 3 \rangle$ Similarly, are the matrix elements of total angular momentum $J_i = L_i + S_i$ conserved in time?
- 2. Working with γ matrices. Consider the matrices $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$.
 - (a) $\langle 2 \rangle$ Find the adjoints of σ^{ij} and of σ^{0i} and express them in terms of the $\sigma^{\mu\nu}$'s.
 - (b) $\langle 3 \rangle$ Find whether γ^0 commutes or anti-commutes with σ^{ij} and with σ^{0i} where i, j = 1, 2, 3.
 - (c) $\langle 2 \rangle$ Show that $[\gamma^{\alpha}, [\gamma^{\mu}, \gamma^{\nu}]] = 4(\eta^{\mu\alpha}\gamma^{\nu} \eta^{\nu\alpha}\gamma^{\mu}).$
- 3. Simple illustration of invariance of Minkowski metric under Lorentz transformations in curvilinear coordinates.
 - (a) $\langle 2 \rangle$ Express the metric of Minkowski space in spherical polar coordinates ct, r, θ, ϕ , i.e., find the metric tensor $g_{\mu\nu}(p)$, where μ, ν enumerate (ct, r, θ, ϕ) in that order and $p = (ct, r, \theta, \phi)$.
 - (b) $\langle 3 \rangle$ Suppose we make a Lorentz transformation, say a rotation by an angle ϕ_0 counter clockwise about the z-axis. This maps points $p \mapsto f(p) = (ct', r', \theta', \phi')$. Show that the metric is unchanged by this rotation, namely show that

$$g_{\alpha\beta}(f(p))\frac{\partial f^{\alpha}}{\partial p^{\mu}}\frac{\partial f^{\beta}}{\partial p^{\nu}} = g_{\mu\nu}(p)$$
(2)