Quantum Mechanics 3, Spring 2012 CMI

Problem set 11 Due by beginning of class on Monday Apr 2, 2012 Dirac equation

1. $\langle 5 \rangle$ Recall the eigenvalue problem (H - EI)u = 0 for the constant Dirac spinor u that arose in our search for plane wave solutions $ue^{i(\vec{p}\cdot\vec{r}-Et)/\hbar}$ of the Dirac equation. Here H - EI is the 4 × 4 matrix consisting of 2 × 2 blocks

$$H - EI = \begin{pmatrix} (mc^2 - E)I & c\vec{\sigma} \cdot \vec{p} \\ c\vec{\sigma} \cdot \vec{p} & -(mc^2 + E)I \end{pmatrix}$$
(1)

where $\vec{p} = (p_x, p_y, p_z)$ is a constant momentum vector labeling the plane waves and σ_i are the Pauli matrices. Directly calculate the determinant of H - E and thereby determine the possible energies of a plane wave with wave vector \vec{p}/\hbar .

ANS: Calculate the 4 × 4 determinant expanding along the first row. Or use the formula $\det(AB|CD) = \det(AD-BC)$ if the blocks commute. $\det(H-EI) = (E^2 - p^2c^2 - m^2c^4)^2$. So $E = E_+, E_-$ each with multiplicity two. Here $E_+ = -E_- = \sqrt{p^2c^2 + m^2c^4}$. So the spectrum is $(-\infty, -mc^2] \cup [mc^2, \infty)$ but each energy is degenerate with respect to the direction of momentum and doubly degenerate over and above that.

2. The constant spinors appearing in plane wave solutions $\Psi = u \psi(\vec{r})T(t)$ of the free particle Dirac equation are

$$u^{(1)} = \begin{pmatrix} \uparrow \\ \frac{c(\sigma \cdot p)}{E_{+} + mc^{2}} \uparrow \end{pmatrix}, \quad u^{(2)} = \begin{pmatrix} \downarrow \\ \frac{c(\sigma \cdot p)}{E_{+} + mc^{2}} \downarrow \end{pmatrix}, \quad u^{(3)} = \begin{pmatrix} \frac{c(\sigma \cdot p)}{E_{-} - mc^{2}} \uparrow \\ \uparrow \end{pmatrix}, \quad u^{(4)} = \begin{pmatrix} \frac{c(\sigma \cdot p)}{E_{-} - mc^{2}} \downarrow \\ \downarrow \end{pmatrix}$$
(2)

(a) $\langle 4 \rangle$ Verify that $u^{(1)}$ and $u^{(4)}$ are eigenspinors of the Dirac hamiltonian $H = c\vec{\alpha} \cdot \vec{p} + \beta mc^2$ with appropriate eigenvalues.

ANS: They are eigenspinors with eigenvalues E_+ and E_- . Can work with 2-component blocks, no need to write out all 4 components.

- (b) $\langle 4 \rangle$ Find the inner products of the eigenspinors $\langle u^{(i)} | u^{(j)} \rangle$ for $i \neq j$. ANS: They are orthogonal. Use hermiticity of $\sigma \cdot p$ and $E_{-} = -E_{+}$.
- 3. Recall the local conservation law for the Dirac equation $\frac{\partial P}{\partial t} + \nabla \cdot \vec{j} = 0$, where $P(x,t) = \psi^{\dagger} \psi$ and $\vec{j}(x,t) = \psi^{\dagger} c \vec{\alpha} \psi$.
 - (a) $\langle 2 \rangle$ Give an interpretation of $c\vec{\alpha}$ based on an analogy with hydrodynamics. ANS: Interpretation of $c\alpha$ as velocity of the particle.
 - (b) $\langle 5 \rangle$ Calculate $\frac{\partial}{\partial t} \langle \psi | x | \psi \rangle$, the time derivative of the expectation value of position x in a state $|\psi(t)\rangle$ that evolves by the Dirac equation. Comment whether the result supports the hydrodynamic interpretation.

ANS: $i\hbar\partial_t \langle x \rangle_{\psi} = \langle \psi | [x, H] | \psi \rangle$. Now use $[x_i, p_j] = i\hbar\delta_{ij} [x, H] = [x, c\alpha \cdot p] = c\alpha[x, p] = i\hbar c\alpha$. So $\partial_t \langle x \rangle_{\psi} = \langle \psi | c\alpha | \psi$. This supports the hydrodynamic interpretation of $c\alpha$ as a 'velocity operator'.

4. $\langle 2 \rangle$ Find the magnitude of the gap in the spectrum of the Dirac hamiltonian for an electron, in millions of electron volts.

ANS: .511 * 2 = 1.022 MeV.