Quantum Mechanics 2, Autumn 2011 CMI

Problem set 4 Due by beginning of class on Monday September 12, 2011 Addition of angular momenta

- 1. In the problem of addition of two angular momenta, find $[L^2, L_1^2]$ where $\vec{L} = \vec{L}_1 + \vec{L}_2$. Can L^2 , L_1^2 and L_2^2 be simultaneously specified? $\langle 3 \rangle$
- 2. In the problem of combining two spin half particles, calculate $S^2(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)$ and check that you get the expected (what is expected?) answer. $\langle 4 \rangle$
- 3. Consider an electron in a *p*-wave state of a hydrogen atom. What are the possible results if the observable $\vec{J}^2 = (\vec{L} + \vec{S})^2$ is measured? $\langle 4 \rangle$
- 4. Suppose we form a composite system from three spin half particles (a proton is one example). Let $\vec{S} = \vec{S}_1 + \vec{S}_2 + \vec{S}_3$. (15)
 - (a) What is the dimension of the combined Hilbert space? $\langle 1 \rangle$
 - (b) Give an 'uncoupled' basis for this tensor product Hilbert space consisting of simultaneous eigenvectors of S_{1z} , S_{2z} and S_{3z} . Group the basis vectors by the eigenvalue of S_z . $\langle 2 \rangle$
 - (c) What are the possible spins s of the combined system and the multiplicities with which they occur? $\langle 4 \rangle$
 - (d) Verify that the dimension of the resulting space of spin states in problem 4c is as found in problem 4a. (2)
 - (e) The state $\uparrow\uparrow\uparrow$ is annihilated by S_+ . Find $u = S_- \uparrow\uparrow\uparrow$. $\langle 2 \rangle$
 - (f) Now find a maximal set of orthonormal eigenstates of S_z which are orthogonal to u and annihilated by S_+ . What is the use of these states? $\langle 4 \rangle$