Quantum Mechanics 2, Autumn 2011 CMI

Problem set 3
Due by beginning of class on Monday September 5, 2011
Angular momentum and spin

1. Recall that the angular momentum raising operator is $L_{+}=\hbar e^{i \phi}\left(\partial_{\theta}+i \cot \theta \partial_{\phi}\right)$. Use this to find L_{-}.
2. Use the above formulae for $L_{ \pm}$to find the coordinate representation of the angular momentum basis states Y_{11}, Y_{10} and $Y_{1,-1}$ up to normalization.
3. Write out the 9 equations summarized in the formula for products of Pauli matrices

$$
\begin{equation*}
\sigma_{i} \sigma_{j}=\delta_{i j}+\mathrm{i} \epsilon_{i j k} \sigma_{k} \tag{1}
\end{equation*}
$$

4. Check that these formulae hold for the Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{2}\\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

5. The hamiltonian for an electron in a vertical magnetic field $B \hat{z}$ is

$$
H=E\left(\begin{array}{cc}
1 & 0 \tag{3}\\
0 & -1
\end{array}\right), \quad E=\frac{g|e| \hbar B}{4 m} .
$$

Find the spin state $\psi(t)$ if the initial spin wavefunction is $\psi(t=0)=\frac{1}{\sqrt{2}}(\uparrow+\downarrow)$.
6. Compute $\left\langle S_{z}\right\rangle,\left\langle S_{x}\right\rangle$ and $\left\langle S_{y}\right\rangle$ at time t in the state $\psi(t)$
7. Physically interpret the obtained expectation values for S_{x}, S_{y}, S_{z}.

