Quantum Mechanics 2, Autumn 2011 CMI

Problem set 3 Due by beginning of class on Monday September 5, 2011 Angular momentum and spin

- 1. Recall that the angular momentum raising operator is $L_{+} = \hbar e^{i\phi} (\partial_{\theta} + i \cot \theta \ \partial_{\phi})$. Use this to find L_{-} .
- 2. Use the above formulae for L_{\pm} to find the coordinate representation of the angular momentum basis states Y_{11} , Y_{10} and $Y_{1,-1}$ up to normalization.
- 3. Write out the 9 equations summarized in the formula for products of Pauli matrices

$$\sigma_i \sigma_j = \delta_{ij} + \mathbf{i} \epsilon_{ijk} \sigma_k \tag{1}$$

4. Check that these formulae hold for the Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 (2)

5. The hamiltonian for an electron in a vertical magnetic field $B\hat{z}$ is

$$H = E \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \frac{g|e|\hbar B}{4m}.$$
(3)

Find the spin state $\psi(t)$ if the initial spin wavefunction is $\psi(t = 0) = \frac{1}{\sqrt{2}} (\uparrow + \downarrow)$.

- 6. Compute $\langle S_z \rangle$, $\langle S_x \rangle$ and $\langle S_y \rangle$ at time t in the state $\psi(t)$
- 7. Physically interpret the obtained expectation values for S_x, S_y, S_z .