Quantum Mechanics 2, Autumn 2011 CMI

Problem set 12
Due by beginning of class on Monday November 14, 2011
Scattering Theory

1. We wish to find the coefficients C_{l} appearing in the expansion of a plane wave as a linear combination of spherical waves:

$$
\begin{equation*}
e^{i k r \cos \theta}=\sum_{l} C_{l}(2 l+1) P_{l}(\cos \theta) j_{l}(k r) \tag{1}
\end{equation*}
$$

(a) If $\rho=k r$, show that C_{l} must satisfy the following identity for each $l=0,1,2, \ldots$ and $\rho \geq 0$:

$$
\begin{equation*}
\int_{-1}^{1} e^{i \rho x} P_{l}(x) d x=2 C_{l} j_{l}(\rho) \quad \text { where } x=\cos \theta \tag{2}
\end{equation*}
$$

The above identity must in particular be true as $\rho \rightarrow 0$. So we will compare the leading behavior of both sides as $\rho \rightarrow 0$ to extract the constants C_{l}. For this we use the formulae

$$
\begin{equation*}
P_{l}(x)=\frac{1}{(2 l)!!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} \quad \text { and } \quad j_{l}(\rho) \rightarrow \frac{\rho^{l}}{(2 l+1)!!} \quad \text { as } \rho \rightarrow 0 . \tag{3}
\end{equation*}
$$

(b) Express the LHS of (2) in terms of the $l^{\text {th }}$ derivative of $e^{i \rho x}$.
(c) Find n_{o} and show that

$$
\begin{equation*}
\frac{d^{l}}{d x^{l}} e^{i \rho x}=\sum_{n=n_{o}}^{\infty} \frac{i^{n} \rho^{n}}{(n-l)!} x^{n-l} . \tag{4}
\end{equation*}
$$

(d) Find the leading behavior of $\frac{d^{l}}{d x^{l}} e^{i \rho x}$ for small ρ.
(e) Use this to show the behavior of the LHS of (2) for small ρ is given by

$$
\begin{equation*}
\int_{-1}^{1} e^{i \rho x} P_{l}(x) d x \rightarrow \frac{(-1)^{l} i^{l} \rho^{l}}{(2 l)!!} \int_{-1}^{1}\left(x^{2}-1\right)^{l} d x \tag{5}
\end{equation*}
$$

(f) Comparing with the behavior of the RHS, find C_{l} given that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \cos ^{2 l+1} \theta d \theta=\frac{(2 l)!!}{(2 l+1)!!} \tag{6}
\end{equation*}
$$

2. Consider classical scattering with energy $E>V_{o}$ in a 1d square-well/barrier potential $V(x)=$ $\mp V_{o} \theta(|x|<a)$ with $V_{o}>0$. In the three cases (i) free particle (ii) repulsive and (iii) attractive potential find the times $T_{0, \pm}$ taken by the particle to go from $x=-L$ to $x=L$ where $L>a>0$. Draw the potentials and energy level in all cases. By comparing $T_{ \pm}$with T_{0} define the time-delay τ and find it for the repulsive and attractive cases in the limit $L \rightarrow \infty$. Which one has a delayed arrival and which one an advanced arrival time? Give a qualitative explanation of the results.
3. Consider low wave number $(k a \ll 1)$ scattering against a finite spherical barrier $V_{o} \theta(r<a)$ with $V_{o}>0$. Assuming the S -wave phase shift $\delta_{0} \ll 1$, find the S -wave scattering cross-section σ_{0} as a function of the incident energy E. What is σ_{0} in the limit $V_{o} \gg E$?
