Quantum Mechanics 2, Autumn 2011 CMI

Problem set 1 Due by beginning of class on Wednesday August 17, 2011 Matrix representation of angular momentum

Consider the l = 1 subspace of the space of square-integrable functions on the sphere (i.e., functions of θ and ϕ in spherical coordinates). Choose as orthonormal basis for this vector space the spherical harmonics $Y_{11}, Y_{10}, Y_{1,-1}$ in that order.

- 1. What is $L_+Y_{11}? \langle \mathbf{1} \rangle$
- 2. We will show in lecture that

$$L_{+}Y_{10} = \sqrt{2\hbar}Y_{11}$$
 and $L_{+}Y_{1,-1} = \sqrt{2\hbar}Y_{10}$ (1)

Find the 3 × 3 matrix representation of L_+ in the above basis. $\langle 2 \rangle$

- 3. Use the above result to write down the matrix representation of L_- . $\langle 1 \rangle$
- 4. Find L_y in the above basis. $\langle 2 \rangle$
- 5. What are the possible results if L_y is measured in a state with l = 1? $\langle 2 \rangle$
- 6. For each possible measured value of L_y , find the state vector to which the system collapses after the measurement. $\langle 9 \rangle$
- 7. Suppose the initial state of the system is Y_{10} . What are the probabilities of the various possible results of a measurement of L_y ? $\langle 3 \rangle$