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1 Angular momentum (continued)

1.1 Visualization of angular momentum and location in states Ylm

• Classically, suppose we are in a stationary state of angular momentum, i.e., one where ~L
points in a fixed direction with fixed magnitude over time. For example, we can be in a classical
state where Lz = 105~, Ly = 0, Lx = 0. We can visualize this in terms of a rigid body that is
rotating with constant angular speed about an axis pointing along ẑ . Quantum mechanically,
the stationary states may be taken as simultaneous eigenstates ψ = Ylm of L2 and Lz . In such
a state we can imagine the angular momentum vector as having length equal to the square-root
of the eigenvalue of L2 , i.e.,

√
~2l(l + 1). Moreover, this vector has projection on the z-axis

of ~m . So we know its angle with the z-axis. But that is as much as we can say. We cannot
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unambiguously specify its projections on x or y axes since Lx and Ly do not have definite
values in this state. To visualize the ‘angular momentum vector’ in this state, we can think
of it as the cone of vectors from the origin whose lengths are

√
~2l(l + 1) and projection ~m

on the z-axis. This hand-waving visualization can be a useful aid to memory. There are as
many vectors on the cone with x-component of angular momentum equal to ~mx as −~mx .
So by symmetry we would expect the expectation value of Lx in the state Ylm to vanish, as it
does. It is important to realize that this cone does not tell us where the particle is likely to be
found, it only gives some crude information on the likely values that may be obtained upon a
measurement of various components of angular momentum.

To visualize where the particle is likely to be found if its angular position is measured in state
Ylm , we must plot the probability density |Ylm(θ, φ)|2 on the surface of a unit sphere in polar
coordinates r = 1, θ, φ . For example, in the S-wave state Y00 = 1√

4π
, this probability density is

constant, indicating that the particle is equally likely to be found at all angular locations. More
generally, Ylm(θ, φ) ∝ eimφPlm(cos θ). So |Ylm|2 ∝ |Plm(θ)|2 . Thus the angular probability
distribution is azimuthally symmetric (independent of φ). For example, |Y10|2 ∝ cos2 θ . So in
this state, the particle is more likely to be found near the north pole (θ = 0) or south pole
(θ = π ), than along the equator θ = π/2. Polar plots of Plm(θ) are given in many text books.

1.2 Rigid Body

• Consider an isotropic rigid body, (i.e., one whose principal moments of inertia are equal)
e.g., a spherical ball free to rotate about its center, which is held fixed. Its rotational kinetic
energy is H = L2

2I where I is its moment of inertia about any axis passing through its center.
Classically, its rotational energy is any positive number, depending on its angular velocity ω =

L/I . Quantum mechanically, the spectrum of energies is discrete, El = l(l+1)~2

2I where the
angular momentum quantum number l = 0, 1, 2, . . . . The corresponding eigenfunctions are the
spherical harmonics Ylm(θ, φ). The energies are independent of the magnetic quantum number
m . This is because of spherical symmetry. All 2l+ 1 states Ylm , for m = −l, . . . , l , irrespective
of their z -component of angular momentum (LzYlm = ~mYlm ) are degenerate in energy.

• For an isotropic rigid body, H , L2 and Lz commute and are simultaneously diagonal in the
basis of spherical harmonics.

• More generally, the rotational kinetic energy of a rigid body free to rotate about a point is

H =
L2

1
2I1

+
L2

2
2I2

+
L2

3
2I3

where I1, I2, I3 are the principal moments of inertia about the three principal
axes of inertia of the body. For an isotropic body, I1 = I2 = I3 .

• The next simplest case is a top, a rigid body with an axis of symmetry, which we can take as
the third principal axis. Then I1 = I2 = I and the hamiltonian becomes

H =
L2

1 + L2
2

2I
+
L2

3

2I3
=
L2 − L2

3

2I
+
L2

3

2I3
. (1)

Written this way, we see that [H,L2] = 0 and [H,L3] = 0, so the hamiltonian is again diagonal
in the basis of spherical harmonics. The energy spectrum is

Elm =
~2l(l + 1)− ~2m2

2I
+

~2m2

2I3
. (2)
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Due to lack of isotropy, energy levels now depend on the magnetic quantum number m . The
isotropic case is obtained by putting I3 = I .

• For a rigid body without an axis of symmetry, the three moments of inertia are pairwise
unequal I1 6= I2, I2 6= I3, I3 6= I1 . The hamiltonian is

H =
L2

1

2I1
+
L2

2

2I2
+
L2

3

2I3
(3)

Here [H,L2] = 0 so H and L2 may be simultaneously diagonalized. But each eigenspace of L2

(with eigenvalue ~2l(l + 1)) is 2l + 1-fold degenerate. So there are many bases in which L2 is
diagonal. One of these is the basis of spherical harmonics 〈θ, φ|l,m〉 = Ylm(θ, φ), in which L3 is
also diagonal1. But [H,L3] 6= 0, so H is not diagonal in the Ylm basis. But all is not lost. Since
[H,L2] = 0, H is block diagonal in the Ylm basis, i.e., H has zero matrix elements between
states of different l

〈lm|H|l′m′〉 = f(l,m,m′) δll′ (4)

So we can diagonalize H in each 2l + 1 dimensional eigenspace of L2 separately. To do so, we
first need to know the matrix elements of H and in particular, of L1 and L2 or equivalently
L± in the basis of spherical harmonics.

1.3 Matrix elements of L± in the |lm〉 basis

• Let |l,m〉 be the normalized simultaneous eigenstates of L2 and Lz , 〈lm|l′m′〉 = δll′δmm′ .

• We already know that

L2|lm〉 = ~2l(l + 1)|lm〉 and Lz|lm〉 = ~m|lm〉
So 〈lm|L2|l′m′〉 = ~2l(l + 1)δll′δmm′ and 〈lm|Lz|l′m′〉 = ~mδll′δmm′ . (5)

• Moreover, L± = Lx ± iLy raise and lower the value of m by one, so for some dimensionless
constants C±lm we must have

L±|lm〉 = ~C±lm|l,m± 1〉. (6)

To find the C ′s we first notice that on account of hermiticity L†+ = L− , we have C−lm = C+
l,m−1 .

To see this we note that (L−)l′m′,lm = (L+)∗lm,l′m′ where

(L−)l′m′,lm = 〈l′m′|L−|lm〉 = C−lmδll′δm′,m−1 and (L+)∗lm,l′m′ = C+∗
l′m′δll′δm,m′+1 = C+∗

l,m−1δll′δm′,m−1

(7)

Since these must be equal for all l, l′,m,m′ we have C−lm = C+∗
l,m−1 .

• To find C− , we use the identity L2 = L+L− + L2
z − ~Lz to evaluate the elements of the

diagonal matrix 〈l′m′|L2|lm〉 in two different ways. We get

~2l(l + 1) = ~2C+
l,m−1C

−
lm + ~2m2 − ~2m ⇒ C−lmC

+
l,m−1 = l(l + 1)−m(m− 1)

⇒ |C−lm|
2 = l(l + 1)−m(m− 1) (8)

Thus for some phases eiφlm , we have

C−lm =
√
l(l + 1)−m(m− 1)e−iφlm and C+

lm =
√
l(l + 1)−m(m+ 1)eiφlm . (9)

1Any non-trivial change of basis from Ylm within a 2l+1 dimensional eigenspace of L2 will leave L2 diagonal,
but will render L3 non-diagonal.
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It is possible to absorb these phases into the wave functions and take C± to be real.

C±lm =
√
l(l + 1)−m(m± 1) (10)

Thus the matrix elements of L± are

〈l′m′|L±|lm〉 = ~
√
l(l + 1)−m(m± 1) δl′lδm′,m±1. (11)

Using these we can easily get the matrix elements of Lx and Ly .

1.3.1 E.g.: Matrix representation of angular momenta for l = 1

• Let us illustrate with the l = 1 subspace which is 2l + 1 = 3 dimensional and is spanned
by the orthonormal spherical harmonics Y1m(θ, φ) for m = 1, 0,−1 which we denote |m〉 and
represent by the column vectors

|1〉 =

1
0
0

 , |0〉 =

0
1
0

 , | − 1〉 =

0
0
1

 . (12)

In this basis Lz|m〉 = ~m|m〉 and L2|m〉 = l(l+1)~2|m〉 are represented by the diagonal matrices

Lz = ~

1 0 0
0 0 0
0 0 −1

 and L2 = 2~2

1 0 0
0 1 0
0 0 1

 . (13)

L± have the action L±|m〉 =
√

2−m(m± 1) ~ |m± 1〉 and are adjoints of each other, so L+|1〉 = 0

L+|0〉 =
√

2~|1〉
L+| − 1〉 =

√
2~|0〉

 ⇒ L+ =
√

2~

0 1 0
0 0 1
0 0 0

 and L− =
√

2~

0 0 0
1 0 0
0 1 0

 . (14)

Notice that L± are strictly upper/lower triangular and not hermitian. They are not observables.
But using them we find the matrices for Lx and Ly

Lx =
L+ + L−

2
=

~√
2

0 1 0
1 0 1
0 1 0

 , Ly =
L+ − L−

2i
=

~√
2i

 0 1 0
−1 0 1
0 −1 0

 . (15)

• The eigenvalues of Lz are ~, 0,−~ . Since there is nothing special about the z -direction we
should expect the eigenvalues of Ly and Lz to also be the same. Check if this is so!

• However, Lx is not diagonal in the eigenbasis of Lz . Suppose an atom in the l = 1 state is
in the m = 0 eigenstate |10〉 or Y10(θ, φ) of Lz . A measurement of Lx is made. What are the
probabilities of various outcomes of the measurement?

• Measurement of Lx can result in any one of the eigenvalues ~mx = ~, 0,−~ , after which the
state collapses to the corresponding eigenstate X+, X0, X− , which in this case are (show it!)

X+ =
1

2

 1√
2

1

 , X0 =
1√
2

 1
0
−1

 , X− =
1

2

 1

−
√

2
1

 . (16)
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The measurement postulate further tells us that the probability of each outcome is the absolute

square of the projection of the initial state |10〉 =

0
1
0

 on the final eigenstate. We find

prob(lx = 0) = 0, prob(lx = ~) =
1

2
, prob(lx = −~) =

1

2
. (17)

Interestingly, this means measurement of Lx for a particle in the state Lz = 0 cannot result in
the value zero while the values ±~ occur with equal probability.

• Problem: using the matrix representations of Lx,y,z in the case l = 1, find the energy levels
(corresponding to l = 1) of an anisotropic rigid body with I1 = I, I2 = 2I, I3 = 3I where I is
appropriate unit of moment of inertia (dimensions ML2 ).

1.4 Coordinate representation of spherical harmonics for l = 1

• In the preceding section we did not require the explicit functional forms of the spherical
harmonics Y1m(θ, φ). But suppose we wanted to know the angular regions where an electron in
the state |1m〉 is likely to be found. Then we need to know Y1m(θ, φ) = 〈θ, φ|1m〉 . Of course, we
found the functional form of the spherical harmonics by solving the differential equations for the
associated Legendre functions. But let us re-obtain Y1m using the algebraic method of raising
and lowering operators. We already know the φ dependence of Ylm . As it is an eigenfunction of
Lz , Ylm(θ, φ) = eimφPlm(θ). We begin by finding the state with top-most value of m , Yll . By
definition, L+Yll = 0, so if we denote Yll(θ, φ) = ψ(θ, φ) whose φ dependence is known, then

L+ψ = ~eiφ (∂θ + i cot θ∂φ)ψ = 0 ⇒ ψθ + i cot θψφ = 0 ⇒ ψθ − l cot θψ = 0. (18)

We find ψ = Nlle
ilφ sinl θ for some normalization constant N . In particular, Y11 ∝ eiφ sin θ .

The angular probability distribution |Y11|2 ∝ sin2 θ is peaked around the equator θ = π/2 while

the particle is less likely to be found near the poles. To get the next state, we apply L− = L†+ .
Do this!

Y10 ∝ L−eiφ sin θ = −~e−iφ (∂θ − i cot θ∂φ) eiφ sin θ = −2~ cos θ ⇒ Y10 = N10 cos θ. (19)

Thus |Y10|2 ∝ cos2 θ , and the particle is more likely to be found near the poles in this case. We
also notice that Y11 ∝ eiφ sin θ and Y10 ∝ cos θ are orthogonal, as we would expect of eigenstates
of Lz with distinct eigenvalues.

• To get Y1,−1 we can either apply L− to Y10 or find it by solving L−Y1,−1 = 0. Check
that both give the same answer! Give polar plots of the absolute squares of all three spherical
harmonics |Y1,1|2, |Y1,0|2, |Y1,−1|2 .

1.5 Anisotropic rigid body

• Recall that for a rigid body without an axis of symmetry, the three moments of inertia are
pairwise unequal I1 6= I2, I2 6= I3, I3 6= I1 . Letting 2I1 = 1/a, 2I2 = 1/b and 2I3 = 1/c , the
hamiltonian is H = aL2

1 + bL2
2 + cL2

3 . H and L2 may be simultaneously diagonalized, but
[H,Lz] 6= 0 so the eigenbasis of H is not the spherical harmonic basis. Nevertheless, H is block
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diagonal in the spherical harmonic basis and we may separately diagonalize H in each subspace
of definite l = 0, 1, 2, 3 . . . . Using our knowledge of the angular momentum matrices, the matrix
representation of H in the spherical harmonic basis {Y11, Y10, Y1,−1} for l = 1 is

H =
1

2
~2

a+ b+ 2c 0 a− b
0 2a+ 2b 0

a− b 0 a+ b+ 2c

 (20)

One eigenvector is obviously Y10 = (0 1 0)t with eigenvalue ~2(a + b). By cyclic symmetry we
expect the other two eigenvalues to be ~2(b+c) and ~2(c+a) and the corresponding eigenvectors
are

1√
2

1
0
1

→ ~2(a+ c);

0
1
0

→ ~2(a+ b);
1√
2

 1
0
−1

→ ~2(b+ c). (21)

In the basis of its eigenvectors H is represented by the diagonal matrix Λ = ~2diag(c + a, a +
b, b+ c). Then the unitary transformation that diagonalizes H is the matrix whose columns are
the normalized eigenvectors. We are free to choose the order of eigenvectors and have chosen
them in such a way that U is not just unitary but also real symmetric.

U =


1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

 , HU = UΛ ⇒ U †HU = Λ (22)

So we have found the l = 1 energy levels and stationary states of an anisotropic rigid body. The
energy eigenstates are

ψ1 =
1√
2

(Y11 + Y1,−1), ψ2 = Y10, ψ3 =
1√
2

(Y11 − Y1,−1) (23)

L2 is of course diagonal in the ψ basis, just as it is in the Y1m basis. But Lz is not diagonal
in the eigenbasis of H . Indeed, in the ψ basis, it is represented by the matrix U †LzU where
Lz = diag(1, 0,−1).

2 Interaction of a particle with an electromagnetic field

• Many of the quantum mechanical properties of atoms, electrons, nuclei, molecules etc are
probed through their interaction with electromagnetic fields. E.g., we can measure the angular
momentum of electrons in an atom by passing the atom through an inhomogeneous magnetic
field. To understand this, we first develop some basic aspects of the interaction of particles with
electromagnetic fields.

2.0.1 Charged particle in an electromagnetic field

An electromagnetic field is described by electric ~E(r, t) and magnetic ~B(r, t) fields which may
be obtained from scalar φ(r, t) and vector ~A(r, t) potentials

~E = −~∇φ− ∂ ~A

∂t
, ~B = ~∇× ~A (24)
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Suppose a test charge e moves in such an external field (produced by some other charges and
currents), then it feels the Lorentz force and follows a trajectory given by Newton’s second law

mr̈ = ~F = e ~E + e~v × ~B, (25)

Now we wish to derive this equation of motion from a classical Hamiltonian. Having a hamilto-
nian helps in the passage to the quantum theory. The hamiltonian that does this job is

H =
1

2m
(p− eA)2 + eφ =

p · p
2m

+
e2A ·A

2m
− ep ·A

m
+ eφ. (26)

Let us work out Hamilton’s equations ṙj = ∂H
∂pj

, ṗj = −∂H
∂rj

and show that they reduce to the

Lorentz force law. Hamilton’s equations are

mṙj = m
∂H

∂pj
= pj − eAj and − ṗj =

∂H

∂rj
= e

∂φ

∂rj
+
e2

m
Ai
∂Ai
∂rj
− e

m
pi
∂Ai
∂rj

(27)

We need mr̈j , which is

mr̈j = ṗj − eȦj = −e ∂φ
∂rj
− e2

m
Ai
∂Ai
∂rj

+
e

m
pi
∂Ai
∂rj
− eȦj . (28)

Here Ȧj =
∂Aj
∂t + dri

dt
∂Aj
∂xi

. Let us denote the velocity of the particle by vi = ṙi = dri
dt . Substituting

for pi = mṙi + eAi

mr̈j = eEj + evi
∂Ai
∂rj
− e(v · ∇)Aj . (29)

From vector calculus,
(v · ∇)A = ∇(v ·A)− v × (∇×A) (30)

Thus

mr̈j = eEj + e(v ×B)j + e

(
vi
∂Ai
∂rj
− ∂(v ·A)

∂rj

)
. (31)

The term in parentheses vanishes since

∂vi
∂rj

=
∂ṙi
∂rj

=
d

dt

∂ri
∂rj

=
d

dt
δij = 0. (32)

Thus, Hamilton’s equations for H = π2

2m + eφ where π = p − eA are equivalent to Newton’s
equation for a particle subject to the Lorentz force in an electromagnetic field. This interaction
of a charged particle with an electromagnetic field is called minimal-coupling.

• To get the quantum mechanical hamiltonian, we replace p→ −i~∇ to get

H =
1

2m

(
−i~~∇− e ~A

)2
+ eφ = −~2∇2

2m
+

e2

2m
~A2 − ie~

2m
(∇ ·A+A · ∇) + eφ (33)

Since ~A is real H is hermitian. We will use it later to study an electron in a magnetic field etc.
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2.0.2 Magnetic moment interaction

• In addition to charge, a particle (atom, nucleus, electron/proton/neutron) could have an
electric and/or magnetic dipole moment. This is particularly important for neutral atoms since
dipolar forces dominate in the absence of net charge. An electric dipole feels a torque when in an
electric field, but it can also feel a force if the field is inhomogeneous. If a particle has a magnetic
dipole moment µ , its energy in a magnetic field is Hmd = −µ ·B , and the corresponding force
is F = ∇(µ · B). Similarly, if p is the electric dipole moment, the electric dipole energy is
Hed = −p · E and force is F = ∇(p · E). An elementary magnetic dipole moment ~µ = I~a can
be thought of classically as due to a planar current loop I enclosing an area ~a . For example if a
charge q is in a uniform circular orbit of radius r with angular momentum L = mvr = 2πmr2/T ,

it corresponds to a current I = q/T = qL/2πmr2 . Thus its magnetic moment is ~µ = q~L
2m . The

constant of proportionality, the ratio of magnetic moment to angular momentum q
2m is called

the gyromagnetic ratio.

• Suppose we have electrons of angular momentum L in an atom. In a magnetic field ~B , the
magnetic dipole energy is

H = −µ ·B =
e

2m
L ·B (34)

In quantum mechanics, ~L is replaced by the angular momentum operator.

2.1 Measurement of angular momentum using a Stern-Gerlach apparatus

See Sakurai, Griffiths or Bohm. The Stern-Gerlach experiment measures the angular momentum
of the electronic state of an atom. A beam of neutral atoms is passed (say in the +x-direction)
through a region with an inhomogeneous magnetic field (pointing mainly in the vertical z -
direction) and detected on a screen on the y − z plane. Suppose the total angular momentum
of the electrons is ~L . The atoms experience a force given by F = ∇(~µ · ~B) where the magnetic

moment due to the angular momentum of the electrons is µ = e~L
2m . So ~F = µx∇Bx + µy∇By +

µz∇Bz . If the magnetic field was homogeneous, there would be no force. The magnet is arranged
so that the magnetic field is pointing primarily in the vertical z -direction and so that ∂Bz

∂z is
the main contribution. Then the force is approximately in the z -direction and equal to

Fz ≈ µz
∂Bz
∂z

=
e

2m
Lz
∂Bz
∂z

(35)

Depending on the value of Lz for each atom, it feels a force in the vertical (±z direction) and
gets deflected from its horizontal path. The screen is far enough from the magnet so that the
atoms with different values of Lz get significantly separated by the time they reach the screen.
Classically, the angular momenta Lz can take a continuous range of values, and one expects a
vertical smear of atoms on the screen, but this is not what is seen. Quantum mechanically, Lz
can only take 2l + 1 discrete values −l~, . . . , l~ if the total angular momentum of the atoms
is l(l + 1)~2 . And typically, the production of the beam (before entering the magnetic field,
say by boiling magnesium atoms from a solid) does not favor any particular value of Lz . So
we would expect there to be roughly equal numbers of atoms with each allowed value of Lz .
So quantum mechanically one expects certain discrete deflections, leading to 2l + 1 vertically
aligned arrival spots on the screen. Thus, the angular momentum quantum number l can be
measured by counting the number of spots. So the S-G experiment gives direct confirmation of
the quantization of components of angular momentum.
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2.2 Measurement of particle position and path

We can also find the (approximate) location and (approximate) path followed by a particle.
This is done, for instance, using a cloud chamber experiment. A particle passes through a gas
and ionizes/excites atoms that are within a few atomic diameters from it. The gas is expanded,
cools and waver vapor condenses on the ionized atoms. The resulting track of condensed water
droplets indicates the approximate path of the particle. The presence of water droplets at a
spot indicates that the particle must have come within a few atomic diameters of the spot. Due
to the scattering against randomly located atoms, the path is jagged and the instantaneous
momentum keeps changing direction and is not very precisely determined. In a wave mechanical
treatment, the incoming free particle wave packet would gradually spread out in the absence
of the gas. Scattering against the atom causes the wave packet to break up to account for the
various directions in which the particle could scatter. Of course, only one of these is realized
and detected using the track. This wave packet then begins to expand till it scatters against
another atom. Thus, the successive scatterings prevent the full broadening of the wave packet.
The successive scatterings are like a sequence of rough measurements of position. Each such
measurement causes the wave function to collapse to an approximate position eigenstate. Thus,
we may track the position of the particle. See Bohm.

2.3 Charged particle in a magnetic field: Landau Levels

See the discussion in Liboff or other books.

Consider a particle of charge e moving in a magnetic field of strength B pointing along
ẑ . A vector potential that leads to such a magnetic field is ~A = −yBx̂ . Classically, such a
particle executes cyclotron motion which projects to uniform linear motion in the z -direction
and uniform circular motion in the x-y plane. The hamiltonian is

H =
1

2m
(p− eA)2 =

1

2m

[
p2
x + e2B2y2 + 2eBypx + p2

y + p2
z

]
(36)

since [y, px] = 0. x, z are cyclic coordinates so the momenta px, pz commute with H . The
simultaneous eigenstates of px and pz are of the form C(y)ei(kxx+kzz) where C(y) is any function
of y . So we look for eigenstates of H of this form. We get an eigenvalue problem

1

2m

[
p2
y + e2B2y2 + 2~kxeBy + ~2k2

x

]
C(y) =

(
E − ~2k2

z

2m

)
C(y) (37)

This is of the form of an SHO energy eigenvalue problem[
p2
y

2m
+

1

2
mω2(y − y0)2

]
C(y) =

(
E − ~2k2

z

2m

)
C(y) (38)

where ω = eB/m is the cyclotron frequency and y0 = ~kx/eB is the location of the minimum
of the potential. So the energy levels (called Landau levels) are

En,kx,kz =
~2k2

z

2m
+ ~ω

(
n+

1

2

)
. (39)

The first term is the kinetic energy of free particle translational motion in the z-direction. The
second term comes from the quantum mechanical analogue of circular motion in the x-y plane.
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The corresponding eigenstates are familiar from the SHO, they are given in terms of Hermite
polynomials × the gaussian

ψkz ,kx,n(x, y, z) = AnHn(ξ)e−ξ
2/2ei(kxx+kzz), ξ =

√
mω

~
(y − y0) (40)

The energy levels are independent of kx and therefore are infinitely degenerate. Since kx ∝ y0 ,
this means the energy does not depend on the location of the centre of the cyclotron trajectory
which is the location of the gaussian.

In practice, the electron is usually confined to a thin layer of a sample of finite area (say a
square of side L in the x−y plane). This means it cannot move in the z -direction. If we impose
periodic boundary conditions in the x-direction, ψ(x = 0) = ψ(x = L) then the allowed values
of kx must satisfy kxL = 2nxπ for some integer nx = 0,±1,±2, . . . . So the continuously infinite
degeneracy in kx has been reduced to a countably infinite degeneracy. Moreover, 〈y〉 = y0 (or
the center of the classical helix) must lie within the sample (ignoring some edge effects):

0 ≤ y0 ≤ L ⇒ 0 ≤ nx ≤
eBL2

h
(41)

So the degeneracy is in fact finite and equal to eBL2

h . L2 is the area of the sample and the
total magnetic flux through the sample is Φ = BL2 . On the other hand, Φ0 = h/e may be
interpreted as an elementary quantum of magnetic flux, and the area it occupies is h/eB . The
quantization of magnetic flux is absent in classical electromagnetic theory as the appearance of
~ suggests. The magnetic flux in most situations studied in classical theory is so large, that
the fact that it comes in packets of size h/e is not of any consequence. This is similar to the
Planck-Einstein deduction that the energy of light/radiation comes in indivisible packets called
photons.

• The degeneracy of electronic energy states is then given by the maximum number of flux
quanta that can be accommodated in the sample Φ/Φ0 . We say that flux is quantized, it comes
in multiples of h/e . The applied magnetic field, however, is unrestricted, and we can increase
the degeneracy of Landau levels by increasing B or the area of the sample. On the other hand,
if the magnetic field or area are so small that Φ < Φ0 , then within the above approximations,
we would say that there can be no magnetic flux penetrating the sample. This is because the
degeneracy is zero, and there is no electronic state ‘through which the magnetic flux can pass’.
The above calculation would predict that the sample would expel the applied magnetic field,
the field lines would have to go around the sample rather than through the sample.

3 Spin angular momentum

In practice, the above prediction of quantum mechanics for the Stern-Gerlach experiment is
verified for some atoms, but in other cases, the pattern of spots (or their number) is not quite
as expected. One infers that there is a contribution to the angular momentum of the electrons
that is not of orbital ~L = ~r× ~p origin. This additional angular momentum is called spin. There
is no such discrepancy if the total electron spin happens to be zero.

Spin was initially discovered (by the work of many physicists, culminating in the work of
Goudsmit and Uhlenbeck) through a detailed study of atomic spectral lines. Certain forbid-
den/additional spectral lines were seen (e.g. where one line was expected, two closely spaced
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lines were seen). To account for these, a new ‘spin’ quantum number ms = ±1
2 was introduced,

in addition to the n, l,m quantum numbers used to label the energy levels of the hydrogen atom.

It is interesting to read the translation of a lecture by Goudsmit on the history of the
discovery of electron spin, see http://www.lorentz.leidenuniv.nl/history/spin/goudsmit.html

Subsequently, a theory of spin was developed (among others by Pauli), wherein it is treated
as another type of angular momentum. The initial analogy was with the spinning of the Earth
about its axis, while orbital angular momentum was compared with the motion of the center
of mass of the Earth around the sun. However, no such mechanical model for the spin of the
electron has been successful. The electron is point-like to current experimental accuracy and
even extended particles like the proton (which are not point-like), have intrinsic spin which
has not been explained by mechanical analogies. Quantum mechanical spin is regarded as an
‘intrinsic spin’ represented by a vector observable ~S = (Sx, Sy, Sz). Intrinsic just means not of
r×p origin, i.e., not having to do with movement in three dimensional space. In fact, a massive
particle at rest can have a magnetic moment! This magnetic moment must necessarily be of
non-orbital origin. Such a magnetic moment is ascribed to its spin. The spin observables are
postulated to satisfy the same commutation relations as angular momentum

[Si, Sj ] = i~εijkSk (42)

Unlike Li , Si are not expressible in terms of position and momentum, spin is a new degree of
freedom. To make sense of spin in the quantum theory, we need to represent Si as hermitian
operators acting on some Hilbert space of spin states. In fact, we have already learned how to do
this in the context of orbital angular momentum. S2 = S2

x+S2
y +S2

z and Sz are simultaneously
diagonalizable and and their common eigenbasis is denoted |s,m〉 .

S2|sm〉 = s(s+ 1)~2|sm〉, Sz|sm〉 = ~m|sm〉. (43)

S±|sm〉 = (Sx±iSy)|sm〉 are found to be eigenvectors of S2 with the same eigenvalue s(s+1)~2 ,
but eigenvectors of Sz with eigenvalue raised/lowered by ~ , S±|sm〉 ∝ |s,m ± 1〉 . The largest
and smallest possible values of m must be s and −s and since S+ raises m in steps of 1,
2s = N for some non-negative integer N = 0, 1, 2, . . . . Thus

s = 0,
1

2
, 1,

3

2
, 2,

5

2
, . . . and m = −s,−s+ 1, . . . , s− 1, s. (44)

However, unlike for orbital angular momentum where Lz = −i~ ∂
∂φ , Sz is not a differential

operator in the coordinates of the particle. There is no restriction on the allowed values of m
being integral rather than half integral. Indeed, in nature, s is found to take on both integer and
half odd-integer values. s is referred to as the spin of the particle. Unlike the orbital angular
momentum quantum number l , a given type of particle (say electron) has a fixed value of spin
s , irrespective of its state of motion or location.

Electrons, protons, neutrons, muons, neutrinos, quarks all have spin s = 1
2 . Mesons like

pions and kaons have spin zero, as does the proposed Higgs particle. Rho mesons and photons
have spin 1, Delta baryons have spin 3/2, gravitons would have spin two. Atoms as a whole can
also have non-zero spin arising collectively from the spins of the electrons protons and neutrons.
There are particles with higher spin as well, but we will focus on spin s = 1

2 , which is relevant
to electrons.
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For each value of spin s , we need to find a representation of the spin observables Sx, Sy, Sz as
hermitian operators on some Hilbert space. The relevant Hilbert spaces are 2s+ 1 dimensional.
This representation may be built up from the lowest state |s,−s〉 by repeatedly applying S+ .

3.1 Spin half: Pauli spin matrices and spinor wave functions

Here the Hilbert space of spin states is 2s+ 1 = 2 dimensional and has basis |12 ,
1
2〉 and |12 ,−

1
2〉

which are also denoted | ↑〉 and | ↓〉 . The general spin state of a spin half particle is a| ↑〉+b| ↓〉 .
In this basis,

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
⇒ S2 =

3~2

4

(
1 0
0 1

)
, Sz =

~
2

(
1 0
0 −1

)
(45)

To find the matrix representation of Sx and Sy we recall that

S±|sm〉 = ~
√
s(s+ 1)−m(m± 1) |s,m± 1〉. (46)

Thus S+| ↑〉 = 0, S+| ↓〉 = ~| ↑〉 and

S+ = ~
(

0 1
0 0

)
, S− = ~

(
0 0
1 0

)
⇒ Sx =

S+ + S−
2

=
~
2

(
0 1
1 0

)
, and Sy =

S+ − S−
2i

=
~
2

(
0 −i
i 0

)
.

The traceless hermitian matrices σi = 2
~Si are called Pauli matrices.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (47)

Check that they satisfy

[σi, σj ] = 2
√
−1εijkσk, and σiσj = δij + iεijkσk. (48)

If Sz is measured in the above general state a| ↑〉+ b| ↓〉 then the possible values obtained are
±1

2~ with probabilities given by the absolute squares of the projections of the normalized initial

state with the corresponding normalized eigenvectors of Sz . These probabilities are |a|2
|a|2+|b2| and

|b2|
|a|2+|b2| . On the other hand, if we measure Sx , the possible values obtained are again ±1

2~ but

with probabilities 1
2 |a + b|2 and 1

2 |a − b|
2 , where we assume the state has been normalized so

that |a|2 + |b|2 = 1.

• The hydrogen atom hamiltonian commutes not just with L2, Lz but also S2 and Sz . So we
can label stationary states by n, l,m and also s,ms . Of course s = 1

2 is fixed for electrons
and the energy eigenvalues are independent of l,m,ms . So accounting for the two possible spin
projections of an electron, we revise the degeneracy of the hydrogen energy levels to 2n2 .

3.2 Free spin-half particle

• The energy of a free particle (no electromagnetic field for instance) is found not to depend on
its spin. All spin states have the same energy. The hamiltonian is diagonal in spin space

H =
~p2

2m

(
1 0
0 1

)
. (49)
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As a consequence, S2 and Sz commute with H and p , so we can label the energy eigenstates
with the eigenvalues of these compatible observables.

• The states of the particle are now elements of the tensor product L2(R)⊗C2 of Hilbert spaces
for translational and spin degrees of freedom. An example of such a state is

e−x
2

(
1
3

)
+ x2e−x

2

(
−1
10

)
(50)

Among these states, the energy eigenstates with energy eigenvalue ~2~k2

2m are

Aei
~k·~x
(
a
b

)
(51)

for any constants A, a, b and any wave vector ~k . In this state, the probability amplitude for

finding the particle at position x = x′ with up spin is proportional to Aaei
~k·~x′ . A basis for this

energy eigenspace can be taken as the set of vectors

ei
~k·~x
(

1
0

)
, ei

~k·~x
(

0
1

)
, for any ~k . (52)

The degeneracy of the energy eigenstates is doubled on account of the additional spin degree of
freedom.

3.3 Larmor precession of spin in a magnetic field

Consider a massive spin half particle of charge e (say an electron) at rest in a magnetic field. As-
sociated to the spin, the electron possesses a magnetic moment proportional to the gyromagnetic
ratio

~µS = g
e

2m
~S = g

e~
2m

~S

~
= gµb

~σ

2
, where µb =

e~
2m

is the Bohr magneton. (53)

From classical electrodynamics we expect the g-factor to be g = 1, based on a current loop
model of a magnetic moment. But the electron spin magnetic moment is not explained by this
current loop model. The ‘g -factor’ associated to electron spin is gS ≈ 2.0023, a number which
is experimentally determined and also predicted by quantum electrodynamics.

We note that the magnetic moment of an electron due to its orbital angular momentum is
as predicted by the classical current loop model

~µL =
e

2m
~L = µb

~L

~
. (54)

So the electron spin gyromagnetic ratio is roughly twice as big as that from orbital angular
momentum.

So if an electron is subject to a magnetic field ~B , then its magnetic dipole energy is

H = − (~µS + ~µL) · ~B =

(
g
|e|
2m

~S +
|e|
2m

~L

)
· ~B (55)
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Now suppose the electron is at rest and ~B = B0ẑ . Then the hamiltonian is (the electron charge
e = −|e| is negative)

H = −µS ·B =
g|e|Bo

2m
Sz =

g|e|~Bo
4m

(
1 0
0 −1

)
≡ Eσz (56)

So the energy eigenstates are the same as those of Sz . The ground state is | ↓〉 with energy

Egs = −E = −g|e|~Bo
4m and the excited state is | ↑〉 with energy E . Find the time evolution of an

arbitrary initial state. Show that the spin precesses about the vertical axis at a constant rate.
Find the precession frequency.

3.4 Rotations generated by angular momentum and spin

We learned that momentum generates infinitesimal translations

ψ(x+ a) ≈
(
I +

ip a

~

)
ψ(x) +O(a2) (57)

Finite translations are effected by

ψ(x+ a) = e
ipa
~ ψ(x); ψ(~r + ~a) = e

i~p·~a
~ ψ(~r). (58)

Angular momentum generates infinitesimal rotations. A rotation by a small angle δα counter
clockwise about the axis δ~α is given by

ψ(~r + δ~α× r) =

(
I +

i~L · δ~α
~

)
ψ(~r). (59)

Similarly, a finite rotation is effected by R~α = e
i~L·~α
~

ψ(~r + ~α× r) = e
i~L·~α
~ ψ(~r). (60)

Of course, rotations do not affect r , they only affect the angles θ, φ . So we will focus on the
angles and consider a wave function ψ(θ, φ). Any such wave function can be expanded as a
linear combination of spherical harmonics ψ(θ, φ) =

∑
lm clmψlm(θ, φ). We have seen that the

angular momentum operators ~L are each block diagonal in the spherical harmonic basis. This
means Lx, Ly, Lz have zero matrix elements between spherical harmonics with different values
of l

〈Ylm|Li|Yl′m′〉 ∝ δll′ . (61)

So under a rotation, e
i~L·~α
~ ψ(θ, φ), if the initial state ψ was one with a definite value of l then

the transformed wave function will also have the same value of l .

So let us consider how a p-wave state ψ(r, θ, φ) = aY11 + bY10 + cY1,−1 transforms under
such rotations. For example, the result of a counter-clockwise rotation by angle α about the
z -axis is given by

Rαẑ (aY11 + bY10 + cY1,−1) = eiLzα/~

ab
c

 =

 aeiα

b
ce−iα


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RαẑY11 = eiαY11, RαẑY10 = Y10, and RαẑY1−1 = e−iαY1−1. (62)

In particular Y10 is unaffected by a rotation about z -axis, which is not surprising as it was
independent of the azimuthal angle φ to begin with. We should have been able to guess the
answers using

Y10 ∝ cos θ, Y1,±1 ∝ sin θe±iφ. (63)

In particular, we observe that a rotation by α = 2π brings us back to the initial state, as we
would expect.

• Remark: Rotation of a physical vector can be thought of in two ways. (1) A rotation of the
corresponding position vector ~r holding the surroundings (axes) fixed. Or (2) a rotation (by the
negative angle) of the ambient space (i.e., the axes) holding ~r fixed. In both points of view, a
rotation by α = 2π about any axis acts as the identity transformation for any function ψ(~r).

• By analogy with the rotations generated by angular momentum we may consider the trans-

formations generated by spin e
iS·~φ
~ . For spin half, these become e

iσ·~φ
2 where ~σ is the vector

of Pauli matrices. These rotations act on the spin wave function (e.g. a| ↑〉 + b| ↓〉), which
however, is not a function of the spatial coordinates.

• So a rotation about an axis in ordinary three dimensional space has two effects. On the one
hand, it transforms the coordinate wave function ψ(~r) via the angular momentum operator. It
also transforms the spinorial wave function via the spin operator. This transformation generated
by spin acts on the ‘internal’ spin degrees of freedom.

• For example, calculate the 2 × 2 matrix representing a rotation by angle φ about the n̂
direction, on the spin wavefunction. As a consequence, show that the spin wavefunction changes
sign (though it represents the same physical state) under a rotation by 2π , unlike the coordinate
wave function.

• Find how an ‘up spin’ | ↑〉 transforms under a rotation by π about the y axis.

4 Addition of angular momenta

4.1 State space and observables for two particle systems

So far we dealt with 1-particle systems (electron in an atom, spin in a magnetic field e.t.c.).
Now suppose we have a system of two particles, each of whose space of quantum states are the
Hilbert spaces H1 and H2 . For example, H1 could be specified by a basis, i.e., H1 is the linear
span of a collection of basis vectors, which may be the energy eigenstates of an SHO if we have
a particle in one dimension. Similarly, we specify H2 as the linear span of a set of basis vectors.
Then the space of states of the combined system is the so-called tensor/direct product Hilbert
space H = H1 ⊗ H2 . If ψn and φm are a basis for H1 and H2 respectively, then a basis for
H1 ⊗ H2 is given by the vectors ψn ⊗ φm . So any state of the combined system is a linear
combination of tensor products of basis states of the individual systems.

• This definition is imposed on us by the superposition principle of quantum mechanics. In
classical mechanics, the state of a system of 2 particles is given by specifying the state of
each particle (x1, p1, x2, p2). Analogously in quantum mechanics we might expect the state
of the system to be specified by giving the states of each particle, say |ψ1〉|φ2〉 . However,
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the superposition principle says that these cannot be all the states, since a linear combination
of states is also an allowed state. This directly leads to the conclusion that arbitrary linear
combinations of product states are allowed states of the combined system. Now the tensor
product is merely a notation for writing these product states. The definition of tensor product
Hilbert space is merely kinematical, it does not presuppose any particular interaction between
the particles.

• E.g., if we have two spin half particles, a basis for their combined spinorial Hilbert space is
given by

| ↑〉 ⊗ | ↑〉 ≡ | ↑↑〉, | ↑〉 ⊗ | ↓〉 ≡ | ↑↓〉, | ↓〉 ⊗ | ↑〉 ≡ | ↓↑〉, | ↓〉 ⊗ | ↓〉 ≡ | ↓↓〉. (64)

We sometimes abbreviate by dropping the ⊗ symbol as above. The dimension of the tensor
product Hilbert space is the product of dimensions.

• Observables for the two particle system are (hermitian) operators acting on the tensor product
Hilbert space. Examples of such operators are tensor products of operators acting on each
particle separately. For example, if ~S1 and ~S2 are the spin operators for each, then we have the
total spin operator

~S = ~S1 ⊗ 1 + 1⊗ ~S2 (65)

The identity operator for the combined system is 1 ⊗ 1. We often drop the ⊗ symbol and
suppress the identity operators and write ~S = ~S1 + ~S2 . The z -component of the first spin is
S1z⊗ 1. The total z -component of spin is Sz = S1z⊗ 1 + 1⊗S2z ≡ S1z +S2z . A tensor product
operator A⊗B acts on a basis state of the tensor product Hilbert space by

(A⊗B)(u⊗ v) = (Au)⊗ (Bv) (66)

The composition of a pair of tensor product operators is given by

(A⊗B)(C ⊗D) = AC ⊗BD (67)

This is what you get if you keep in mind that C acts on the state of the first particle followed
by A , again on the first particle. Similarly, D acts on the state of the second particle followed
by the action of B . For example, the square of total spin works out to be

S2 =
(
~S1 + ~S2

)2
= S2

1 ⊗ 1 + 1⊗ S2
2 + 2~S1

⊗. ~S2. (68)

Make sense of this formula and work out how it acts on the above-mentioned tensor product
states.

• The tensor product carries a natural inner product induced by the inner products on the
individual Hilbert spaces. On basis states, the inner product is

〈u⊗ v, w ⊗ z〉 = 〈u,w〉〈v, z〉. (69)

4.2 Representation of tensor products of vectors and matrices

• Suppose we have two spin half particles. The individual Hilbert spaces are two dimensional
and we can choose their bases to be H1 = span(↑, ↓) = span(e1, e2) and H2 = span(↑, ↓) =
span(f1, f2). These basis vectors are represented by the column vectors

e1 =

(
1
0

)
, e2 =

(
0
1

)
, f1 =

(
1
0

)
, f2 =

(
0
1

)
. (70)
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The combined Hilbert space is four dimensional and we can choose as a basis (in the following
order)

↑↑= e1 ⊗ f1, ↑↓= e1 ⊗ f2, ↓↑= e2 ⊗ f1, ↓↓= e2 ⊗ f2 (71)

Then in this basis, the basis vectors themselves can be represented by 4-component column
vectors

e1 ⊗ f1 = (1000)t, e1 ⊗ f2 = (0100)t, e2 ⊗ f1 = (0010)t, e2 ⊗ f2 = (0001)t. (72)

We can also arrive at these 4 component column vectors by the following rule for tensor products.
This rule is merely a translation of the above choice for ordering the basis vectors

(
a1

a2

)
⊗
(
b1
b2

)
=


a1b1
a1b2
a2b1
a2b2

 ⇒ e1 ⊗ f1 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 , e.t.c. (73)

On the other hand, tensor products of observables are again linear operators on the combined
Hilbert space and should be expressible as 4 × 4 matrices on the combined Hilbert space.
Consider 2 observables

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
. (74)

Then the tensor product when it acts on e1 ⊗ f1 is by definition

(A⊗B)(e1 ⊗ f1) = Ae1 ⊗Bf1 = (a11e1 + a21e2)⊗ (b11f1 + b21f2)
= a11b11e1 ⊗ f1 + a11b21e1 ⊗ f2 + a21b11e2 ⊗ f1 + a21b21e2 ⊗ f2. (75)

This allows us to deduce the first column of A⊗B

A⊗B =


a11b11 · · ·
a11b21 · · ·
a21b11 · · ·
a21b21 · · ·

 (76)

Proceeding this way we find the remaining columns of A⊗B and conclude that

A⊗B =

(
a11B a12B
a21B a22B

)
4×4

. (77)

Use these rules to represent Sz and S2 as 4 × 4 matrices and deduce their eigenvectors and
corresponding eigenvalues.

4.3 Addition of two spin-half angular momenta

The sum of two spin operators ~S = ~S1 + ~S2 satisfies the same angular momentum algebra as
each of the individual spins. Check that

[Sx, Sy] = [S1x + S2x, S1y + S2y] = i~(S1z + S2z) = i~Sz, e.t.c. (78)
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In particular we can carry over all our results on the matrix representation of spin observables
which depend only on these commutation relations. In particular, [S2, Sz] = 0 and we have
raising and lowering operators S± = S1± + S2± which raise or lower the eigenvalue of Sz by ~ .
We may denote the simultaneous eigenstates of S2 and Sz by |sm〉 and as before we must have
highest/lowest weight states |ss〉, |s,−s〉 that are annihilated by S± . Of course, there could be
more than one highest weight state labelled by different values of s . From each highest weight
state we can build a representation of spin operators by acting repeatedly with S− . Now we
want to know what possible values s can take given that ~S = ~S1 + ~S2 is the sum of two spin
half observables. For each value of s , the allowed values of m will be as before, running from
−s to s in steps of one.

Since |sm〉 is a state of a two-spin system, it must be expressible as a linear combination of
tensor products of states of single spins. There are four tensor product basis vectors

| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉 (79)

We find that all of these are eigenstates of Sz = S1z +S2z which just adds the z -components of
the two spins. The corresponding values of m are 1, 0, 0,−1. So it would appear that the value
of s is either 1 or 0, as we will see.

• Now S+| ↑↑〉 = 0. So we can build one representation by successively applying S− = S1−+S2−
to | ↑↑〉

S−| ↑↑〉 = ~| ↓↑〉+ ~| ↑↓〉; S− (| ↑↓〉+ | ↓↑〉) = 2~| ↓↓〉, S−| ↓↓〉 = 0. (80)

These three basis states are found to be eigenstates of S2 with eigenvalue 2~2 (show this!).
Thus we have a spin s = 1 three dimensional ‘triplet’ representation on the states

|11〉 = | ↑↑〉, |10〉 =
1√
2

(| ↑↓〉+ | ↓↑〉) , |1,−1〉 = | ↓↓〉. (81)

The remaining orthogonal state with m = 0,

|00〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) (82)

is annihilated by both S− and S+ and therefore furnishes a 1-dimensional representation of
total spin. It is shown to be an eigenstate of S2 and Sz with eigenvalues 0 and 0. Thus it
corresponds to s = 0,ms = 0 and is called the singlet state |00〉 . Notice that the states in the
spin-1 triplet representation are symmetric under exchange of particles while the singlet state
is anti-symmetric under exchange. This will be exploited when we discuss the Pauli principle.

• To summarize, the total spin of a composite system consisting of two spin half particles can
be either s = 0 or s = 1. This is expressed in the formula 1

2 ⊗
1
2 = 1⊕ 0. The four dimensional

Hilbert space of the composite system splits into the direct sum of a one dimensional subspace
spanned by the singlet state with s = 0 and a three dimensional subspace spanned by the triplet
states with s = 1.

• The Hilbert space of the combined system has two interesting bases. The first is the ‘un-
coupled’ basis of tensor product states ↑↑, ↑↓, ↓↑, ↓↓ which are eigenstates of S1z , S2z , S2

1 and
S2

2 , which are all simultaneously diagonalizable. (In fact S2
1 and S2

2 are just proportional to
the identity). The un-coupled basis states may be denoted |s1,m1, s2,m2〉 .
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• Then there is the ‘coupled’ basis of eigenstates of S2, Sz (and S2
1 and S2

2 ) which we could
denote |s,m, s1, s2〉 . Here s1 = s2 = 1

2 are constant so we usually suppress them. The coupled
basis states consist of the triplet and singlet states.

• We can express the basis vectors of the coupled basis as linear combinations of the uncoupled
basis vectors and vice versa.

|s m s1 s2〉 =
∑
m1,m2

Csmm1,m2
|s1 m1〉 ⊗ |s2 m2〉. (83)

The coefficients in these linear combinations are called Clebsch-Gordan coefficients. We have
obtained a few of them above.

4.4 Addition of two or more angular momenta

• More generally, we can combine two spins or angular momenta l1 and l2 . The result is that
the angular mometum l of the combination takes each value from |l1 − l2| to l1 + l2 in integer
steps. This is expressed in the formula

l1 ⊗ l2 = (l1 + l2)⊕ (l1 + l2 − 1)⊕ · · · ⊕ |l1 − l2|. (84)

For example, if we form a composite system from two spin one particles, the combined system
again behaves like a spin system, but with spin either 2 or 1 or 0. The Clebsch-Gordan
coefficients for combining angular momenta are tabulated in various quantum mechanics books.
To combine three spins, we first combine two of them and then the third and so on.

• This quantum mechanical procedure for finding the resultant spin is to be contrasted with the
vector addition formula for combining angular momenta in classical mechanics. However, there is
some similarity. Classically, the resultant angular momentum ~L = ~L1 + ~L2 can take a maximum
magnitude equal to |~L1| + |~L2| when the angular momenta are parallel and a minimal value
||~L1| − |~L2|| when the angular momenta are anti-parallel. These maximal and minimal values
are analogous to the quantum mechanical result that the maximum angular momentum quantum
number is l1 + l2 and minimal value is |l1 − l2| . Of course, classically every value in between is
also a possibility depending on the relative orientations of the two angular momentum vectors.
Quantum mechanically, only certain intermediate values of l are allowed, in integer steps! The
classical limit is obtained in the limit of large quantum numbers l(l + 1)~2 � ~2, l1, l2 � 1. In
this limit,

√
~2l(l + 1) ≈ ~l→ |~L| e.t.c. Moreover the size of the small integer steps in units of

~ is very small compared to the angular momentum and a continuum of values is approximately
obtained.

• More generally we may combine any number of spins/angular momenta s1 ⊗ s2 ⊗ . . . ⊗ sn .
Then there is a unique (up to normalization) highest weight state (annihilated by S+ ) ψhws
with maximal spin projections Sz|s1, · · · , sn〉 = ~(s1 + · · · + sn)|s1, · · · , sn〉 . Applying S− to
this state produces an eigenstate of Sz with eigenvalue ~(s1 + · · ·+ sn− 1) which is ~ less than
maximal. This is the symmetric state

ψS ∝ |s1 − 1, s2, · · · , sn〉+ |s1, s2 − 1, · · · , sn〉+ · · ·+ |s1, s2, · · · , sn − 1〉 (85)

We may successively apply S− to this to produce a spin s1 + · · ·+ sn representation. However
the space of states with spin projection ~ less than maximal is n dimensional with basis

|s1 − 1, s2, · · · , sn〉, |s1, s2 − 1, · · · , sn〉, . . . , |s1, s2, · · · , sn − 1〉. (86)
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Any state ψ in this subspace that is orthogonal to ψS is automatically annihilated by S+ and
furnishes a highest weight state for a new spin s1 + · · ·+ sn − 1 representation. This procedure
is then repeated. Let us see why S+ψ = 0. Since Sz(S+ψ) = ~(s1 + · · ·+sn)S+ψ , and the space
of states with maximal spin projection is one dimensional we must have for some constant c

S+ψ = cψhws (87)

We will show that c = 0 if ψ ⊥ ψS . Taking an inner product

〈ψhws|S+|ψ〉 = 〈ψhws|cψhws〉 = c ⇒ c = 〈S−ψhws|ψ〉 = 〈ψS |ψ〉 = 0. (88)

5 Multiparticle systems: Identical particles: bosons & fermions

5.1 Identical and indistinguishable particles

In classical physics we can distinguish a pair of tennis balls since they may not have exactly the
same mass or number of fibres. Classical objects may be identified/labelled by their intrinsic
properties detected by their different interactions with various measuring devices (like light (for
color) or smell or mass). By intrinsic properties we mean charge, mass, shape or inertia tensor
etc, not the position or speed of the particle. Even if the masses, shapes and inertia tensors were
the same to the accuracy of our devices (i.e., the balls seem identical) we could still distinguish
the two tennis balls by keeping track of their historical trajectories (x(t), p(t)), ball A was the
one that left the factory at 10am on 23/4/10 etc while ball B had a slightly different trajectory
(after all we have never found two tennis balls with coincident trajectories even for a short
duration).

• The situation with objects needing a quantum mechanical treatment is somewhat different.
No experiment so far has been able to distinguish one electron from another, they all have the
same mass, charge, spin, magnetic moment and interactions with light, atoms etc. What is
more, the possibility of distinguishing two electrons based on their semi-classical trajectories
may seem to work approximately for some time, but can easily fail. The electron wave packets,
if they come quite close, would overlap, interfere and we would not be able to unambiguously
label the electrons when the wave packets separate.

• This is a particularly severe problem when we are dealing with atoms with several electrons.
The electrons do not have well-defined orbits, their wave functions overlap and it has not been
possible to keep track of which electron is which as time progresses. There are many other
examples of identical particles in nature including photons in a black body cavity, neutrons in
a neutron star, Rubidium atoms in a laser trap etc.

• Contrast this with the situation with planets in the solar system where we can distinguish
them by their color/mass/temperature/support for life/historical trajectories etc. So quantum
mechanically electrons are identical and indistinguishable. Of course, not all particles are iden-
tical and indistinguishable. We can tell a proton apart from an electron by its mass.

• The state of a multi-particle system is a ray in the tensor product Hilbert space. Let us
consider two identical particles for simplicity. Since the particles are identical, their individual
Hilbert spaces of states can be taken to be the same H1

∼= H2 . If φa is a basis for the individual
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Hilbert space, a vector in the tensor product H1 ⊗H2 is of the form

ψ(x1, x2) =
∑
a,b

cab φa(x1) ⊗ φb(x2) (89)

Define the permutation or exchange operator (not to be confused with parity) Pψ(x1, x2) =
ψ(x2, x1) which exchanges the coordinates (and spins if we were keeping track of the spins).
Check that this implies that P is hermitian. To implement the identical and indistinguishable
nature of the particles, we postulate that the vector ψ and the vector Pψ must represent the
same physical state. This implies that

ψ(x1, x2) = eiθψ(x2, x1) (90)

for some phase eiθ . We will find that eiθ = ±1 are the allowed values, corresponding to bosons
and fermions respectively. In particular,

Pψ(x1, x2) = ψ(x2, x1) = e−iθψ(x,x2). (91)

From the definition of P we also see that P 2 = I is the identity. Thus we have

P 2ψ(x1, x2) = ψ(x1, x2) and P 2ψ(x1, x2) = e−2iθψ(x1, x2). (92)

Comparing we find e−2iθ = 1 or eiθ = ±1, which means there are only two possibilities

ψ(x1, x2) = ±ψ(x2, x1) (93)

and we say that wavefunctions of a system of two (though it is true also for more than two)
identical particles must be either symmetric or antisymmetric under exchange. Note that this
applies to all states, not just energy eigenstates!

• In addition we postulate that exchange of particles must be a symmetry of the dynamics,
i.e., classically the forces and energy must not be affected by a permutation of the particles (if
this weren’t true we could distinguish the particles). This means the classical hamiltonian is
symmetric

H(x1, p1;x2, p2) = H(x2, p2;x1, p1) (94)

In the quantum theory this means [P,H] = 0. Thus, P and H are simultaneously diagonal-
izable. Energy eigenstates may therefore be chosen to be eigenstates of the exchange operator
and must be either symmetric or anti-symmetric functions of the coordinates.

• The symmetric and anti-symmetric functions describe different types of particles. Fermionic
particles are those with anti-symmetric wave functions while bosonic particles are those with
symmetric wave functions. Electrons in an atom need to be described by anti-symmetric wave
functions to match the measured atomic spectra and periodic table. They are fermions. Photons
and many isotopes of alkali metal atoms need to be described by symmetric wave functions to
match their experimental properties such as Bose condensation. They are bosons. Remarkably,
it is found that particles with integer spin s = 0, 1, 2, . . . are bosons and those with half-odd-
integer spin s = 1

2 ,
3
2 , . . . are fermions.

• What is more, [H,P ] = 0 implies that if the initial state is an eigenstate of P , then it will
remain an eigenstate of P under Schrödinger evolution with the same eigenvalue. So a system
of identical bosons remains this way at all times. We may build multi-particle wave functions

22



by taking products of single particle orbitals and either symmetrizing or anti-symmetrizing for
bosons and fermions respectively.

• Examples of symmetrized and antisymmetrized wave functions for two particles are

ψS(x1, x2) = φa(x1)φb(x2)+φa(x2)φb(x1), ψA(x1, x2) = φa(x1)φb(x2)−φa(x2)φb(x1). (95)

We remark that this anti-symmetric state could also be written as a ‘Slater’ determinant.

ψA(x1, x2) = det

(
φa(x1) φa(x2)
φb(x1) φb(x2)

)
(96)

Written this way, antisymmetry is equivalent to the statement that the determinant changes sign
under a permutation of two columns. This way of writing anti-symmetric states is particularly
useful when there are more than two particles.

• Of course, these are just the simplest examples of (anti-)symmetrized wave functions built out
of a pair of single particle wavefunctions. More generally we could take linear combinations of
(anti-)symmetric wavefunctions to produce new (anti-)symmetric wave functions. E.g. we may
build a fermionic state from four one particle wavefunctions

ψA(x1, x2) = N1 det

(
φa(x1) φa(x2)
φb(x1) φb(x2)

)
+N2 det

(
φc(x1) φc(x2)
φd(x1) φd(x2)

)
(97)

• Symmetric and anti-symmetric wave functions have rather different physical features. For
example, the probability amplitude to find both particles at the same location x1 = x2 = x in
an anti-symmetrized state is zero ψA(x, x) = 0, though it can be non-zero in a symmetrized
state. Alternatively ψA = 0 if φa = φb = φ . This is loosely stated as ‘two identical fermions
(e.g. electrons) cannot occupy the same 1-particle state φ ’. On the other hand, two identical
bosons (e.g. photons) can occupy the same state. We use this while obtaining the distribution
of photons in a black body cavity.

• This property of electrons had been postulated by Pauli (even before the development of
Schrodinger’s equation), in an attempt to explain atomic spectra and the periodic table. Pauli’s
exclusion principle stated that there was at most one electron per state in an atom. The
states could be labelled by the same quantum numbers as appearing in the hydrogen atom
n, l,m and an extra quantum number with two possible values. The latter quantum number
was subsequently identified as the electron spin projection ms . Of course, the hydrogen atom
stationary state wave functions do not account for electron-electron repulsion, and cannot just be
taken over to construct the wave function of a many-electron atom. However, there are ways to
do this approximately. In any case, the Pauli-exclusion principle in the form ‘multi-electron wave
functions must be anti-symmetric’ under exchange of quantum numbers (coordinates, spins) of
any pair of electrons, has stood the test of time.

• For a system of N identical particles, we define the exchange operators which permute the
quantum numbers of ith and jth particle (coordinates and spin projections)

Pijψ(· · · , xi, · · · , xj , · · · ) = ψ(· · · , xj , · · · , xi, · · · ), for 1 ≤ i, j ≤ N. (98)

Then each Pij must commute with the hamiltonian. Every energy eigenstate ψ(x1, · · ·xn) can
be taken as either symmetric or antisymmetric under every such permutation. Symmetric states
describe bosons and anti-symmetric ones describe fermions.

23



• For three identical particles we have three exchange operators P12, P23, P31 . Note that P12 =
P21 etc. The action of a permutation operator on a state vector ψ(x1, x2, x3) must produce
a state vector that differs from the original one at most by a phase: Pijψ = eiθijψ . Each
permutation operator Pij squares to the identity PijPij = I , proceeding as before, we find
eiθij = ±1.

• In other words, every state of a system of identical and indistinguishable particles must be an
eigenstate of all the P ′ijs with eigenvalues ±1. Note that the permutation operators pairwise

commute PijPkl = ei(θij+θkl) = PklPij . So they are simultaneously diagonalizable. Now a
question arises whether a quantum mechanical system of identical and indistinguishable particles
can be in a state where some of the Pij ’s have eigenvalue one and some other permutations have
eigenvalue minus one. This is not allowed since if there were such a state where, say, P12ψ = ψ
and P13ψ = −ψ then we could use these eigenvalues to distinguish between particle 2 and
particle 3, violating the indistinguishability. So the only allowed states of identical particles
are those that are symmetric under every exchange and those that are anti-symmetric under
every exchange. Moreover, since permutations of particles must be symmetries of the dynamics,
we must also have [Pij , H] = 0 for all i, j . Thus, the states which are symmetric under every
exchange are preserved under time evolution; they are called systems of bosons. The anti-
symmetric states are also preserved under time evolution and are called systems of fermions.

• An example of a fermionic state of N particles is given by the Slater determinant, which is
constructed using N one particle wave functions (‘orbitals’). For N = 3 let φa, φb, φc be three
one-particle wave functions (‘orbitals’)

ψA(x1, x2, x3) = det

φa(x1) φa(x2) φa(x3)
φb(x1) φb(x2) φb(x3)
φc(x1) φc(x2) φc(x3)

 (99)

To build an example of a bosonic state of three identical particles we only need a single 1-particle
orbital ψS(x1, x2, x3) = φ(x1)φ(x2)φ(x3).

• We may also consider what happens to the state vector of a system of identical particles under
permutations that are not simple exchanges of particles. An example is a cyclic permutation
of the particles. However, every permutation can be built by composing exchanges, so these
new permutations do not contain new information. One finds that wave functions of systems
of fermions are anti-symmetric under odd-permutations, such as pairwise exchanges. Under
even permutations such as P12P23 , wave functions of systems of fermions are unchanged. Wave
functions of systems of bosons are unchanged under all permutations, irrespective of whether
they are even or odd.

5.2 Two spin half electrons in Helium

Consider a pair of spin half fermions, whose orbital motion is not coupled to the spin degrees of
freedom, e.g. if the hamiltonian operator is the identity in spin space. This is true for the two
electrons in Helium in a non-relativistic treatment where the hamiltonian does not involve any
spin-orbit coupling terms:

H =
p2

1

2m
+

p2
2

2m
− 2e2

4πε0r1
− 2e2

4πε0r2
+

e2

4πε0|~r1 − ~r2|
. (100)

24



H is symmetric under exchange of the degrees of freedom of the two particles. So it commutes
with the exchange operator and we seek simultaneous eigenstates of H and P . We write the
total wave function as a product of a spatial and a spin part2

ψ(x1,m1;x2,m2) = φ(x1, x2)χ(m1,m2) (101)

φ(x1, x2) is ∝ to the probability amplitude for the first particle to be at x1 and second to be
at x2 irrespective of their spin states. Similarly, χ(m1,m2) is ∝ the probability amplitude for
the spin projection of the first particle to be ~m1 and that of the second particle to be ~m2 ,
irrespective of their positions3. Here m1 and m2 only take the values ±1

2 while x1, x2 are any
points in 3d space. In general,

χ = a ↑↑ +b ↑↓ +c ↓↑ +d ↓↓ where χ

(
1

2
,
1

2

)
= a, χ

(
1

2
,−1

2

)
= b, . . . . (102)

The Pauli principle of anti-symmetrization states that the total wavefunction must be anti-
symmetric under exchange of both coordinate and spin degrees of freedom

ψ(x1,m1;x2,m2) = −ψ(x2,m2;x1,m1) (103)

Now let us look for other operators that commute with both H and P . H ∝ I in spin space,
so it commutes with the combined spin operators of the two particles S2 and Sz as well as
with S2

1 and S2
2 which are each proportional to the identity. All these four spin observables also

commute with P . On the other hand, S1z commutes with H but not with P . So in particular,
P is not diagonal in the uncoupled basis of spin states, but it is diagonal in the coupled basis.

• So we look for energy eigenstates that are simultaneous eigenstates of P , S2 and Sz . Then
there are only two ways to make ψ anti-symmetric: φ and χ are symmetric and anti-symmetric
respectively or vice-versa.

1ψ = φS(x1, x2)χA(m1,m2) or 3ψ = φA(x1, x2)χS(m1,m2) (104)

We have seen that there is only one anti-symmetric 2 particle spin state, the singlet χA =
1√
2

(↑↓ − ↓↑) while there are a triplet of symmetric spin states χS . In the case of Helium, the

spin singlet states are called parahelium and the spin triplet ones orthohelium. Orthohelium
states are triply degenerate since the hamiltonian is diagonal in spin space.

• Often we may approximate φ by an (anti-)symmetrized combination of single particle wave
functions φ1 and φ2 (in general we will need linear combinations of these):

φA(x1, x2) =
1√
2

(φ1(x1)φ2(x2)− φ1(x2)φ2(x1)) and φS(x1, x2) =
1√
2

(φ1(x1)φ2(x2) + φ1(x2)φ2(x1))

In the Helium atom, these two single particle wave functions φ1, φ2 could be taken as two
stationary state wavefunctions of a Hydrogenic atom with nuclear charge Z = 24. By making
different choices for φ1 and φ2 we may search for a state ψ which minimizes the expectation
value of the Helium hamiltonian. It turns out that the ground state of the Helium atom is a spin

2If the orbital and spin degrees of freedom were coupled, we would need linear combinations of such product
wave functions

3If the spin and coordinate degrees of freedom were coupled, the amplitudes for spin projections could depend
on position.

4If we ignore the electron-electron repulsion, each electron is in a hydrogenic atom with Z = 2.
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singlet (parahelium) state φSχA where φ1 and φ2 are both approximately ground state wave
functions of hydrogenic atoms. This is why we say Helium has the electronic configuration 1s2 .
The first excited state is a triplet of degenerate orthohelium states etc. To find the eigenfunctions
(only φ(r1, r2) remains to be found) we must solve the Schrodinger eigenvalue problem. This is
quite hard and one resorts to approximations such as perturbation theory and the variational
method. In both approaches, one needs to calculate the expectation value of the the helium
hamiltonian. The variational principle states that the ground state energy is the minimal value
of 〈ψ|H|ψ〉 among all unit norm states.

5.3 Coulomb and exchange interactions

To find the ground state of helium, we need to minimize the expectation value of H among all
anti-symmetric two particle states. The symmetry /antisymmetry of φS,A imply some interesting
qualitative features for the expectation value of the interaction energy arising from electrostatic
repulsion of electrons. The interaction part of the helium hamiltonian can be written

VI = G(r1 − r2) =
e2

4πε0|r1 − r2|
(105)

Since electrons are identical, G(r1 − r2) = G(r2 − r1). As discussed in the last section, we are
interested in spatial wave functions that are built from a pair of (normalized) one-particle wave
functions

φS,A =
1√
2

[φa(r1)φb(r2)± φa(r2)φb(r1)] (106)

Let us calculate the expectation value of VI in the states φS,A Show that you get

〈VI〉 =

∫
d3r1d

3r2G(r1−r2)
[
|φa(r1)|2|φb(r2)|2 ±< φ∗a(r1)φ∗b(r2)φa(r2)φb(r1)

]
= VC±VE (107)

The first term VC is called the Coulomb (or direct) interaction energy while the second term
VE is the exchange interaction energy. Of course, both arise from the Coulomb repulsion of
electrons. While the direct Coulomb interaction can be classically interpreted as the energy of a
pair of charge clouds, the exchange term has no such simple classical interpretation. Indeed, it
is a quantum mechanical effect due to the identical nature of particles and (anti-)symmetry of
wave functions. Moreover, the exchange interaction contributes with a different sign according
as the spatial wave function is symmetric or anti-symmetric (spin singlet or spin triplet state).
The Coulomb energy VC is clearly positive. In cases where the exchange term is also positive
VE ≥ 0 (as is the case for Helium) we can conclude that the interaction energy 〈VI〉 is greater
for φS than for φA . So (other things being equal) the spin singlet states 1χA will have a higher
energy than the spin triplet states 3χS . This is seen in Helium, where typically the spin triplet
orthohelium states have a lower energy than the corresponding spin singlet paraheluim states
constructed from the same pair of single particle states φa, φb . There is one notable exception
to this rule: the ground state of helium is a spin singlet parahelium state with φa = φb . There
is no anti-symmetric wave function that can be constructed if φa = φb .

6 Perturbation theory for stationary states of time-independent hamiltonians

For most interesting quantum mechanical systems we do not know how to solve the Schrödinger
eigenvalue problem for stationary states and energy levels. There are exceptional ‘exactly-solved’
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systems such as the free particle, square well, Dirac delta and harmonic oscillator potentials,
rigid body with an axis of symmetry, hydrogen atom, charged particle in a constant magnetic
field and spin in a magnetic field e.t.c. In some cases, the hamiltonian of interest can be
written as H = H0 + gH1 where H0 is ‘exactly solved’ and gH1 is a ‘perturbation’. In some
situations, it may be possible to treat the perturbation as small and develop an expansion in
powers of g for the energy levels and eigenstates of H by using those of H0 as a zeroth order
approximation. This approach is applied for example in studying the effect of an anharmonic
restoring force on a particle in an SHO potential: here gH1 = gx4 . The hydrogen atom in
a constant magnetic field gH1 = g~L · ~B is another example. Relativistic corrections to the
hydrogen atom hamiltonian including the spin-orbit coupling gH1 = g~L · ~S can also be treated
as a perturbation. An anisotropic rigid body can be treated as a perturbation to a rigid body
with an axis of symmetry. The ground state energy of the Helium atom can be estimated by
treating the inter-electron repulsion as a perturbation.

• There is another branch of perturbation theory that deals with time-dependent perturbations.
This is relevant, for instance, if an atom is exposed to an oscillating electromagnetic field. Time
dependent perturbation theory will be discussed later on.

• In effect the method produces an expansion for the energy levels and stationary states of
H = H0 + gH1 :

En = E(0)
n + E(1)

n g + E(2)
n g2 + . . . and ψn = ψ(0)

n + ψ(1)
n g + ψ(2)

n g2 + . . . (108)

where H0ψ
(0)
n = E

(0)
n ψ

(0)
n is the energy spectrum of the unperturbed hamiltonian H0 .

6.1 Perturbation theory in a simple two state system

Perhaps the simplest instructive example of a perturbative expansion is for an electron spin in
a magnetic field ~B = (Bx, By, Bz). Here the hamiltonian H = −µ ·B is

H =
g|e|~
4m

~σ · ~B =
g|e|~
4m

(
Bz Bx − iBy

Bx + iBy −Bz

)
. (109)

Here we can treat the magnetic interaction due to the field in the x− y plane as a perturbation
to the spin in the vertical magnetic field and split the hamiltonian as H0 +H1 where (g ≈ 2 is
the g-factor)

H0 =
g|e|~Bz

4m

(
1 0
0 −1

)
and H1 =

g|e|~
4m

(
0 Bx − iBy

Bx + iBy 0

)
. (110)

In this case we may read off the energies and stationary states of H0 and treat H1 as a per-
turbation. We will develop a systematic method to calculate corrections to the energies and
wavefunctions in the next section. But this problem is so simple that we can solve it explic-
itly. To avoid writing all the physical constants, let us consider the toy hermitian hamiltonian
H = H0 + gH1 where

H0 =

(
a 0
0 d

)
and gH1 = g

(
0 b
b∗ 0

)
. (111)

Here a, d are real and b is a complex number. g is called a coupling constant and can be
regarded as measuring the size of the perturbation.
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• The eigenvalues of H0 are a and d with eigenvectors

(
1
0

)
and

(
0
1

)
respectively.

• The characteristic equation det(H − EI) = 0 allows us to calculate the two energy levels

E2 − (a+ d)E + ad− g2|b|2 = 0 ⇒ E± =
1

2

(
a+ d±

√
(a+ d)2 − 4(ad− g2|b|2)

)
. (112)

Find the corresponding eigenvectors! So far we have made no approximation.

• To understand the nature of a perturbative expansion, let us expand E± around the eigen-
values of the unperturbed hamiltonian using the binomial expansion for the square-root

E± =
a+ d

2
±1

2

√
(a− d)2 + 4g2|b|2 =

a+ d

2
±a− d

2

(
1 +

2g2|b|2

(a− d)2
+ · · ·

)
=

{
a+ g2|b|2

(a−d) + . . .

d− g2|b|2
(a−d) + . . .

(113)
This expansion for

√
1 + x2 is valid (converges) when |x| < 1∣∣∣∣ 2gb

a− d

∣∣∣∣ < 1 (114)

The physical interpretation is that such a perturbation series provides a good approximation only
if (1) the coupling constant g and (2) size of matrix elements of the perturbing hamiltonian in
the eigen-basis of H0 ( |b|) are sufficiently small and (3) the difference between the unperturbed
levels a − d is sufficiently large. If the energy levels of the unperturbed H0 were degenerate,
these series expansions would not be useful. These are general features of such ‘non-degenerate’
perturbative expansions.

• However, even if H0 had degenerate energy levels a = d , we could still get a perturbation
series, but of a different sort. If a = d , going back to E± we find the exact formula

E± = a± g|b|. (115)

We see that the perturbing hamiltonian gH1 breaks the degeneracy of unperturbed levels by
an amount proportional to g and the size of the matrix elements of H1 (namely b). This is
generally true. The degeneracy (in magnetic quantum number m) of hydrogen energy levels
can be broken by applying a constant magnetic field.

6.2 First order non-degenerate perturbation theory

More generally, suppose we split the hamiltonian H = H0+gH1 into an unperturbed (hermitian)
H0 whose spectrum is known and a perturbation gH1 . We well attempt to obtain the energy
levels and eigenstates of H as series in powers of g

En = E(0)
n + gE(1)

n + g2E(2)
n + · · · and ψn = ψ(0)

n + gψ(1)
n + g2ψ(2)

n + · · · (116)

where H0ψ
(0)
n = E

(0)
n ψ

(0)
n . Our aim is to find the first order corrections E

(1)
n and ψ

(1)
n . Roughly,

we might expect that any change to ψ
(0)
n that is in the direction of ψ

(0)
n would not change the

physical state and can be ignored. In other words, we expect to be able to take ψ
(1)
n orthogonal

to ψ
(0)
n .
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More precisely, let us assume that the unperturbed states are normalized 〈ψ(0)
n |ψ(0)

n 〉 = 1 and
choose to normalize the perturbed eigenstates as well. To order g , the normalization condition
reads (dropping the subscript n temporarily)

1 ≈ 〈ψ0
n + gψ1

n|ψ0
n + gψ1

n〉 = 〈ψ0
n|ψ0

n〉+ g〈ψ1
n|ψ0

n〉+ g〈ψ0
n|ψ1

n〉+O(g2) ⇒ <〈ψ(1)
n |ψ(0)

n 〉 = 0 (117)

So the real part of the inner product vanishes. In fact, by a choice of phase, we can also take

the imaginary part of the inner product to vanish, i.e. 〈ψ(0)
n |ψ(1)

n 〉 = 0!5

• Now the eigenvalue problem for H becomes

(H0+gH1)
(
ψ(0)
n + gψ(1)

n + g2ψ(2)
n + · · ·

)
=
(
E(0)
n + gE(1)

n + g2E(2)
n + · · ·

)(
ψ(0)
n + gψ(1)

n + g2ψ(2)
n + · · ·

)
.

At the lowest order g0 this reduces to the unperturbed eigenvalue problem H0ψ
(0)
n = E

(0)
n ψ

(0)
n .

At O(g),
H0ψ

(1)
n +H1ψ

(0)
n = E(0)

n ψ(1)
n + E(1)

n ψ(0)
n . (120)

To isolate E
(1)
n let us take the inner product with ψ

(0)
n ,

〈ψ(0)
n |H0|ψ(1)

n 〉+ 〈ψ(0)
n |H1|ψ(0)

n 〉 = E(0)
n 〈ψ(0)

n |ψ(1)
n 〉+ E(1)〈ψ(0)

n |ψ(0)
n 〉. (121)

Using orthogonality of ψ
(0)
n and ψ

(1)
n and hermiticity of H0 we get

E(1)
n =

〈ψ(0)
n |H1|ψ(0)

n 〉
〈ψ(0)

n |ψ(0)
n 〉

⇒ En = E(0)
n + g

〈ψ(0)
n |H1|ψ(0)

n 〉
〈ψ(0)

n |ψ(0)
n 〉

+ . . . . (122)

So to first order in perturbation theory, the correction to energy levels is given by the expectation
value of the perturbing hamiltonian in the unperturbed state. This justifies our estimation of the
separation between ortho and parahelium energy levels by treating the inter-electron Coulomb
repulsion as a perturbation.

• Remark: As a consequence of the variational principle, we notice that first order perturbation
theory never underestimates the ground state energy:

E1st order
0 = E0

0 + g〈ψ0
0|H1|ψ0

0〉 = 〈ψ0
0|H0 + gH1|ψ0

0〉 ≥ E0. (123)

Here the exact ground state satisfies Hψ0 = E0ψ0 . By the variational principle E0 is the
minimum of the expectation value of the hamiltonian

E0 = min||ψ||=1〈ψ|H0 + gH1|ψ〉. (124)

5Suppose =〈ψ(0)|gψ(1)〉 = cg for some constant c . Then

〈ψ(0)|gψ(1)〉 = icg ≈ eicg − 1. (118)

Now we may split ψ into a part parallel to ψ(0) and a part perpendicular to it. At order g

|ψ〉 = |ψ(0)〉+ 〈ψ(0)|gψ(1)〉|ψ(0)〉+ g|ψ(1)
⊥ 〉+ · · · ≈ eicg|ψ(0)〉+ g|ψ(1)

⊥ 〉+ · · · (119)

By multiplying |ψ〉 by the phase e−icg (which does not change its normalization) we may get rid of the phase
factor from the first term without affecting the second term to order g . Thus, we may assume that the first order
correction to the eigenstates are orthogonal to the unperturbed eigenstates 〈ψ(0)

n |ψ(1)
n 〉 = 0.
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6.2.1 First order correction to the eigenstates

• To find ψ(1) , it suffices to know its components in any basis. A convenient basis is the

orthonormal basis of unperturbed energy eigenstates ψ
(0)
m . So we wish to express

|ψ(1)
n 〉 =

∑
m

〈ψ(0)
m |ψ(1)

n 〉 |ψ(0)
m 〉. (125)

The aim is to find the coefficients in this expansion. We already saw in the last section that

ψ
(1)
n can be chosen not to have any component in the direction of ψ

(0)
n , so we restrict the sum

above to run over m 6= n .

• To find ψ
(1)
n we return to the eigenvalue equation at order g

H0ψ
(1)
n +H1ψ

(0)
n = E(0)

n ψ(1)
n + E(1)

n ψ(0)
n . (126)

Taking the inner product with the mth eigenstate of the unperturbed hamiltonian we get

〈ψ(0)
m |H0ψ

(1)
n 〉+ 〈ψ(0)

m |H1ψ
(0)
n 〉 = 〈ψ(0)

m |E(0)
n ψ(1)

n 〉+ 〈ψ(0)
m |E(1)

n ψ(0)
n 〉

⇒ E(0)
m 〈ψ(0)

m |ψ(1)
n 〉+ 〈ψ(0)

m |H1|ψ(0)
n 〉 = E(0)

n 〈ψ(0)
m |ψ(1)

n 〉+ E(1)
n 〈ψ(0)

m |ψ(0)
n 〉. (127)

In the last section, we studied the consequences of this equation when m = n and concluded

that 〈ψ(0)
n |ψ(1)

n 〉 = 0, i.e., ψ
(1)
n has no component in the direction of ψ

(0)
n . To find its remaining

components, we assume m 6= n and that the unperturbed levels are non-degenerate and get

〈ψ(0)
m |ψ(1)

n 〉 =
〈ψ(0)

m |H1|ψ(0)
n 〉

E
(0)
n − E(0)

m

for m 6= n. (128)

Thus assuming E
(0)
m 6= E

(0)
n for m 6= n , we find

ψn = ψ(0)
n + gψ(1)

n , where ψ(1)
n =

∑
m6=n

〈ψ(0)
m |H1|ψ(0)

n 〉 ψ(0)
m

E
(0)
n − E(0)

m

. (129)

So the first order correction to the unperturbed eigenstates is a linear combination of unper-
turbed eigenstates, weighted by the quotient of the matrix elements of H1 between unperturbed

states and the energy differences E
(0)
n − E

(0)
m . If the unperturbed energy levels E

(0)
n = E

(0)
m

were degenerate, this formula would run into difficulties if 〈ψ(0)
m |H1|ψ(0)

n 〉 6= 0. As long as the
unperturbed energy level of interest (n) is non-degenerate, the terms in this sum make sense
(for instance, other levels could be degenerate and the formula would still work). So we still
need to develop a formula for perturbative corrections to energy levels that are degenerate. We
will do this shortly.

• Note also that for fixed n the terms in this sum over m eventually involve division by

successively larger energy differences. So we might expect the projections of ψ
(1)
n on the highly

excited unperturbed states ψ
(0)
m to be negligible, provided the matrix elements in the numerator

〈ψ(0)
m |H1|ψ(0)

n 〉 also decrease with growing m .
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6.3 Second order correction to the energy

At second order in g the eigenvalue equation becomes

H0ψ
2
n +H1ψ

1
n = E0

nψ
2
n + E1

nψ
1
n + E2

nψ
0
n. (130)

As before, we look at this equation in the orthonormal basis of unperturbed eigenstates by
taking the inner product with ψ0

m . Using hermiticity of H0 we get

〈ψ0
m|H1ψ

1
n〉 = E2

nδmn + E1
n〈ψ0

m|ψ1
n〉 (131)

Specializing to the case m = n allows us to extract E2
n since 〈ψ0

n|ψ1
n〉 = 0 by a choice of phase:

E2
n = 〈ψ0

n|H1ψ
1
n〉 (132)

Now we substitute the known expression

ψ1
n =

∑
m6=n

〈ψ0
m|H1|ψ0

n〉ψ0
m

E0
n − E0

m

(133)

to get

E(2)
n =

∑
m6=n

〈ψ0
m|H1|ψ0

n〉〈ψ0
n|H1|ψ0

m〉
E0
n − E0

m

=
∑
m6=n

∣∣〈ψ0
m|H1|ψ0

n〉
∣∣2

E0
n − E0

m

(134)

We notice that the second order correction to the ground state energy E
(0)
0 is always negative.

This is because the numerators are all absolute squares while the denominators are negative
E0

0 − E0
m < 0

E(2)
gs ≤ 0. (135)

Summary: To second order in the coupling constant, the energy levels are

En(g) = E0
n + g〈ψ0

n|H1|ψ0
n〉+ g2

∑
m 6=n

∣∣〈ψ0
m|H1|ψ0

n〉
∣∣2

E0
n − E0

m

+ . . . (136)

6.4 Example: Point-like scatterer in a square-well potential

Let us illustrate perturbative approximations to energy levels with the example of a particle in
a 1-dimensional infinite square-well, perturbed by a repulsive delta function. H = H0 + gH1

H0 = − ~2

2m

d2

dx2
+ V (x), gH1 = gδ

(
x− L

2

)
, V (x) =

{
0 if 0 < x < L

∞ otherwise
(137)

g has dimensions of Energy × L . The unperturbed hamiltonian is parity even about x =
L/2, and so the unperturbed energy eigenstates are either even or odd about x = L/2. The
unperturbed spectrum is non-degenrate

E(0)
n =

n2π2~2

2mL2
, ψ(0)

n =

√
2

L
sin
(nπx
L

)
, n = 1, 2, 3, . . . . (138)
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n = 1, 3, 5 correspond to the even states and n = 2, 4, 6 . . . to the odd parity states. The first
order correction to the energies

E(1)
n = 〈ψ(0)

n |δ(x− L/2)|ψ(0)
n 〉 =

2

L
sin2(nπ/2) =

1− (−1)n

L
(139)

vanishes for the odd parity states since they vanish where the delta scatterer is located. Thus
with in the approximation of first order perturbation theory

En =
n2π2~2

2mL2
+

2g

L
δn,odd (140)

The second order correction to energies is

E(2)
n =

∑
p6=n

|〈ψ(0)
p |H1|ψ(0)

n 〉|2

E
(0)
n − E(0)

p

=

∞∑
n 6=p=1

sin2(pπ/2) sin2(nπ/2)8m

(n2 − p2)π2~2
=

2m

π2~2

∞∑
n 6=p=1

1− (−1)n − (−1)p + (−1)n+p

n2 − p2
.

(141)

Specializing we find that the second order correction to the ground state energy is negative and
equal to6

E
(2)
1 = − 8m

π2~2

[
1

32 − 1
+

1

52 − 1
+

1

72 − 1
+ · · ·

]
= − 8m

π2~2

∞∑
n=1

1

4n(n+ 1)
= − 2m

π2~2
(142)

Thus to second order in perturbation theory, the ground state energy of the perturbed hamilto-
nian is

E1 =
π2~2

2mL2
+

2g

L
− 2mg2

π2~2
+O(g3) (143)

Check that the dimensions are correct.

• To understand the quantitative accuracy of this perturbative approximation, let us compare
with the exact ground state energy.

• To find the exact energy levels, we solve the Schrodinger equation in the above potential. The
boundary conditions are

ψ(x ≤ 0) = ψ(x ≥ L) = 0, ψ

(
L

2

+)
= ψ

(
L

2

−)
, ψ′

(
L

2

+)
− ψ′

(
L

2

−)
=

2mg

~2
ψ

(
L

2

)
(144)

Like H0 , the total H is also even about L/2, so its eigenstates can be taken as either even or
odd. The odd parity states n = 2, 4, 6, · · · of the unperturbed H0 automatically satisfy these
boundary conditions and are seen to be eigenstates of H since they satisfy the free particle
Schrodinger equation both to the left and right of the delta scatterer. But the ground state of
H is an even parity state which we now determine.

• For x < L/2 the solution of the Schrodinger eigenvalue problem with energy E = ~2k2/2m
is ψ = A sin kx+B cos kx , imposing ψ(0) = 0 we get ψ = A sin kx . Thus, the even parity wave
functions are

ψeven(x) =

{
A sin kx if 0 ≤ x ≤ L/2
A sin(k(L− x)) if L/2 ≤ x ≤ L.

(145)

6The series is seen to be telescoping when we use partial fractions 1
n(n+1)

= 1
n
− 1

n+1
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A will be fixed by normalization and it remains to find the allowed values of k . The continuity
of ψ at L/2 is guaranteed but the condition on discontinuity of the derivative gives us the
condition

−Ak cos(kL/2)−Ak cos(kL/2) =
2mg

~2
A sin(kL/2) (146)

This leads to the transcendental equation

− ~2k

mg
= tan

(
kL

2

)
or − κ = α tanκ, where α =

mgL

2~2
> 0 and κ =

kL

2
. (147)

The allowed energies correspond to solutions κ 6= 0 of this transcendental equation. The ground
state corresponds to the smallest non-trivial solution π/2 ≤ κ1 ≤ π as is seen graphically.

• For a quantitative test of perturbation theory, let us restrict to the ground state and use the
values

~ = 1,m = 2, L = 1, g = 1, α = 1. (148)

In this case we find that κ1 ≈ 2.02876 and k1 ≈ 4.06 and

Eexact1 =
~2k2

1

2m
≈ 4.11586 (149)

• On the other hand, our perturbative approximation for the ground state energy is

E1 =
π2~2

2mL2
+

2g

L
−2mg2

π2~2
+O(g3) =

π2

4
+2− 4

π2
+· · · = 2.4674+2−.405+· · · = 4.06212+· · · (150)

Thus we see that second order perturbation theory gives an estimate of the ground state energy
4.062 which is within 1.3% of the exact ground state energy ≈ 4.116! If g were smaller, the
accuracy of perturbation theory would be even better. Moreover we notice that first order
perturbation theory (E1st order

1 ≈ 4.46) overestimates the energy of the g.s. while the second
order correction is negative.

6.5 First order degenerate perturbation theory

Suppose H = H0 + gH1 and we wish to find the correction to a degenerate energy level E
(0)
n

of H0 . Since it is degenerate there are several linearly independent eigenvectors of H0 with
eigenvalue E0

n . In fact, H0 is diagonal in any basis within the E0
n eigenspace. For convenience

let us work with orthonormal bases and denote one such orthonormal basis by ψ0
nα where

α = α(n) enumerates the degenerate levels

H0ψ
0
nα = E0

nψ
0
nα (151)

Of course, ψnα are not uniquely determined by H0 . We will see that the perturbation H1

helps us to determine the ‘right’ basis within the degenerate subspace. Moreover, we expect the
perturbation H1 to break the degeneracy among the unperturbed levels, since it was found that
application of a magnetic field ‘splits’ the degenerate energy levels of hydrogen.

• We wish to expand the energies and eigenstates of H in a series in g

Enα = E0
n + E1

nαg + E2
nαg

2 + . . . ψnα = ψ0
nα + ψ1

nαg + ψ2
nαg

2 + . . . (152)
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Now we can’t just take over the formula for E1
n = 〈ψ0

n|H1|ψ1
n〉 from non-degenerate perturbation

theory since we do not know which of the states ψ0
nα to calculate this expectation value in.

• The eigenvalue problem Hψnα = Enαψnα is (the super-scripts on ψ and E are not powers!)

(H0 + gH1)
(
ψ0
nα + gψ1

nα + g2ψ2
nα + · · ·

)
=
(
E0
nα + gE1

nα + g2E2
nα + · · ·

) (
ψ0
nα + gψ1

nα + g2ψ2
nα + · · ·

)
.

At order g0 this just says that α labels the degeneracy of the levels with energy E0
n :

H0ψ
0
nα = E0

nψ
0
nα. (153)

Due to the degeneracy, we don’t know the states ψnα uniquely, but without much loss of
generality, let us suppose the unperturbed eigenstates are orthonormal

〈ψ0
mβ|ψ0

nα〉 = δαβδmn. (154)

At order g1 we get
H0ψ

1
nα +H1ψ

0
nα = E0

nψ
1
nα + E1

nαψ
0
nα (155)

As before, let us take the inner product with the unperturbed states ψ0
mβ . Using hermiticity of

H0 and orthonormality of unperturbed states we get

〈ψ0
mβ|H1|ψ0

nα〉 = E1
nαδmnδαβ +

(
E0
n − E0

m

)
〈ψ0

mβ|ψ1
nα〉. (156)

To find E1
nα let us take m = n , i.e., focus on a particular degenerate eigenspace of H0 . Then

we have
〈ψ0

nβ|H1|ψ0
nα〉 = E1

nαδαβ. (157)

Bear in mind that we have still not fixed the basis ψ0
nα within the E0

n degenerate eigenspace,
and nor do we know E1

nα . This interesting equation determines them both. It says that the
basis ψ0

nα is one in which H1 is diagonal, and the diagonal entries are the first order corrections
to the energy levels E1

nα . In other words, E1
nα are the eigenvalues of H1 restricted to

the degenerate E0
n eigenspace of H0 . And ψ0

nα are the corresponding eigenvectors.
This is the main result of degenerate perturbation theory.

6.5.1 Simplest example of Zeeman effect

The Zeeman effect refers to the experimentally observed shift in atomic energy levels in the
presence of a uniform external magnetic field. Let us consider a very simple example of this
effect7, where a hydrogen atom is placed in an external magnetic field. The magnetic dipole
interaction energy is

Hint = −µ ·B =
( e

2m
~L+

e

m
~S
)
·B. (158)

Now the unperturbed hamiltonian is just the hydrogen atom hamiltonian H0 = ~p2

2m −
e2

4πε0r
whose eigenstates are |nlml〉 × a spin wave function which we may take to be |sms〉 where
s = 1

2 and ms = ±1
2

H0|nlmlsms〉 = − R
n2
|nlmlsms〉, n = 1, 2, . . . , l = 0, 1, . . . n−1, m = −l, · · · , l, ms = −1

2
,
1

2
(159)

7We ignore here the effect of the internal magnetic field (due to the motion of the electron in the electric field
of the nucleus).
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where R = −me4/2~2 = −13.6 eV is the Rydberg energy. The energy levels are 2n2 -fold
degenerate. We wish to find the correction to the energy levels due to the magnetic dipole
interaction with the uniform external magnetic field, H = H0 + Hint . Let us assume that the
magnetic field is oriented along the z direction, B = Bz ẑ . Now it is a fortunate circumstance
that

Hint =
e

2m
(Lz + 2Sz)Bz (160)

is diagonal in the basis of unperturbed energy levels:

Hint|nlmlsms〉 =
e~
2m

(ml + 2ms)Bz|nlmlsms〉 (161)

So the diagonalization of the perturbed hamiltonian within each degenerate subspace of H0 has
already been done. The exact energy eigenstates of H0 +Hint are |nlmlsms〉 with the energies

(H0 +Hint) |nlmlsms〉 =

(
− R
n2

+
e~
2m

(ml + 2ms)Bz

)
|nlmlsms〉 (162)

Thus the unperturbed states with different values of ml , ms , which were degenerate in energy
are now split in the presence of an external magnetic field. ml is therefore called the magnetic
quantum number.

7 Description of an ensemble of quantum mechanical states by a density matrix

7.1 Pure and mixed ensembles in classical mechanics

See Sakurai or Liboff or a book on statistical mechanics. The state of a classical system of
particles is given by specifying the positions and momenta of all the particles. This is the most
that classical mechanics allows us to freely specify. Such a state of a classical mechanical system
is called a ‘pure’ state, for emphasis. Suppose we prepare several copies of a particle (or system)
in the same pure state. Such an ensemble is called a pure ensemble, i.e., an ensemble where each
constituent is in the same pure state. This could be a set of identical billiard balls all at rest at
height 1m above the floor.

Often we do not know all the coordinates and momenta of particles even in an isolated
container of gas, owing to the difficulty of measuring all of these even at the initial instant of
time (though it is not forbidden classically). On other occasions, the gas may be in contact with
an environment. Owing to the interaction of the system with its very complicated environment,
it is not possible to pin down the state of the gas precisely. In such situations, it is hopeless to
try to describe the situation of a gas by a pure state (even if it is, strictly speaking, in a pure
state).

However, even in such situations, we may be able to say that among all possible pure states
of the gas, some are more likely than others. For example, if the gas is in equilibrium in a room
maintained at a fixed temperature, we can say that the gas is more likely to be in a state where
the molecules are uniformly distributed over the room than all located in one corner. Similarly,
the velocities of the gas molecules are more likely to follow the Maxwell-Boltzmann distribution
than one where all the velocities are equal and pointing downwards.

In such circumstances, we describe the properties of a box of gas by considering an ensemble
of several chambers of gas, each in a possibly different pure state, with different pure states
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occurring with different relative probabilities. Then we hope to describe the properties of the
original gas box by an ensemble average of the properties in each of the pure states in the various
chambers. Such an ensemble of pure states is called a mixed ensemble. Loosely, we say that the
gas in the room is in a mixed state. What we mean is that on average, its properties are well
approximated by an ensemble average. Thus, a mixed ensemble is a way of saying which pure
states are more likely and which are less likely. So a mixed ensemble is an ensemble of pure
states with a specification of their relative likelihoods.

Operationally, the specification of a mixed ensemble should allow us to calculate the ensemble
average values of observables. For example, we should be able to calculate the average pressure
on the walls by averaging over the pressure in each of the possible pure states in the ensemble,
weighted by their likelihoods. For a gas in equilibrium at temperature T , the relevant mixed
ensemble is the so-called thermal ensemble of Boltzmann that says pure states of high energy
are exponentially less likely than pure states of lower energy.

7.2 Pure and mixed ensembles in quantum mechanics

• The most that quantum mechanics allows us to specify about the state of a system is its wave
function ψ(xS) where xS denotes the degrees of freedom of the system. A quantum system
with a wave function is said to be in a (pure) state.

• The measurement postulate implies (among other things) that if we prepare several copies of
a system in the same state ψ and make measurements of the observable A , then on average we
get the expectation value of A in the state ψ . Such a collection of identically prepared states
is called a pure ensemble, where all the states is the ensemble are the same (pure) state.

• More generally, we may consider a so-called mixed ensemble, which contains several copies of
the system in possibly different pure states.

• E.g. suppose we pass an unpolarized beam of electrons through a Stern-Gerlach-like apparatus
to produce two beams of spin polarized electrons. The electrons in each output beam are in
pure spin states. One beam has electrons exclusively in the state ↑ and the other beam has
electrons exclusively in the state ↓ . Each of these beams is separately a pure ensemble.

• Now we combine the two outputs to form a single beam of electrons. In this new beam, all we
know is that 50% of the electrons are polarized spin up and 50% polarized spin down. We can
regard this combined beam as a mixed ensemble. If this combined beam is fairly weak, and we
isolate the individual electrons, we would not know the state of the individual electrons. Any
given electron is equally likely to be in one of two pure spin states ↑ and ↓ . Unlike an electron
which is in the state ↑ + ↓ , this electron does not have a definitely known wave function and is
said to be in a ‘mixed spin state’. Here we are focusing on the spin wave function and not the
coordinate degrees of freedom of the electrons.

• Note that the initial unpolarized beam is itself an example of a mixed ensemble. An unpo-
larized beam is one where there is no preferred direction for the spin vector. For instance it
means that if we measure Sz on the electrons in the beam, we will get ~/2 for half the electrons
and −~/2 for the other half. It also means that if we measure Sy we will get ~/2 for half the
electrons and −~/2 for the other half. The same is true for measurements of Sx on the electrons
in such an unpolarized beam.

• Another way in which the concept of a pure state may fail to be adequate is if we have a
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quantum system in contact with an environment whose degrees of freedom are denoted xE . Then
the system+environment may have a wave function ψ(xS , xE). But it is rarely the case that we
can factorize this into a system wave function and an environment wave function ψS(xS)ψE(xE)
at all times. In such situations, the system does not have a wave function of its own. It is said
to be in a mixed state in which we know less about the system (treated as an entity by itself)
than is allowed by quantum mechanics.

• Just as in classical mechanics, we should be able to calculate the average values of observables
in any ensemble. QM already tells us how to do this for a pure ensemble. Now consider a
mixed ensemble where the normalized pure states ψi occur with relative probabilities pi , with∑

i pi = 1 where the sum runs over the pure states present in the ensemble. In the next section
we will show how to calculate average values of observables in mixed ensembles.

• For example in the above combined beam there are only two distinct pure states in the ensem-
ble, ↑ and ↓ with equal populations. The pure states in an ensemble need not be orthogonal,
nor do they have to form a basis for the Hilbert space. For example we may have a mixed
ensemble of electrons where a third each are in the states ↑ , ↓ and ↑ + ↓ . This example also
shows that the number of distinct pure states in an ensemble can exceed the dimension of the
Hilbert space.

• Irrespective of the type of ensemble, when we measure an observable A on a constituent of
an ensemble, we get an eigenvalue. In a pure ensemble of normalized pure states ψ , we know
moreover that we get the eigenvalue an with probability |〈φn|ψ〉|2 and the system collapses
to the normalized eigenstate φn of A corresponding to the eigenvalue an . This is the famous
indeterminacy of quantum mechanics. In a mixed ensemble, there is a further indeterminacy
beyond that intrinsic to quantum mechanics. This is because there are several different pure
states present in the ensemble. When we measure A for a constituent of a mixed ensemble, we
get an eigenvalue an but the probability of getting this eigenvalue depends on which pure state
the constituent of the ensemble happened to be in. The probability of getting an can be written
as an ensemble average of the probability in each pure state

P (an) = probability of getting an =
∑

i ∈ ensemble

pi|〈φn|ψi〉|2 (163)

Check that these probabilities add up to one.

7.2.1 Why the density matrix?

• There is no single wave function that describes all the constituents of a mixed ensemble. But
we can still describe such an ensemble by use of a density matrix.

• Suppose we want to predict the average value resulting from measurements of observable A
on states in a mixed ensemble consisting of normalized pure states ψi occurring with relative
frequencies pi . Quantum mechanics plus ensemble averaging says that it is

〈A〉 =
∑
i

pi〈ψi|A|ψi〉 (164)

Let us insert the identity I =
∑

n |n〉〈n| where |n〉 is any orthonormal basis for the Hilbert

37



space. Then

〈A〉 =
∑
i

pi
∑
n,m

〈ψi|n〉〈n|A|m〉〈m|ψi〉 =
∑
mn

Anm

(∑
i

pi〈m|ψi〉〈ψi|n〉

)
≡
∑
mn

Anmρmn = tr Aρ.

(165)
The quantity within parenthesis is independent of the observable and has been defined to be the
density matrix ρ

ρ =
∑
i

pi |ψi〉〈ψi| =
∑
i

piψiψ
†
i and its matrix elements are ρmn =

∑
i

pi〈m|ψi〉〈ψi|n〉

(166)

The density matrix is a hermitian operator ρ† =
∑

i pi

(
ψiψ

†
i

)†
= ρ . It has trace equal to one

tr ρ =
∑
n

ρnn =
∑
i

pi tr ψiψ
†
i =

∑
i

piψ
†ψ =

∑
i

pi = 1 (167)

since the states ψi were assumed to be of norm one.

7.2.2 Pure ensemble density matrices

• In particular, the density matrix of a pure ensemble is got by restricting the sum to a single
pure state ψ which occurs with probability p = 1. So the density matrix of a pure state ψ
is ρ = |ψ〉〈ψ| . In other words, the density matrix of a pure state is the outer product of the
normalized state vector with itself or the ratio of outer to inner products

ρpureψ =
|ψ〉〈ψ|
〈ψ|ψ〉

=
ψψ†

ψ†ψ
=

ψψ†

||ψ||2
(168)

Here we can regard ψ as a column vector and ψ† as a row vector.

• The density matrix for a particle in a unit-norm pure state ψ(x) is just the projection operator
to the one-dimensional sub-space spanned by ψ , i.e., ρ = ψψ† = |ψ〉〈ψ| . We may represent ρ
in any orthonormal basis, (say the basis of eigenstates |n〉 of some observable A like energy,
A|n〉 = λn|n〉)

ρmn = 〈m|ψ〉〈ψ|n〉 = cmc
∗
n (169)

where |ψ〉 =
∑

n cn|n〉 and cn are the components of ψ in the basis |n〉 . In particular, the
diagonal elements ρnn = |cn|2 give the probabilities that upon a measurement of the observable
A , the value λn is obtained and the system collapses to the state |n〉 .
• In a pure state, we know the projections cn of ψ on each basis vector. In a mixed state, the
cn ’s are not known with certainty. The normalization of ψ is the condition ψ†ψ = 1 or

1 = 〈ψ|ψ〉 =
∑
n

〈ψ|n〉〈n|ψ〉 =
∑
n

c∗ncn =
∑
n

ρnn = tr ρ. (170)

• The fact that a state is pure implies that ρ is a projection operator ρ2 = ψψ†ψψ† = ψψ† = ρ .
In fact the density matrix of a pure state is a rank-1 projection operator8. In particular, ρ has

8A projection to the subspace spanned by the columns of a matrix A is given by PA = A(A†A)−1A† . The
rank of a projection is the dimension of the subspace to which it projects. An introduction to projection matrices
was given in the MP1 lecture notes.
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one eigenvalue equal to one and all remaining eigenvalues equal to zero. The 1-eigenspace of ρ
is spanned by the pure state ψ . In fact, a pure state can be defined as one whose density matrix
is a rank one projection (that projects to the pure state!).

• In addition, for a pure state since ρ2 = ρ we also have tr ρ2 = tr ρ = 1.

• We will see that mixed ensemble density matrices aren’t projections and aren’t rank one,
moreover tr ρ2 < 1 for a mixed ensemble.

7.2.3 More on mixed ensemble density matrices

• A mixed ensemble can be thought of as an ensemble of pure states, so that the cn ’s are
not precisely known but take different values for the various pure states in the ensemble. The
elements of the density matrix may be obtained as an ensemble average (this ensemble average
is different from the quantum mechanical averaging that we do to find the expectation value of
an observable in a given pure state)

ρmn = cmc∗n (171)

Alternatively, the ensemble average can be thought of as an average over the density matrices of
each of the pure states in the ensemble weighted by their probabilities (this is how we introduced
the concept)

ρ =
∑

i ∈ ensemble

pi|ψi〉〈ψi| with
∑

i ∈ ensemble

pi = 1. (172)

Here pi ≥ 0 is the probability of occurrence of the pure state |ψi〉 in the ensemble.

• For example, suppose we have a beam of electrons with an isotropic distribution of spin
projections (no preferred direction). Then we can describe the spin state of an electron in such
an ensemble using a mixed state density matrix. Working in the basis in which Sz is diagonal,
both the pure state density matrices | ↑〉〈↑ | and | ↓〉〈↓ | are equally likely. Thus the density
matrix is

ρ =
1

2
| ↑〉〈↑ |+ 1

2
| ↓〉〈↓ | = 1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
=

1

2

(
1 0
0 1

)
(173)

Calculate the expectation values of the various components of spin and show that they vanish
for this mixed state.

• The same beam with isotropic spin projections can also be described as a mixed ensemble
where there are equal numbers of electrons with Sx = ~/2 as there are electrons with Sx = −~/2.
If X± are the normalized eigenvectors of Sx corresponding to these two eigenvalues, then the
density matrix in the basis where Sx is diagonal is given by

ρ =
1

2
X+X

†
+ +

1

2
X−X

†
− (174)

By expressing X± in terms of ↑ and ↓ show that this density matrix is the same as the above
density matrix in the basis where Sz is diagonal.

• The density matrix of the mixed ensemble mentioned earlier with a third each of the population
in the states ↑, ↓ and ↑ + ↓ is

ρ3 =
1

3
↑↑† +

1

3
↓↓† +

1

3

1√
2

(↑ + ↓) 1√
2

(↑† + ↓†). (175)

39



• Example: Suppose we have a system in thermal equilibrium at temperature T . Then we may
describe its properties using a thermal ensemble with (mixed) thermal density matrix. In the
basis of energy eigenstates H|n〉 = En|n〉 , the thermal density matrix is

ρ = A
∞∑
n=0

e−En/kT |n〉〈n| where the normalization constant A−1 =
∑
n

e−En/kT (176)

is fixed by the requirement that tr ρ = 1. A thermal density matrix (in the energy basis)
corresponds to an ensemble where each pure state |n〉 of definite energy is present with a
probability proportional to the Boltzmann factor e−En/kT . High energy pure states occur less
frequently in the ensemble compared to lower energy pure states. The thermal density matrix
at temperature T is ρ = Ae−H/kT . The diagonal entries of the density matrix in the energy
basis are the relative occupation numbers of the various energy levels of the system at that
temperature.

• For a mixed ensemble, ρ is neither a rank-1 matrix nor can it be a projection matrix.

• If a density matrix is a projection operator, then it must be the density matrix of a pure
ensemble. Proof: Suppose that a density matrix is a projection ρ2 = ρ . So it projects to a
subspace V ⊆ H . Take an o.n. basis ψ1, · · ·ψn for V . Then ρ = ψ0ψ

†
0 + · · ·+ ψnψ

†
n . But then

1 = tr ρ = n , this implies n = 1. So ρ = ψ1ψ
†
1 must be a pure density matrix and necessarily

of rank one.

• If ρ is rank 1, does it have to be pure? Ans: Yes. Why? If ρ is rank one, then ρ = ab† for some
vectors a and b . But ρ† = ρ so ab† = ba† . Moreover tr ρ = 1, so b†a = 1, so b = bb†a† = |b|2a .
Therefore b is parallel to a . Now define c = |b|a , then ρ = cc† , and therefore, ρ is a pure state
density matrix.

• Let us see these facts in an example. Suppose a mixed state is formed from an ensemble of
orthonormal pure states |n〉

ρ =
∑

n ∈ ensemble

Pn|n〉〈n|, 〈n|m〉 = δmn. (177)

Then check that ρ2 =
∑

n P
2
n |n〉〈n| . But for a mixed state, Pn < 1 for n in the ensemble, so

P 2
n < Pn for every non-zero Pn . Thus ρ2 6= ρ for this mixed state. The rank of a mixed state

density matrix in the above example is the number of orthonormal pure states in the ensemble
for which Pn 6= 0. This is always two or more for a mixed ensemble, and equal to one only for
a pure ensemble.

7.2.4 Time evolution of density matrix

• Finally, the time-evolution of a pure state can be expressed in terms of its density matrix

i~ρ̇ = i~ψ̇ψ† + i~ψψ̇† = Hψψ† + ψψ†H = [H, ρ]. (178)

Alternatively, we can work in a basis

i~∂t|ψ〉 = H|ψ〉 ⇒ i~∂t〈n|ψ〉 = i~∂tcn = 〈n|H|ψ〉 =
∑
m

〈n|H|m〉〈m|ψ〉 =
∑
m

Hnmcm (179)
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This implies

i~∂tρmn = i~(cm∂tc
∗
n+c∗n∂tcm) =

∑
p

c∗nHmpcp−
∑
p

cmHpnc
∗
p =

∑
p

Hmpρpn−Hpnρmp = [H, ρ]mn

(180)
So the Schrödinger equation for a pure state becomes i~∂ρ∂t = [H, ρ] .

• Since each of the pure states in the ensemble evolve according to the Schrodinger equation,
the ensemble average mixed density matrix ρ =

∑
i piρi also evolves in the same way

i~
∂ρ

∂t
= i~

∑
i

pi
∂ρi
∂t

=
∑
i

pi[H, ρi] =

[
H,
∑
i

piρi

]
= [H, ρ]. (181)

• We recognize that this evolution equation for the density matrix is the quantum mechanical
analog of the Liouville equation for the evolution of the phase space density. 1

i~ [H, ρ] is replaced
by the Poisson bracket {H, ρ} in classical mechanics.

• The evolution equation for the density matrix also bears a resemblance to the Heisenberg
equation of motion of quantum mechanics.

8 Time reversal

8.1 Time reversal in classical mechanics

Newton’s law of motion is time-reversal invariant. What we mean by this is that if x(t) is a
solution of

m
d2x(t)

dt2
= F (x(t)), (182)

then x(−t) is also a solution. Indeed let y(t) = x(−t) = x(t′) where t′ = −t . Then

dy(t)

dt
=
dx(−t)
dt

= −dx(t′)

dt′
⇒ d2y(t)

dt2
=
d2x(t′)

dt′2
. (183)

But we know that md2x(t′)
dt′2 = F (x(t′)) which implies that

m
d2y(t)

dt2
= F (y(t)) (184)

So x(−t) satisfies Newton’s equation whenever x(t) does. More precisely, if x(t) is a solution of
Newton’s equation with initial conditions x(t1) = x1 and ẋ(t1) = v1 and ending up at x(t2) = x2

with ẋ(t2) = v2 , then y(t) = x(−t) is also a solution with initial conditions y(−t2) = x2 ,
ẏ(−t2) = −v2 and ending up at y(−t1) = x1 , ẏ(−t1) = −v1 . So the final state for x becomes
the initial state for y after reversing the sign of velocities and vice versa. A movie of the
trajectory described by y would look like the movie of x run backwards. The main point is that
this backwards movie is also a legitimate solution of Newton’s equation. For example, a ball
thrown up decelerates and comes to rest at a maximum height. The time reversed trajectory
is a ball at rest that falls down and accelerates. One is a solution of Newton’s equation if and
only if the other is. We may plot this in an x-t diagram.
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• Note what this is not saying. Suppose a mango is seen to fall (from rest) from a tree 27
minutes after the birth of the nation and hit the ground with velocity 1 m/s, 28 minutes after
the birth of the nation. It certainly does not mean that a mango rose up from the ground 28
minutes before the birth of the nation and reached the tree 27 minutes before the birth of the
nation. Rather, what is means is that one could (at a time of one’s choosing, say 50 min after
the birth of the nation) throw a mango up with a velocity of 1m/s from the point of impact
on the ground, and it would follow the reversed path as the earlier mango and reach (with zero
instantaneous velocity) the same point on the tree one minute later.

• We say that time reversal is implemented in classical mechanics by reversing the sign of the
time variable wherever it appears. As a consequence, velocities and momenta change sign under
time reversal, though accelerations do not change sign. Since L = r × p , angular momentum
too changes sign under time reversal.

• There are situations where the time reversed trajectory is not a solution of Newton’s equation.
This is the case if the force is not time-reversal invariant. An example of such a force is friction.
Another example of such a force is the magnetic part of the Lorentz force ~F = e~v × ~B . The
time-reversed trajectory of a charged particle moving in a fixed external magnetic field is in
general not a solution of Newton’s equation m~̈r = e~̇r ×B .

8.2 Time reversal in quantum mechanics

• We need to understand how time-reversal T is implemented in the quantum theory. We would
like to promote the time reversal invariance of the classical theory of a free particle or a particle
in a potential V (x) to the quantum theory. What ever T is, we wish to find that for a free
particle, Tψ is a solution of the SE whenever ψ is a solution.

• For instance, consider a stationary solution of the free particle SE ψ(x, t) = sin(kx)e−iEt/~

where E = ~2k2/2m . Unfortunately, ψ(x,−t) = sin(kx)eiEt/~ is not a solution of the SE, as
one checks. This means reversal of sign of t is not a symmetry of the SE. But interestingly
ψ∗(x,−t) (which happens to be equal to ψ(x, t) in this case), is a solution of the SE! We will
exploit this observation soon.

• More generally, consider the SE for a particle in a real potential V (x) with initial condition
ψ(x, t0) = ψ0(x)

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t). (185)

Merely changing the sign of t , unfortunately produces an equation different from the SE.
ψ(x,−t) satisfies the equation

− i~∂ψ(x,−t)
∂t

= − ~2

2m

∂2ψ(x,−t)
∂x2

+ V (x)ψ(x,−t). (186)

Due to the first order time derivative in the SE, it is not-invariant if we simply let t→ −t . This
is in contrast to Newton’s equation that is second order in time and invariant under t→ −t .
• What is more, we found that classically p → −p under time reversal. But simply changing
the sign of t does not affect p = −i~ ∂

∂x in the quantum theory. So time reversal in quantum
mechanics must involve more than just reversing the sign of time.

• However, notice that the above equation is in fact the SE for the complex conjugate wave
function. This suggests how to implement time reversal: we must not only reverse the sign of
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t but also replace the wave function by its complex conjugate. This combined operation is a
symmetry of the SE and is defined as the time-reversal operation in quantum mechanics.

• So let φ(x, t) = ψ∗(x,−t) = ψ∗(x, t′) where t′ = −t . We will show that φ(x, t) is a solution
of the SE whenever ψ(x, t) is. To see this, note that

∂φ(x, t)

∂t
= −∂ψ

∗(x, t′)

∂t′
, and

∂2φ(x, t)

∂x2
=
∂2ψ∗(x, t′)

∂x2
. (187)

Thus the SE for ψ(x, t′) implies the following equation for φ(x, t)

− i~∂φ
∗(x, t)

∂t
= − ~2

2m

∂2φ∗(x, t)

∂x2
+ V (x)φ∗(x, t). (188)

Taking the complex conjugate of this equation we find that φ(x, t) also solves the SE. So
ψ∗(x,−t) is a solution of SE with final state ψ∗(x,−t0) = ψ∗0 whenever ψ(x, t) is a solution of
SE with initial state ψ0 .

• We say that time-reversal is implemented in quantum theory by reversing the sign of the time
variable (whereever it appears) and by taking the complex conjugate of the wave function:

(Tψ)(x, t) = ψ∗(x,−t) (189)

• Notice that time reversal is an anti-linear operator

T (ψ + φ) = Tψ + Tφ, but T (λψ(t)) = λ∗ψ∗(−t) = λ∗Tψ(t). (190)

• As a consequence, Tpψ = T (−i~ψ′(x, t)) = i~ ∂
∂xTψ = −pTψ . So TpT−1 = −p , which is the

quantum mechanical version of the reversal of sign of momentum under time reversal. For this
‘reversal of sign’ of p , it was crucial that T involves complex conjugation.

• In fact, the time-reversal operator T is an anti-unitary operator on solutions of the SE. A
unitary operator is one which satisfies 〈Uφ|Uψ〉 = 〈φ|ψ〉 for all states φ, ψ . On the other hand,

〈Tφ(t)|Tψ(t)〉 = 〈φ∗(−t)|ψ∗(−t)〉 = 〈φ(−t)|ψ(−t)〉∗ = 〈φ(t)|ψ(t)〉∗ (191)

The last equality follows since Schrödinger evolution preserves inner products. Thus 〈Tφ(t)|Tψ(t)〉 =
〈φ(t)|ψ(t)〉∗ for any pair of states φ, ψ . Such an operator is called anti-unitary. Thus time-
reversal symmetry of the Schrodinger equation is implemented by an anti-unitary operator
(unlike other symmetries like parity, space and time translation or rotation invariance, which

are implemented by unitary operators P, eipx/~, e−iHt/~ and ei
~L·~φ/~ ).

• While states transform via ψ → Tψ , under time-reversal, an operator A must transform to
TAT−1 . For position and momentum we found that TrT−1 = r and TpT−1 = −p . This is
also consistent with the requirements of the correspondence principle (in the Heisenberg picture)
and the classical result that under time reversal, x(t) and p(t) go to x(−t) and −p(−t). On
the other hand, For orbital angular momentum and spin we must have TLT−1 = −L and
T~σT−1 = −~σ . Show that when acting on Pauli matrices, T can be taken as Cσ2 where C
implements complex conjugation CzC−1 = z∗ . Though σ2 is unitary, C makes T anti-unitary.

• We can formalize our earlier observations. The Schrödingier equation is time-reversal invariant
provided the hamiltonian commutes with T . To see this, apply T to the SE i~∂ψ∂t = Hψ , assume
TH = HT and use anti-linearity of T to get

T

(
i~
∂ψ

∂t

)
= THψ ⇒ −i~T

(
∂ψ

∂t

)
= H(Tψ). (192)
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Now by definition T
(
∂ψ
∂t

)
= −∂Tψ

∂t since the sign of time is reversed. So we get

i~
∂ (Tψ)

∂t
= H (Tψ) (193)

In other words, if ψ is a solution of the SE, then so is Tψ provided [H,T ] = 0. This brings
time-reversal invariance on par with the other symmetries of the SE. E.g. for parity we found
that if ψ is a solution and [H,P] = 0, then Pψ(x) = ψ(−x) is also a solution.

• Now let us characterize the (time-independent) hamiltonians H = 1
2mp

2 +V (x) that commute
with T . First we use pT = −Tp to find [p2, T ] = ppT − Tpp = −pTp− Tpp = Tpp− Tpp = 0.
So T commutes with the kinetic energy. As for the potential term,

[T, V ]ψ = T (V ψ)− V Tψ = V ∗Tψ − V Tψ (194)

So [T, V ] = 0 iff V (x) = V ∗(x). So H = p2

2m + V (x) commutes with time reversal iff the
potential is real.

• In particular, if H is a hermitian hamiltonian that commutes with T and ψn(x) is an energy-
En eigenstate of H , then Tψn(x) = ψn(x)∗ is also an eigenstate with the same energy En :

H(Tψn) = T (Hψn) = T (Enψn) = En(Tψn). (195)

If ψ(x) is real Tψ(x) = ψ∗(x), isn’t a linearly independent eigenstate. But if ψ(x) is complex,
it is linearly independent. Scattering states in 1d which behave asymptotically like eikx are
complex wave functions representing particles moving rightward at x =∞ . The corresponding
time-reversed state describes left moving particles of the same energy.

• Let us remark on time-dependent hamiltonians H = p2

2m + V (x, t) that are time-reversal in-
variant. By our earlier argument, such a time dependent potential will preserve the T-invariance
of Schrodinger’s equation iff [H,T ] = 0. We already know that [T, p2] = 0, so we just need to
characterize potentials V (x, t) that commute with T .

([T, V ]ψ)(x, t) = V ∗(x,−t)Tψ − V (x, t)Tψ (196)

So [T, V ] = 0 iff V (x, t) = V ∗(x,−t), i.e., the potential itself must be time-reversal invariant.

• The simplest and most common examples of such potentials are real time-independent poten-
tials, a class we have already encountered. But there are other interesting possibilities, such as
a real potential that is even under t→ −t . For example,

V (~r, t) = −e~r · ~Eo cosωt (197)

is a time-reversal invariant time-dependent potential. It describes the electric dipole interaction
energy between the electron in an atom and the oscillating electric field of light shone on it.

• Let us illustrate how quantum T -invariance reduces to classical time reversal invariance in a

simple example. The gaussian wave packet with initial width a =
√
〈x2〉ψ(t=0) − 〈x〉2ψ(t=0) is

ψ(x, t) =
1

(2π)1/4
√
a
√

1 + i~t
2ma2

exp

{
− (x− pot/m)2

4a2
(
1 + i~t

2ma2

)} (198)

44



is a solution of the free particle SE. In this state 〈p〉 = po and 〈x〉 = pot
m . The time reversed

wavefunction

(Tψ)(x, t) = ψ∗(x,−t) =
1

(2π)1/4
√
a+ i~t

2ma

exp

{
−(x+ pot/m)2

4
(
a2 + i~t

2m

) } (199)

too is a solution of the free particle SE. Interestingly, we notice that the time-reversed wave
function differs from ψ merely by a reversal of the sign of po , which is the mean momentum of
the state.

• To understand the classical limits of these solutions, we form the coordinate probability

densities. Denoting a(t) = a
√

1 + t2~2

4m2a4 we find

|ψ(x, t)|2 =
1√

2πa(t)
e
−(x− potm )

2

2a(t)2 and |(Tψ)(x, t)|2 =
1√

2πa(t)
e
−(x+

pot
m )

2

2a(t)2 (200)

In the classical limit (to be studied more carefully in the next section), these represent particles
which are located where the gaussian probability densities are peaked. We see that in the
classical limit, ψ represents a particle which is moving with trajectory x(t) = pot

m while Tψ

represents a particle with trajectory x(t) = −pot
m . These two trajectories are both solutions of

the free particle Newton equation mẍ = 0 and are related by classical time reversal t→ −t !
• As in classical mechanics, there are situations in which the Schrödinger equation is not time
reversal invariant. This happens when [H,T ] 6= 0. For a particle in a potential V (x), this
can happen only if V (x) is not real. Complex potentials can be used to describe damping, a
quantum mechanical analogue of friction. The SE for a charge in a fixed external magnetic field
is also not T -invariant.

• Despite the name, time reversal is not concerned with the possibility of traveling backwards in
time or with ‘time travel’. However, it does say that the time-reversed Newton equation is the
same as the Newton equation (for a wide range of forces) and the same is true of the Schrd̈ingier
equation in a real potential. This fact allows us to produce new solutions of these equations
from known ones. This is already quite valuable. Based on the knowledge that certain processes
occur, T -invariance can be used to predict that certain reversed-processes must also occur. An
example is given in the problem set.

8.3 Time reversal invariance of the Schrödinger equation in momentum space

• Recall the definition of momentum space wave function ψ̃(k) =
∫
dxψ(x)e−ikx and ψ(x) =∫

[dk]ψ̃(k)eikx .

• The free particle SE was shown to admit the time reversed wave function (Tψ)(x, t) as a
solution iff ψ(x, t) is a solution. A free particle energy eigenstate is ψ(x) = ei(k

′x−ωt) , it is
also a momentum eigenstate with momentum p = ~k′ . The time reversed wave function is
(Tψ)(x) = ei(−k

′x−ωt) , it has the same time dependence, so has the same energy ~2k′2/2m
but it is a state of momentum −~k′ . In momentum space, the energy eigenstate is given by
ψ̃(k) = 2πδ(k − k′)e−iωt and it is clearly a state of definite momentum k = k′ . The time

reversed wave function in momentum space is T̃ψ(k, t) = 2πδ(k+ k′)e−iωt is a state of opposite

momentum k = −k′ . Notice that in this case, T̃ψ(k, t) =
(
ψ̃(−k,−t)

)∗
.
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• More generally, if the hamiltonian is time reversal invariant, then (Tψ)(x, t) = ψ∗(x,−t) is a

solution iff ψ(x, t) is a solution. The analogous statement is that if ψ̃(k, t) is a solution of the SE

in momentum space, then so is T̃ψ(k, t) =
(
ψ̃(−k,−t)

)∗
. The time reversed wave function in

momentum space is the Fourier transform of the time reversed wave function in position space.

T̃ψ(k, t) =

∫
dx e−ikx(Tψ)(x, t) =

∫
dx ψ∗(x,−t)e−ikx =

(∫
dx ψ(x,−t)e−i(−k)x

)∗
=
(
ψ̃(−k,−t)

)∗
.

Note that the Fourier transform of the complex conjugate is not the complex conjugate of the
Fourier transform in general. Instead, one checks that

ψ̃∗(k) =
(
ψ̃(−k)

)∗
(201)

Thus, based on our knowledge of position space solution and its time reverse we can state that
if V (x) is real, and ψ̃(k, t) is a soln of SE, then so is T̃ψ(k, t) = ψ̃(−k,−t)∗ .
• A first principles way to show this directly is to find the appropriate symmetry of the time-
dependent Schrodinger equation expressed in momentum space. Suppose

ψ(x) =

∫
[dk]ψ̃(k)eikx and V (x) =

∫
[dk]Ṽ (k)eikx (202)

then the SE i~∂ψ(x,t)
∂t = − ~2

2m
∂2ψ(x,t)
∂x2 + V (x)ψ(x) becomes the following equation for the mo-

mentum space wave function

i~
∂ψ̃(k, t)

∂t
=

~2k2

2m
ψ̃(k, t) +

∫
[dk′]Ṽ (k − k′)ψ̃(k′, t) (203)

The last term is the convolution of the potential with the wave function Ṽ ψ(k) =
∫

[dk′]Ṽ (k −
k′)ψ̃(k′, t).

• Now we will show that ψ̃(−k,−t)∗ (complex conjugate of the Fourier transform evaluated at
−k,−t) is also a solution of this equation. Indeed, taking t → −t and the complex conjugate
we get9

i~
∂ψ̃(k,−t)∗

∂t
=

~2k2

2m
ψ̃(k,−t)∗ +

∫
[dk′]Ṽ (k − k′)∗ψ̃(k′,−t)∗ (204)

But in the presence of a real potential, V (x), we find that in momentum space, Ṽ (l)∗ = Ṽ (−l).
So revering the signs of k and the dummy variable k′ we find

i~
∂ψ̃(−k,−t)∗

∂t
=

~2k2

2m
ψ̃(−k,−t)∗ +

∫
[dk′]Ṽ (k − k′)ψ̃(−k′,−t)∗ (205)

In other words, for a real potential, ψ̃∗(−k,−t) is a solution of the SE iff ψ̃(k, t) is a solution.
This symmetry is time reversal invariance.

• For the free particle, both P and T are symmetries, and P̃ψ(k) = ψ̃(−k). So PT takes the
momentum space wave function ψ̃(k, t) to ψ̃(k,−t)∗ . This is not a symmetry for a generic real
potential.

9If there were no potential this shows that ψ̃(k,−t)∗ is a solution of the free particle SE whenever ψ̃(k, t) is.
This symmetry of the free particle is PT-symmetry.
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• There is another quantity that we could consider, the result of applying T to ψ̃(k, t):

ψ̃(k, t) =

∫
dx ψ(x, t)e−ikx ⇒ T ψ̃(k, t) =

∫
dx ψ∗(x,−t)eikx = ψ̃∗(−k,−t) =

(
ψ̃(k,−t)

)∗
.

(206)

While this is a correct formula ψ̃∗(−k,−t) it is not the physically useful quantity. As shown
earlier, for a real potential, if ψ̃(k, t) is a solution of the SE, then so is ψ̃(−k,−t)∗ . This is not
the same as the quantity above though it is related (the discrepancy is due to the fact that T is
anti-linear and complex conjugation and Fourier transformation do not commute)

new time reversed soln of SE = T̃ψ(k, t) = ψ̃(−k,−t)∗ = ψ̃∗(k,−t) = T ψ̃(−k, t). (207)

• Let us specialize to t = 0. Since a momentum eigenstate 〈k|k′〉 = 2πδ(k−k′) is a real function
in momentum space and under time reversal it is mapped to the momentum eigenstate with
momentum −k we can say that under time reversal, T |k′〉 = | − k′〉 . Under time reversal, a
position eigenstate (which is a real function) 〈x|x′〉 = δ(x − x′) localized at x = x′ remains a
position eigenstate localized at the same point. So T |x′〉 = |x′〉 .

9 Semiclassical (WKB) approximation

9.1 Semi-classical regime and slowly varying potentials

• Named after Wentzel, Kramers and Brillouin. We wish to approximately solve the time-
independent Schrödinger equation for stationary states that are nearly classical.

− ~2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x). (208)

To do this, we wish to exploit the knowledge of some solution of the classical (Hamilton/Newton)
equations of motion. In stationary perturbation theory, the zeroth order was a solution of
the unperturbed problem. In the semi-classical approximation, the zeroth order is typically a
classical solution (in an appropriate form). Classically, the particle is confined to the region x
where E ≥ V (x). So we focus on this region and postpone phenomena like tunneling through
barriers, which are classically forbidden.

• Let us recall which (stationary) states behave more classically than others. If the potential is
a constant (as in an infinite square-well of length L in which V = 0), ψ(x) = Aeikx + Be−ikx

where k =

√
2m(E−V )

~ and the boundary conditions imply that the stationary states are ψn(x) =√
2
L sin nπx

L . Classically, a particle with non-zero speed spends on average equal times in all

subintervals of [0, L] of equal length, as it bounces back and forth against the walls. This
uniform distribution is approximated by the probability distribution |ψ(x)|2 of highly excited
states. So the classical limit here is the limit of high energies (En � V ). This is also the limit
of large wave number kn = nπ

L compared to 1
L . This is also the limit where the de Broglie wave

length λdB = h√
2m(E−V )

= 2π
kn

= 2L
n is small compared to L .

• Notice that L here is the length scale over which the potential changes significantly. More
generally, if V = V (x) we say we are in the semi-classical regime if the de Broglie wave length
is small compared to the length scale over which the potential varies significantly.
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• This is the case, for example for a highly excited state of a particle in an SHO potential. As
long as we stay away from the classical turning points, the wave function oscillates rapidly and
its wavelength is small. Near the turning points, λdB diverges and the quantum effects have to
be treated more carefully.

• If the potential is varying slowly with x , we may still surmise that the wave function is of
the form Ae±ipx/~ but that p = h/λ is no longer the constant ~k , but varies slowly with x . In
other words, this suggests the ansatz ψ ∼ eiS(x)/~ where for a constant potential, S(x) = px =
±x
√

2m(E − V ). Before we work out the consequences of this ansatz, let us say more on what
we mean by the semi-classical regime and what it means for the potential to be slowly varying.

• If V = V (x), we require that the wavelength is small compared to the length scale over which
the potential changes by an amount of the order of the kinetic energy of the particle10. Indeed,
suppose the potential changes by p2/2m over a length L , then11

p2

2m
≈ δV ≈

∣∣∣∣dVdx
∣∣∣∣L ⇒ L ≈ p2

2m

∣∣∣∣dVdx
∣∣∣∣−1

(209)

Now

λ� L ⇒ 2mλ

p2

∣∣∣∣dVdx
∣∣∣∣� 1 or

∣∣∣∣2mhp3

dV

dx

∣∣∣∣� 1 or

∣∣∣∣dVdx
∣∣∣∣� √2m

h
|E − V (x)|

3
2 (210)

This is our condition for semi-classical behavior. It is a condition on the potential, that also
involves the energy and depends on x . It is easier to satisfy this condition for a fixed potential
and x , if we make E bigger: excited states behave more classically. It is easier to satisfy (for
fixed E ) where dV/dx is ‘small’. The criterion involves x , so even for fixed V (x) and E there
may be some locations where the behavior is semi-classical (E � V (x)), and other locations
where it is not semi-classical (E ≈ V (x)). Also, the ‘smaller’ ~ is, the easier it is to satisfy this
condition so in a sense ~→ 0 is the classical limit.

• Let us re-derive this condition by thinking in terms of the de Broglie wavelength. For a
non-constant V (x), the de Broglie wavelength changes with x . The concept of a wavelength is
useful if there are many oscillations with roughly the same wavelength. This is the case if the
change in wavelength (over a length of one wavelength) is small compared to the wavelength
itself. The change in wavelength over a distance δx is

δλ =
dλ

dx
δx. (211)

So putting δx = λ , the change in wavelength over a wavelength is δλ = dλ
dxλ . Thus we

require
∣∣ δλ
λ

∣∣ =
∣∣dλ
dx

∣∣ � 1. We can express this as a condition on the potential using λ =

10We need to decide what we mean by potential ‘changes appreciably’. The change in the potential has
dimensions of energy and the KE of the particle is a reasonable scale of energy to compare with. Indeed, near the
turning points of the SHO, the KE is small, so the length scale over which the potential changes by an amount
of the order of the KE is quite small. On the other hand, far away from the turning points the KE is large (for
a highly excited state), and the length scale over which the potential changes appreciably compared to the KE is
large. So by this definition, the SHO potential is slowly-varying away from the turning points for a highly excited
state, and not slowly-varying near the turning points. The corresponding statement about the smallness/largeness
of λdB is a consequence since λ = h/

√
2m(E − V (x)) is determined by E and V (x) .

11In approximating δV by its first derivative, we assume that L is not so large that this approximation breaks
down.
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h/
√

2m(E − V (x)). ∣∣∣∣δλλ
∣∣∣∣ =

∣∣∣∣mhp3

dV

dx

∣∣∣∣� 1 (212)

This is the same condition for semi-classicality as obtained earlier. So we can either say the
potential is slowly varying or the de Broglie wavelength is slowly varying.

9.2 Method of variation of constants for a slowly varying potential

• We motivated the ansatz ψ = AeiS(x)/~ in seeking a solution of the time-independent
Schrödinger equation in the semi-classical regime. Without further assumptions, this ansatz
(for complex S and real A), does not involve any approximation, it is merely a change of
dependent variable from ψ(x) to S(x), in terms of which the eigenvalue problem becomes

− ~2

2m
ψ′′ = (E − V )ψ ⇒ − i~

2m
S′′ +

1

2m
(S′)2 + V (x) = E. (213)

Now we exploit the slowly varying nature of V (x) to assume that S′(x) is slowly varying12 so
that we may ignore S′′(x) and approximate the SE by

1

2m

(
∂S

∂x

)2

+ V = E (214)

Notice that this approximation could also be obtained by letting ~ → 0 (assuming S(x) has
a finite limit as ~ → 0), more on this later. Moreover, the resulting equation is the time-
independent Hamilton-Jacobi equation of classical mechanics for the distinguished generating
function S of a canonical transformation S(x, P, t) from ‘old’ coordinates x, p to new coordinates
X,P in which the new hamiltonian K(X,P ) = H(x, p) + ∂S

∂t = 0 vanishes identically. Note
that the hamiltonian appearing in the Schrödinger equation is the old hamiltonian H , not K .
Moreover, even though K = 0, this does not mean that the quantum mechanical energy levels
are all zero, K is not a unitary transform of H , they do not have the same spectra. It is just that
in the new coordinates (Q = ∂S

∂P and P ), the classical dynamics is as simple as it could be since

X and P are both constants of motion Ẋ = ∂K
∂P = 0 and Ṗ = −∂K

∂X = 0. All the complications
of the original hamiltonian have been dumped in the transformation from old coordinates (x
and p = ∂S

∂x ) to new coordinates (X and P ). The generating function S(x) in the above H-J
equation in fact also depends on the new momenta P , though it is not apparent from (214).
This dependence enters through the dependence of S on the constants of integration resulting
from solving the time-dependent H-J partial differential equation. The constants of integration
can be taken as the constant new momenta.

• In our context, we write the H-J equation in the form S′(x)2 = p2 and integrate to get

S(x) = ±
∫ x

x0

p(x) dx′ where p(x) =
√

2m(E − V (x)). (215)

12For a constant potential S′(x) = ~k is a constant, so now we imagine that this earstwhile ‘constant’ varies
with x .
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Thus, our crude approximation for the wave function in the semi-classical regime is essentially
the exponential of an abbreviated action integral13

ψ(x) = Ae
i
~
∫ x
x0
p(x′) dx′

+Be
− i

~
∫ x
x0
p(x′) dx′

. (216)

• We will improve on this approximation shortly. But even this crude approximation leads
to some interesting consequences such as a simple case of the Bohr-Sommerfeld quantization
condition.

• Suppose a particle moves in the 1 dimensional potential V (x) which becomes infinite for x < 0
and x > L but is arbitrary for 0 ≤ x ≤ L . Then the approximate wave function satisfying the
boundary condition ψ(0) = 0 is

ψ(x) ≈ A sin

(
S(x)

~

)
where S(x) =

∫ x

0
p(x′) dx′. (217)

The boundary condition ψ(L) = 0 then becomes S(L) = nπ~ which is the Bohr quantization
condition ∮

p(x′) dx′ = 2

∫ L

0
p(x′) dx′ = nh. (218)

Use this condition to find a semi-classical approximation to the square-well energy levels.

• Let us continue with the theme of making constants vary. A simple way of improving on this
approximation is to suppose that both the amplitude and phase are slowly varying functions.
Let us put ψ(x) = A(x)eiS(x)/~ in the SE, where we now suppose that both A(x) and S(x) are
real. We get

− ~2

2m

(
A′′ +

i

~
(
2A′S′ +AS′′

)
− AS′2

~2

)
+ V (x)A(x) = EA(x). (219)

The real part gives us

− ~2

2m

(
A′′ − AS′2

~2

)
= (E − V (x))A(x) (220)

which reduces to the time-independent H-J equation, if we ignore the second derivative of A(x).
The solution is S = ±

∫ x
p(x′) dx′ as before. The imaginary part gives us the condition

2A′S′ + AS′′ = 0 which means (A2S′)′ = 0 or A(x) = ± C√
S′

= ± C√
p(x)

for some constant

C . The approximate wavefunction is

ψ(x) ≈ C1√
p(x)

e
i
~
∫ x p(x′) dx′ + C2√

p(x)
e−

i
~
∫ x p(x′) dx′ where p(x) =

√
2m (E − V (x)). (221)

This is already a better approximation. The contributing amplitudes are inversely proportional
to
√
p(x). So aside from interference effects, the particle is less likely to be found in a place

where its classical velocity is large, as we observed for a particle near the equilibrium point in
an SHO potential.

• In the next section, we indicate how to improve on this approximation by developing a
systematic expansion that incorporates effects of more rapid variation in the potential.

13By absorbing a phase and its conjugate into A and B , the limit of integration x0 may be set equal to the
left turning point of the classical trajectory.
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9.3 Semi-classical expansion in powers of ~

• To get the Hamilton-Jacobi equation of classical mechanics from the Schrödinger equation,
we let ~ → 0 after making the ansatz ψ = AeiS/~ . So we should expect classical behaviour to
emerge in the limit ~→ 0.

• To reinforce this idea, let us look at the gaussian wave packet for a free particle in this limit.
The probability density of a gaussian wave packet is

P (x, t) = |ψ(x, t)|2 =
1√

2πa(t)
e
−(x− potm )

2

2a(t)2 where a(t) = a

√
1 +

t2

τ2
and τ =

2ma2

~
(222)

τ is the characteristic time scale over which the wave packet broadens. The mean momentum of
this wave packet is 〈p〉 = po = ~k0 and the mean position is 〈x〉 = pot

m . We take the limit ~→ 0
holding po fixed (i.e. the limit of large wave number ko = po

~ →∞). As ~→ 0, τ →∞ and the
wave packet does not broaden out. The dispersive effects of wave mechanics die out as ~ → 0
and the object behaves like a classical particle of fixed size a . To model a classical point-like
particle, we could further let a→ 0 and get the probability density P (x, t) = δ (x− pot/m) as
expected of a free point-like particle moving at velocity po/m .

• The limit ~→ 0 is a very convenient way of approaching the classical limit. ~ is a dimensional
constant, so what we mean by ~→ 0 is that certain physical quantities with dimensions of action
are very large compared to ~ . In the above example of a free particle gaussian wave packet,
the relevant quantity with dimensions of action is 2ma2

t . So the classical limit is the one where
we consider times t much shorter than the time-scale τ for quantum mechanical dispersive
broadening of the wave packet.

• E.g. 3. For highly excited states of the harmonic oscillator, the quantity En
ω = ~(n + 1

2)
with dimensions of action is large compared to ~ . These states behave semi-classically in many
respects.

• E.g. L2 eigenstates of a rigid body with very large angular momentum quantum number
l � 1 behave semi-classically, the magnitude of their total angular momentum

√
~2l(l + l) is

the quantity with dimensions of action, that is large compared to ~ .

• Spin is somewhat different from angular momentum. A given rigid body or atom can be
in states of very different angular momentum quantum number l . So letting ~ → 0 and
simultaneously l→∞ while holding the classical quantity |~L| =

√
~2l(l + 1) fixed is a classical

limit. On the other hand, an electron is always a spin s = 1
2 particle, so for an electron, the

eigenvalue of S2 is always 3~2/4 which is not large compared to ~2 . So it does not make direct
sense to let the spin quantum number s of an electron take any value other than 1

2 , leave alone
let it go to infinity.

• However, the limit ~ → 0 is not a simple one. The wave function of a free particle ψ(x) =
Aeipx/~ does not have a good classical limit ~→ 0, holding the classically meaningful quantities
x, p fixed. Indeed, the wave function has an essential singularity as ~→ 0. However, −i~ logψ
does have a good limit as ~→ 0, it tends to the abbreviated action px for a trajectory between
positions 0 and x .

• In the case of the SHO, the stationary states are

ψn(x) =
(mω
π~

)1/4 1√
2nn!

Hn

(√
mω

~
x

)
e−

mωx2

2~ (223)
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Here too ψ(x) has an essential singularity at ~ = 0, but ~ logψ(x) has a finite limit −mωx
2

2 as
~→ 0.

• For a general potential, this suggests it isn’t a good idea to look for an expansion of ψ(x) in
powers of ~ around a ‘classical wave function’, since such a thing does not even exist for a free
particle. It is better to make the ansatz ψ = AeiS(x)/~ and try to expand S(x) in powers of
~ . Thus we will seek a solution of the time-independent SE in the form ψ = AeiS(x,~)/~ where
S(x) is a (possibly complex) function of x depending on ~ and A is a constant14. Then

ψ′(x) =
iS′

~
ψ(x), ψ′′(x) =

(
iS′′

~
− S′2

~2

)
ψ(x) (224)

and the SE becomes

− ~2

2m

(
iS′′

~
− S′2

~2

)
+ V (x) = E (225)

Now we suppose S(x) is expanded in a series in ~

S(x) = S0(x) + ~S1(x) + ~2S2(x) + . . . (226)

In effect, we are assuming that S(x) has a finite limit as ~→ 0. This is true for the free particle
as well as for the highly excited states of many problems we have solved (SHO, square well,
delta potential). In fact it is true even for low lying states of many of the problems we have
solved (like the SHO above). However, it is not always the case that S(x, ~) has a finite limit
as ~ → 0. Not all states are semi-classical. This is especially true for low lying states such as
the ground state of the δ potential well or the hydrogen atom, where

ψ0(x) =

√
mg

~
e−mg|x|/~

2
and ψ100(x) =

1√
πa3

e
− me2r

4πεo~2 where a =
4πεo~2

me2
. (227)

For both these ground states, ~ logψ does not have a finite limit as ~→ 0, though ~2 logψ has
a finite limit. In both these cases, we anticipate that the above semi-classical approximation
may not be accurate. On the other hand, the semi-classical expansion will be seen to be a good
approximation in situations where our criterion for the semi-classical regime (slowly varying
potential or de Broglie wavelength) is satisfied. In those situations, we may use solutions of the
classical HJ equation to obtain accurate semi-classical wave functions.

• Note that we are not claiming that the expansion of S(x, ~) in powers of ~ is convergent. This
is true for the free particle where S(x) = px . But for most potentials, even in the semi-classical
regime, the expansion S(x, ~) = So+S1~+S2~2 + · · · is divergent. Nevertheless, it does provide
an excellent asymptotic approximation in many cases.

• Equating coefficients of like powers of ~ , we get a sequence of differential equations for Sn .
At order ~0 we recover the time-independent H-J equation, which is the non-linear differential
equation

S′0(x)2

2m
+ V (x) = E (228)

with solution S0(x) = ±
∫ x
x0

√
2m(E − V (x′)) dx′ = ±

∫ x
x0
p(x′) dx′ . This is called the Eikonal

approximation or the classical approximation. S0 is called the Eikonal or (abbreviated) action
or Hamilton’s principal function.

14We were in effect beginning to do this when we previously made the ansatz ψ(x) = A(x)eiS(x)/~ =

e
i
~ (S(x)−i~ logA(x)) .
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• At order ~ we get a linear equation for S1 , into which we substitute the known S′0 = p(x):

S′1(x)S′0(x) =
i

2
S′′0 ⇒ S′1(x) =

i

2

S′′0
S′0

=
i

2
(logS′0)′ =

i

2
(log p(x))′ ⇒ S1 =

i

2
log p(x) + const.

Thus we find at this order of approximation

ψ(x) ≈ A1√
p(x)

e
i
~
∫ x
x0
p(x′) dx′

+
A2√
p(x)

e
− i

~
∫ x
x0
p(x′) dx′

. (229)

This matches our earlier result. But the present method is more systematic and allows us to
find further quantum corrections around the classical limit! What is more, this method can also
be applied to regions which the classical trajectory is forbidden from exploring (e.g. tunneling
through a barrier).

• Let us find a condition for the validity of the eikonal approximation. Recall that we found
upon substituting S = S0 + ~S1 + · · · and ψ = eiS/~ in the Schrodinger eigenvalue problem

(S′o)
2 + ~(2S′oS

′
1 − iS′′o ) +O(~2) = 2m(E − V (x)). (230)

Now for the Eikonal approximation to be good, the order of magnitude of the terms of order ~0

must be large compared to that of the terms of order ~ . |(So)′2| can be taken as the order of
magnitude of the constant terms in ~ and |i~S′′o | the order of magnitude of the terms of linear
in ~ . So the condition is

|(So)′2| � |~S′′o | or

∣∣∣∣~S′′oS′2o

∣∣∣∣� 1 (231)

This is the same as our earlier criterion for the semi-classical regime, that the potential or de
Broglie wavelength be slowly varying

∣∣dλ
dx

∣∣� 1:

λ(x) =
h

p(x)
=

h

S′0
⇒

∣∣∣∣dλdx
∣∣∣∣ =

∣∣∣∣hS′′0S′20

∣∣∣∣� 1 (232)

9.4 Estimation of Tunneling amplitude

• Previously, we tried to use solutions of the classical Hamilton-Jacobi equation to approximately
infer the quantum mechanical wave function. This program was applicable in the classically
allowed region E > V (x). On the other hand, the wave function can be non-zero even in
classically forbidden regions (E < V (x)) as in the case of tunneling through a barrier. In
such classically forbidden regions, we may still obtain a semiclassical approximation to the
wavefunction using the expansion in powers of ~ developed in the last section. Even if E < V ,

the condition for the semi-classical regime |dλdx | � 1 or
∣∣dV
dx

∣∣ � √
2m
h |E − V (x)|

3
2 can still be

satisfied, especially if E � V or if dV
dx is small.

• For simplicity let us consider scattering against a barrier in one dimension that extends
between x = −L and L , such as a rectangular barrier with an undulating top V (x) > 0 for
|x| ≤ L and V (x) = 0 for |x| > L . Classically if the energy E > Vmax , the particle ‘rolls over’
the barrier, but is reflected otherwise. Quantum mechanically, even if E < Vmax there can be
a non-zero transmission probability due to tunneling. We wish to get a semi-classical estimate
for the transmission coefficient in cases where it is small. (After all, it is zero classically.)
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• Let us consider scattering from the left with incident energy E = ~2k2/2m < Vmax . Suppose
the repulsive potential is such that there are just two classical turning points (xL = −L on the
left of the barrier and xR = L on the right) between which V (x) > E , as is the case for a
rectangular barrier.

• In the classically allowed regions to the left (ψ(x) = Aeikx+Be−ikx ) and right (ψ(x) = Feikx )
of the barrier, the WKB approximation gives the exact free particle wave functions since the
potential is a constant. The transmission coefficient we wish to find is |F/A|2 . Instead of trying
to solve the SE in the classically disallowed region, we use the WKB approximation

ψ(x) ≈ C ′√
p(x)

e
i
~
∫ x
xL

p(x′)dx′
+

D′√
p(x)

e
− i

~
∫ x
xL

p(x′)dx′
(233)

Here p(x) =
√
E − V (x) is purely imaginary and we may absorb some phases into C ′ and D′

and write

ψ(x) ≈ C√
|p(x)|

e
− 1

~
∫ x
xL

√
2m(V (x)−E)dx′

+
D√
|p(x)|

e
1
~
∫ x
xL

√
2m(V (x)−E)dx′

. (234)

• Since we assumed the tunneling probability is small, the barrier must be high (compared to E )
or wide (compared to the de Broglie wavelength of the incident wave). In this case, the coefficient
D of the exponentially growing wavefunction must be very small and we ignore it (D → 0 as
the barrier width L → ∞). This can be motivated by imposing continuity of ψ(x) and its
first derivative at the classical turning points xL, xR . The attenuation of the wavefunction is
approximately

|F |
|A|
≈ e−

1
~
∫ xR
xL

√
2m(V (x′)−E)dx′ ≡ e−γ (235)

So the WKB estimate for the transmission probability is

T ≈ e−2γ = e
− 2

~
∫ xR
xL

√
2m(V (x′)−E)dx′

(236)

We see that as ~→ 0, T → 0 exponentially fast and classically the particle is not transmitted.

• Tunneling was used by Gamow and others to explain the decay of a nucleus to a daughter
nucleus by emission of an α(nnpp) particle. The strong nuclear forces create something like
an attractive finite spherical potential well inside the nucleus for the alpha particle. Outside
the nucleus, the alpha particle is repelled by the electrostatic force with the positively charged
daughter nucleus. But in order to escape, the alpha particle has to tunnel through a potential
barrier. See the discussion in Griffiths or elsewhere.

10 Scattering

10.1 Scattering matrix in one dimension

• Suppose the potential from which we scatter is localized: V (x) → 0 sufficiently fast as
x→ ±∞ . We seek scattering eigenstates of the Schrodinger operator

− ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x) =

~2k2

2m
ψ(x) (237)
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The asymptotic behavior of the wave function must be of the form

ψ(x)→

{
Aeikx +Be−ikx as x→ −∞
Ceikx +De−ikx as x→ +∞

(238)

A,D represent the incoming amplitudes from ±∞ while B,C are the amplitudes of scattered
plane waves to ±∞ . An aim of scattering theory is to predict the ‘scattering amplitudes’
B(k), C(k) given the incoming amplitudes A and D 15, the potential and incoming wave number
k , by solving the Schrödinger eigenvalue problem.

• What is more, on account of the linearity of the equation, these quantities must be linearly
related. Let S be the 2× 2 matrix such that(

B
C

)
= S(k)

(
A
D

)
(239)

S is called the scattering matrix. It takes the amplitudes of the incoming plane waves and
transforms them into the outgoing plane waves. The matrix elements of S depend on k , the
wave number of the incoming waves as well as on the potential. Moreover, S is a unitary matrix,
as we will see shortly.

• To find the S =

(
S11 S12

S21 S22

)
matrix, we need to find its columns (the images of the basis

vectors)

S

(
1
0

)
=

(
S11

S21

)
, and S

(
0
1

)
=

(
S12

S22

)
. (240)

But these we recognize are the scattering problems considered before A = 1, D = 0 is scattering
of a unit amplitude wave from the far left. So S11 = B/A = r and S21 = C/A = t are the
reflected and transmitted amplitudes for this situation. A = 0, D = 1 is the scattering of a
unit amplitude wave from the far right. So S12 and S22 are the transmitted and reflected
amplitudes for this situation. Thus, if we know the reflected and transmitted amplitudes for the
unit scattering problems from the left and right, we can synthesize the S-matrix. Moreover, if
V (x) is even, the transmitted amplitude for unit scattering from the left must be the same as

the transmitted amplitude for unit scattering from the right and S =

(
r t
t r

)
.

• Unitarity of S is the statement that 〈Su, Sv〉 = 〈u, v〉 for any pair of vectors u and v . In more

detail, u =

(
A
D

)
and v =

(
A′

D′

)
can be any two vectors representing the incoming amplitudes.

Then unitarity SS† = S†S = I is the statement that inner products (lengths and angles) are
preserved:〈(

A
D

)
,

(
A′

D′

)〉
=

〈
S

(
A
D

)
, S

(
A′

D′

)〉
or A∗A′ +D∗D′ = B∗B′ + C∗C ′ (241)

To get an idea of why this is true, let us consider first the condition of preservation of norms
〈u, u〉 = 〈Su, Su〉 which is the condition |A|2 + |D|2 = |B|2 + |C|2 . We recognize this as the
conservation of probability current density as shown below.

15A,D can be regarded as the two constants of integration of the second order ODE.
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• The probability current density (which is proportional to the Wronskian of ψ∗ and ψ )

j(x, t) =
~

2mi
(ψ∗∂xψ − ∂xψ∗ψ) (242)

is shown to be independent of x , ∂j
∂x = 0 by use of the Schrödinger eigenvalue equation. For an

eigenstate, ρ = |ψ|2 is time-independent. So the conservation law ρt + jx = 0 becomes jx = 0.
So

j(−∞) =
~k
m

(
|A|2 − |B|2

)
= j(∞) =

~k
m

(
|C|2 − |D|2

)
⇒ |A|2 + |D|2 = |B|2 + |C|2. (243)

This shows the diagonal elements of SS† are 1 (in any basis). See the hw problem for the rest.

• More generally, to show that A∗A′+D∗D′ = B∗B′+C∗C ′ , consider two scattering eigenstates
ψ1, ψ2 of the Schrödinger eigenvalue problem in a real potential with the same energy E and
asymptotics

ψ1(x)→

{
Aeikx +Be−ikx as x→ −∞
Ceikx +De−ikx as x→ +∞

, ψ2(x)→

{
A′eikx +B′e−ikx as x→ −∞
C ′eikx +D′e−ikx as x→ +∞.

(244)
Since V (x) is real, ψ∗1 is also an eigenstate with energy E . We construct the Wronskian

W (ψ∗1, ψ2)(x) = ψ∗1(x)ψ′2(x)− ψ∗′1 (x)ψ2(x). (245)

We check that the Wronskian is a constant W ′(x) = 0 and therefore equate its asymptotic
values

W (−∞) = 2ik(A∗A′ −B∗B′) = W (∞) = 2ik(C∗C ′ −D∗D′) (246)

and conclude that A∗A′ +D∗D′ = B∗B′ + C∗C ′ . In other words, S is unitary.

• Let us look at an example, scattering against a delta-potential well V (x) = −gδ(x). In this
case, for scattering of a unit amplitude plane wave from the left we found that the reflected
amplitude is r = B/A = iγ

1−iγ and the transmitted amplitude is t = 1
1−iγ where γ = mg

~2k
. Thus

we find the S-matrix for scattering against a delta well

S =
1

1− iγ

(
iγ 1
1 iγ

)
. (247)

Check that S is unitary. • The S-matrix contains all the information about the scattering
problem. It allows us to predict the amplitudes of the outgoing waves given any configuration
of incoming waves. In particular, we can find the reflection and transmission coefficients from
S , T = |t|2 = |S12|2 and R = |r|2 = |S11|2 .

• Moreover, the S-matrix also encodes information about the bound states (‘waves’ that decay
exponentially at infinity). In general, the bound state energies are given by E = ~2k2/2m for
each pole k of the S-matrix that lies on the positive imaginary k -axis. In the above example,
it has a pole in the upper half of the complex k plane at k = img

~2 , which corresponds to the

energy of the single bound state E = ~2k2

2m = −mg2

2~2 .

• The scattering matrix is unitary, so its eigenvalues are complex numbers of unit magnitude,

though they need not be complex conjugates of eachother. For an even potential S =

(
r t
t r

)
is a
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complex symmetric matrix. Unitarity is the pair of conditions |r|2 + |t|2 = 1 and rt∗+ tr∗ = 0.

The eigenvectors of S are

(
1
1

)
and

(
1
−1

)
with eigenvalues r + t and r − t respectively.

Unitarity ensures that r + t = eiδ1 and r − t = eiδ2 are complex numbers of unit magnitude.
These eigenvectors correspond to incoming amplitudes that scatter to outgoing amplitudes which
differ from the incoming ones by a multiplicative phase. δ1 and δ2 can be called phase shifts
since they encode the shifts in the phases of the incoming amplitudes, due to scattering.

S

(
1
1

)
= (r + t)

(
1
1

)
= eiδ1

(
1
1

)
and S

(
1
−1

)
= (r − t)

(
1
−1

)
= eiδ2

(
1
−1

)
(248)

Asymptotic amplitudes which are eigenvectors of the S-matrix scatter in particularly simple

ways with just a change in the asymptotic phase. E.g. the eigenvector

(
1
1

)
corresponds to the

situation where plane waves of equal amplitude are incident from both sides of the scatterer.
However, the asymptotic amplitudes which are eigenstates of the S-matrix are usually not the
most convenient incident amplitudes from an experimental viewpoint, where we send a beam
from one side. The situation is worse in three dimensions, where again, we send in plane waves
from one side, though the eigenstates of the S-matrix correspond to spherical waves imploding
on the target!

10.2 Scattering in three dimensions: differential scattering cross section

• We are interested in scattering by a (spherically symmetric) potential V (r) which vanishes
sufficiently fast as r →∞ . This is two-body scattering after passage to the relative coordinate
r . Scattering eigenstates must satisfy the Schrödinger equation

− ~2

2m
∇2ψ(~r) + V (r)ψ(~r) = Eψ(~r). (249)

Interesting examples of scattering potentials are (1) Coulomb V (r) = α
r , as in Rutherford

scattering of positively charged α-particles by a positively charged nucleus; (2) Screened coulomb

V (r) = αe−µr

r which is usually relevant when the charge of the scattering center is screened by
opposite nearby charges, as in a medium; and (3) hard sphere V (r) = V0θ(r < a) as when atoms
collide. In most of these situations, we only have access to the particles/waves that are sent in
and come out, far from the scattering center. The aim of scattering is to predict the angular
distribution of the scattered particles (as r →∞), given how the particles are sent in (and with
what energy). For simplicity, the incoming particles are usually directed at the scattering center
in a single collimated beam of fixed energy.

• For scattering in 3d, the S-matrix is infinite dimensional. Since V ≈ 0 for large r , the incoming
and out-going waves are asymptotically free particle energy eigenstates. We can choose any
convenient basis for them. E.g. we could send in plane waves with any wave vector ~kin = kn̂
pointing radially inward, so the incoming states are labeled by inward directed unit vectors.
For outgoing states we could again use plane waves, now with outward directed wave vectors
~kout = kn̂′ . The magnitude of the wave vector is the same for elastic scattering. Then the S-
matrix relates the incoming amplitudes to the outgoing amplitudes, and in particular, S(n̂′, n̂)
gives the amplitude for an outgoing wave vector pointing along n̂′ if the incoming wave vector
was pointing along n̂ . Unlike the situation in 1d, where the S-matrix was 2×2, here the S-matrix
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has a continuously infinite number of rows and columns (each labeled by points on a sphere).
We will not pursue the problem of determining the S-matrix directly. Instead we will repeat
what we did in 1d, i.e., consider the standard scattering problem of predicting the outgoing
amplitudes given that there is a plane wave incident on the target from the left. But in essence
this determines the S-matrix, since the columns of the S-matrix are the outgoing amplitudes in
the plane wave basis for each possible radial direction of incoming plane wave, just as we found
in one dimension.

• The free particles in the incoming collimated beam are modeled by plane waves with wave
vector ~k . For a spherically symmetric V (r) we can take the incoming wave vector ~k = kẑ to
be along ẑ without loss of generality. If A is a constant with dimensions of L−3/2 ,

ψin(~r) = Aei
~k·~r = Aeikz = Aeikr cos θ. (250)

The scattered wave function asymptotically for large r is again that of a free particle. However,
the direction of linear momentum is not conserved (translation invariance is broken by the
presence of a scattering center located around r = 0). The scattered wave is not an eigenstate
of linear momentum. In fact, we should expect a scattered wave that is roughly a spherical wave,
but whose amplitude is more in the forward direction ẑ (θ ≈ 0) and varies as θ is increased up
to π (back-scattered direction −ẑ ).

• To find the general form the scattered wave function ψsc can take, we must solve (for large
r ) the free particle SE for energy eigenvalue E = ~2k2/2m where k is the magnitude of the
incoming wave vector. Let us recall how this is done(

p2
r

2m
+

L2

2mr2

)
ψ =

~2k2

2m
ψ where pr = −i~1

r
∂rr ⇒ p2

rψ = −~2 1

r

∂2rψ

∂r2
.

We proceed by separation of variables and seek a solution in the product form ψ(r, θ, φ) =
R(r)Y (θ, φ). Separation of variables leads to the pair of equations

L2Y = l(l + 1)~2Y and − ~2

2m

1

r
(rR)′′ +

~2l(l + 1)

2mr2
R =

~2k2

2m
R. (251)

We already know the eigenfunctions of L2 are Ylm(θ, φ). In terms of u = rR , the radial equation
becomes

− ~2

2m
u′′ +

(
~2l(l + 1)

2mr2
− ~2k2

2m

)
u(r) = 0. (252)

For very large r 16, the angular momentum term is subdominant compared to the energy eigen-
value term and we get −u′′ = k2u , so u(r) = aeirk + be−ikr or

Rkl(r) =
aeikr

r
+
be−ikr

r
, as r →∞ (253)

So to leading order in this crude approximation, as r → ∞ , the radial wave function is inde-
pendent of l and consists of a superposition of an outgoing and incoming spherical wave. Since

16 r large compared to the incoming wavelength 2π/k , more precisely, kr � l(l + 1). Actually, this is an over
simplification and is strictly valid only for l = 0. Even for large r , R(r) depends on l in a manner that we will
derive soon.
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the scattered wave must be outgoing, b = 0. The general solution of the free particle eigenvalue
problem can be written as a linear combination of separable eigenstates with the same energy

ψ(r, θ, φ) =
∑
lm

clmRkl(r)Ylm(θ, φ) (254)

As r →∞ Rkl(r) is independent of l , so the scattered wave can be written as

ψsc(r, θ, φ) = a
eikr

r

∑
lm

clmYlm(θ, φ) (255)

But a
∑

lm clmYlm(θ, φ) just represents an arbitrary function of θ and φ which we denote
Af(θ, φ). Thus for large r , the scattered wave may be written as

ψsc(~r) = A
eikr

r
f(θ, φ) or ψ(~r) = Aeikr cos θ +A

eikr

r
f(θ, φ). (256)

This asymptotic form of the wavefunction is called the scattering boundary condition or Som-
merfeld radiation boundary condition. It is a boundary condition in the sense that it says there
is no incoming wave from infinity (except for the incident plane wave). In fact it can be regarded
as a definition of f(θ, φ). f(θ, φ) is called the scattering amplitude; it has dimensions of length
and we will discuss its physical meaning shortly.

• Before doing so let us improve the above argument by not throwing away the centrifugal
repulsion term involving angular momentum. Let us work out the simultaneous eigenstates of
energy and angular momentum for the free particle. These are Rl(r)Ylm(θ, φ). In terms of
u = rR and ρ = kr , the radial equation becomes the spherical Bessel equation

− d2ul(ρ)

dρ2
+
l(l + 1)

ρ2
ul = ul (257)

The solutions are expressed in terms of the spherical Bessel and spherical Neumann functions

Rl(ρ) = aljl(ρ) + blnl(ρ) (258)

For l = 0, j0(ρ) = sin ρ
ρ and n0(ρ) = − cos ρ

ρ . By a method of Infeld, jl, nl for l = 1, 2, 3, . . .
can be obtained from j0, n0 by applying a raising operator, which raises the value of l without
changing the energy ~2k2/2m . This is explored in the problem set. While jl are finite at ρ = 0,
nl diverge at ρ = 0. To see this we return to the radial equation

− ~2

2m
u′′(r) +

l(l + 1)

2mr2
u =

~2k2

2m
u(r) (259)

For small r the energy eigenvalue term may be ignored compared to the centrifugal repulsion
to get

− u′′ + l(l + 1)

r2
u = 0 for r → 0. (260)

We put the guess u ∼ rα in this equation and get a quadratic equation for α

α(α− 1) = l(l + 1) (261)
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with solutions α = l + 1 and α = −l . Thus for small r the two solutions behave like ul ∝ rl+1

and ul ∝ r−l , or in terms of R = u/r , the two solutions behave like jl ∝ ρl and nl ∝ ρ−l−1 .
Including the proportionality constants,

jl(ρ)→ ρl

(2l + 1)!!
=

2l l! ρl

(2l + 1)!
and nl(ρ)→ (2l − 1)!!

ρl+1
=

(2l)!

2l l! ρl+1
as ρ→ 0. (262)

Here (2l+1)!! = (2l+1)(2l−1)(2l−3) · · · 5·3·1. However both nl and jl contain radially ingoing
and outgoing parts and both are polynomials in sin ρ , cos ρ and 1

ρ . On the other hand, the

linear combinations (spherical Hankel functions of first and second kinds) h±l (ρ) = jl(ρ)± inl(ρ)
are purely outgoing and purely incoming for all ρ . For example, as ρ→∞

h+
l (ρ)→ ρ−1eiρ(−i)l+1 and h−l (ρ)→ ρ−1e−iρil+1. (263)

Similarly, the asymptotic behavior of the spherical Bessel and Neumann functions are

jl(ρ)→ ρ−1 sin(ρ− lπ/2) and nl(ρ)→ −ρ−1 cos(ρ− lπ/2) (264)

So we can write an energy E = ~2k2/2m eigenstate of the free particle hamiltonian as a linear
combination of separable angular momentum eigenstates with the same energy

ψ(r, θ, φ) =
∑
lm

d′lmRl(kr)Ylm(θ, φ) (265)

In particular, the scattered wave must admit such an expansion far from the scattering center
where V ≈ 0. However, the scattering b.c. says that there must not be any incoming spherical
wave, so the expansion can only involve the outgoing spherical Hankel functions

ψsc(r, θ, φ) =
∑
lm

dlmh
+
l (kr)Ylm(θ, φ) (266)

For large kr we use the asymptotic behavior of the spherical Hankel function h+
l → (−i)l+1eiρ/ρ

to get

ψsc → a
eikr

r

∑
lm

clmYlm(θ, φ), where aclm =
(−i)l+1dlm

k
. (267)

We conclude that the asymptotic behavior of the scattered wave is a spherical wave modulated
by a largely arbitrary function f(θ, φ) called the scattering amplitude

ψsc(r, θ, φ) = A
eikr

r
f(θ, φ) (268)

To understand the physical meaning of f , we compute the probability current density (for
large r ) of the incoming and scattered waves (the two don’t interfere since the incoming beam
is assumed to be collimated in a pipe along the z-axis17. More precisely, for any fixed angle
θ 6= 0, π , we can always choose r sufficiently large so that the point r, θ, φ is located outside the
beam pipe both in the back and forward scattering directions)

~j =
~

2mi
(ψ∗∇ψ −∇ψ∗ψ) (269)

17Though the pipe is narrow, it is wide enough so that the largest impact parameters of the incoming particles
usually exceeds the range of the potential V (r) , which is usually very localized.
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If d~S is an infinitesimal surface area vector, then ~j · d~S is the current across dS and can be
interpreted as the number of particles crossing infinitesimal area d~S per unit time.

• The probability current density of the incident wave Aeikz is ~jinc = ~k|A|2
m ẑ . The unit cross-

sectional area vector in the direction of the incident beam is ẑ , so ~jinc · ẑ = |A|2~k/m is
interpreted as the number of particles crossing unit cross-sectional area of the incoming beam
per unit time.

• For the scattered wave ψsc(r) = Af(θ, φ) e
ikr

r , one first checks that for large r ,

∇ψ → Af(θ, φ)
∂

∂r

(
eikr

r

)
r̂ +O

(
1

r2

)
using ∇ = r̂

∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ
(270)

Then one finds

~jsc →
|A|2~k|f |2

m

r̂

r2
as r →∞. (271)

Let us find the scattered probability flux across an infinitesimal area element d~S = r̂r2dΩ
pointing radially outward. Here dΩ = sin θ dθ dφ . The scattered probability density current
crossing d~S per unit time (loosely, the number of scattered particles crossing d~S per unit time)
is

~jsc · d~S =
~k|A|2|f |2

m
dΩ (272)

The scattering amplitude f is not a probability amplitude, |f |2 does not integrate to 1 in
general, see below. Note that the scattered flux is zero if f = 0, which is the case if V = 0.
This does not mean that particle number is not conserved in the absence of a potential. In the
absence of a potential, there is no scattered wave at all, the incoming plane wave just passes
through and all the particles come out with θ = 0 in the form of a plane wave.

• We see that the scattered flux is proportional to the incident flux ~k|A|2
m We define the ratio

to be the cross-section for scattering into the angular region dΩ in the vicinity of Ω = (θ, φ)

dσ(Ω) =
~jsc · d~S
~jinc · ẑ

= |f |2 dΩ (273)

dσ is proportional to the angular element dΩ, so we define the ratio to be the so-called differential
scattering cross section

dσ

dΩ
= |f(θ, φ)|2 (274)

dσ
dΩdΩ = |f |2dΩ is the number of particles scattered into the angular region dΩ per unit time
per unit incident flux. So f(θ, φ) is the amplitude for scattering in the angular direction defined
by θ, φ . The differential scattering cross section dσ

dΩ = |f |2 has dimensions of an area.

• Classically, dσ/dΩ is the cross sectional area of the incident beam through which incoming
particles must pass in order to be scattered into the angular region dΩ.

• The total scattering cross-section is defined as the integral of the differential scattering cross
section over all directions

σ =

∫
dσ

dΩ
dΩ =

∫
|f(θ, φ)|2 sin θ dθ dφ. (275)
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σ has dimensions of area. The total cross section σ can be thought of as the total effective
cross-sectional area (normal to the incident beam) presented by the scattering potential. If
V = 0, the scattering x-section vanishes, there are no scattered particles, yet particle number is
conserved since there is an undeflected incoming beam that passes through.

• An aim of scattering theory is to determine the differential scattering cross section, given the
potential V . This is called the direct scattering problem. This is the problem we will address.
For this, it suffices to find the scattering amplitude f(θ, φ), which will depend on the potential
V , energy of the incoming waves, m and ~ . In fact, for a spherically symmetric potential, we
have cylindrical symmetry about the z -axis of the incoming beam, so f(θ, φ) = f(θ) must be
independent of φ .

• There is another interesting problem, the inverse scattering problem, whose aim is to recon-
struct the potential given the scattering data (i.e., the differential scattering cross section or
scattering amplitudes). This is a much harder problem, but is of great practical importance in
fields such as tomography (medical imaging CAT, PET scans, seismic imaging, oil exploration
etc.)

10.3 Partial wave expansion

• As mentioned, direction of linear momentum is not conserved in the scattering process, but
angular momentum is conserved for a spherically symmetric potential. This suggests we can de-
compose the scattering problem into different angular momentum sectors labeled by l . Roughly,
the component parts of the wave function corresponding to different values of angular momentum
quantum number l are the ‘partial waves’. The overall strategy is simple: solve the Schrödinger
eigenvalue problem in the potential V (r) with the above scattering boundary condition and
determine the scattering amplitude f(θ). The partial wave expansion is an approach to find
f(θ) as a sum over over partial amplitudes of increasing l . Truncating the partial wave expan-
sion after the first few partial waves provides a good approximation especially for low energy
scattering, i.e. where the wavelength 2π/k of the incoming beam is large compared to the range
of the scattering potential a : ka� 1.

10.3.1 Partial wave amplitudes

• For a spherically symmetric potential f(θ, φ) = f(θ), so we may expand the scattering
amplitude

f(θ) =
∑
l

(2l + 1) al Pl(cos θ) (276)

in spherical harmonics with m = 0: Yl0(θ) = 1√
4π

√
2l + 1Pl(cos θ). The factor (2l + 1) is

conventional and for later convenience. So to find the scattering amplitude, it suffices to find
the (generally complex) partial wave amplitudes al . al have dimensions of length. In many
scattering problems, a good approximate cross section is got by retaining just the first few al .
The differential cross section is

dσ

dΩ
= |f(θ)|2 =

∞∑
l,l′=0

a∗l al′(2l + 1)(2l′ + 1)P ∗l (cos θ)Pl′(cos θ). (277)
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The total scattering cross section is simpler due to orthogonality of Legendre polynomials∫ 1

−1
Pl(x)Pl′(x)dx =

2

2l + 1
δll′ . (278)

Thus the partial wave expansion for the total cross section is

σ =
∑
ll′

a∗l al′(2l+ 1)(2l′ + 1)

∫ 2π

0
dφ

∫ π

0
Pl(cos θ)Pl′(cos θ) sin θ dθ = 4π

∞∑
l=0

(2l+ 1)|al|2. (279)

Note that we have merely chosen to parametrize the angular distribution of scattered amplitudes
f(θ, φ) as a sum of partial wave amplitudes al of definite angular momentum. The problem of
direct scattering is to find al . We will do this by solving the SE in the presence of the potential
and then read off the al by considering the asymptotic behavior of the wave function.

10.3.2 Phase shifts

• In fact, it is physically revealing and more economical to express these partial wave amplitudes
al , in terms of certain scattering phase shifts δl given by18

al =
e2iδl − 1

2ik
=
eiδl sin δl

k
(280)

This is similar to the situation in 1d where we could express the (complex) scattered amplitudes
(B,C) for eigenstates of the S-matrix in terms of phase shifted incoming amplitudes (A,D).
Moreover these phases eiδ1,2 were the eigenvalues of the S-matrix. In 3d, the eigenstates of the
S-matrix are the spherical harmonics and we have an infinite number of phase shifts δl labelled
by angular momentum quantum number l . The eigenvalues of the S-matrix are the phases e2iδl .
To extract the scattering phase shifts, we first need to know the phases of the wave function in
the absence of scattering, i.e., the asymptotic phases of the incoming plane wave

• However, the incoming plane wave Aeikz is not a state of definite angular momentum. Nev-
ertheless, it is a free particle eigenstate. Moreover, the angular momentum (L2 ) eigenstates
Rkl(r)Ylm(θ, φ) of the free particle form a complete set and we should be able to expand eikr cos θ

as a linear combination of them. Since eikr cos θ is independent of φ , we only need the m = 0
spherical harmonics, the Legendre polynomials Pl(cos θ) and since eikr cos θ is finite at r = 0,
we don’t need the spherical Neumann functions nl(kr). Thus for some coefficients cl we must
have

eikr cos θ =

∞∑
l=0

cl jl(kr) Pl(cos θ). (281)

Multiplying by Pl′(cos θ) and integrating with respect to cos θ using the orthogonality of Leg-
endre polynomials, it turns out with some more work, that cl = il(2l + 1) (see problem set).
Thus we expressed the incoming plane wave as a linear combination of spherical waves of various
angular momenta

eikr cos θ =

∞∑
l=0

il(2l + 1) jl(kr) Pl(cos θ). (282)

18It is not clear at present why the complex number al can be expressed with modulus and phase related
in this particular manner. This form will be shown to be a consequence of probability and angular momentum
conservation.
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The point of this expansion is that in a spherically symmetric potential, angular momentum
is conserved, so spherical waves of definite angular momentum scatter independently and in a
simple manner.

• Let us look at the behavior of these component spherical waves for large r . Using the
asymptotic behavior jl(kr) ∼ 1

kr sin
(
kr − lπ

2

)
, we get for large kr ,19

eikr cos θ →
∞∑
l=0

il(2l + 1)Pl(cos θ)

kr
sin

(
kr − lπ

2

)
=
∑
l

(2l + 1)Pl(cos θ)

2ikr

[
eikr − (−1)le−ikr

]
.

(283)
So the incident plane wave is a superposition of imploding and exploding spherical waves of
all angular momenta l , with the specific phases given above. Notice that the coefficients of the
imploding and exploding spherical wave have the same absolute magnitude and only differ by the
phase −(−1)l . As is explained below, this feature is a consequence of conservation of probability.
If the magnitudes of the coefficients were different there would be a net accumulation/deficit of
probability at r = 0 which is not the case for a plane wave that is just ‘passing through’.

• If V = 0, this plane wave would not be modified and is the complete solution of the Schrödinger
eigenvalue problem. Comparing Aeikz with the scattering b.c. the scattering amplitude f = 0
if V = 0.

• In the presence of a spherically symmetric potential, the spherical waves for different values of
l scatter independently due to conservation of angular momentum. For example, if the incoming
wave only had l = 0, the outgoing wave would also be an S-wave.

• Summarizing, we have merely re-written the scattering boundary condition as a sum of partial
waves of definite angular momentum. The scattering b.c. is the statement that the scattering
eigenstate wave function for large r must be of the form

ψ(~r)→ A

[
eikz + f(θ)

eikr

r

]
= A

∑
l

(2l + 1)Pl(cos θ)

[
eikr − (−1)le−ikr

2ikr
+
ale

ikr

r

]
for large r.

(284)

• Now we introduce the concept of phase shifts, by thinking about the scattering eigenstate
(total wave function, incident plus scattered) in a different way. Any scattering eigenstate for
large r must in particular be a free particle eigenstate. For a spherically symmetric potential it
can be written as a linear combination of spherical Hankel functions times Legendre polynomials
(assuming it is independent of φ , which is the case of interest)

ψ(r, θ) = A
∑
l

(2l + 1)Pl(cos θ)
[
Ãlh

+
l (kr) + B̃lh

−
l (kr)

]
(285)

For large kr , we use the asymptotic forms h±l → ρ−1eiρ(∓i)l+1 to write this as

ψ(r, θ)→ A
∑
l

(2l + 1)Pl(cos θ)

[
Al
eikr

r
+Bl

e−ikr

r

]
where Al = (−i)l+1 Ãl

k
, Bl = il+1 B̃l

k

(286)

19Use e±ilπ/2 = (±i)l . We could also work with the spherical Hankel functions h±l (ρ) = jl(ρ) ± inl(ρ) which
have the virtue of being purely outgoing and incoming spherical waves. For large ρ , h±l (ρ)→ ρ−1e±iρ(∓i)l+1 .
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Al and Bl are some coefficients which we now fix. A is the same old constant with dimensions
of L−3/2 . The ingoing spherical wave for each l (at large r ) is unaffected by the potential. So
this fixes Bl to be the coefficient of the imploding wave in the expansion of eikz above.

Bl =
−(−1)l

2ik
(287)

What can the coefficients Al of the outgoing spherical wave be? Al can receive two contributions:
(1) from the outgoing spherical wave in the incoming plane wave (283) & (2) from the scattered
wave ψsc . We will fix Al by comparison with the scattering boundary condition. But before
that we note that it must have the same absolute magnitude as Bl .

• For a real potential, the probability current density j = ~
2mi(ψ

∗∇ψ−∇ψ∗ψ) for an eigenstate

of the Schrödinger operator is divergence-free ∇·~j = 0 since ∂ρ
∂t = 0. In other words,

∫
j ·d~s = 0

over any closed surface. In particular,
∫
~j · d~s = 0 for a spherical surface at r = ∞ . For the

above ψ , as r →∞

~j → ~k|A|2r̂
mr2

∑
ll′

(2l + 1)(2l′ + 1)Pl(cos θ)Pl′(cos θ) [A∗lAl′ −B∗l Bl′ ] (288)

Using the spherical area element d~s = r̂r2 sin θ dθ dφ we get∫
~j · d~s =

4π~k|A|2

m

∑
l

(2l + 1)
[
|Al|2 − |Bl|2

]
= 0. (289)

Conservation of probability implies
∑

l(2l + 1)
(
|Al|2 − |Bl|2

)
= 0. Conservation of angular

momentum means there cannot be leakage of probability current between distinct angular mo-
mentum sectors. Thus, conservation of probability plus conservation of angular momentum
implies that |Al| = |Bl| for each l . Thus even in the presence of a potential, the amplitude of
the outgoing spherical wave Al can differ from the amplitude of the ingoing spherical wave Bl ,
only by a multiplicative phase. By convention,

Al =
e2iδl

2ik
while Bl =

−(−1)l

2ik
. (290)

δl is called the lth partial wave phase shift, it is real and defined modulo π . In other words,
the asymptotic solution of the Schrödinger eigenvalue problem must be of the form

ψ(r, θ)→ A
∑
l

(2l + 1)Pl(cos θ)

2ikr

[
e2iδleikr − (−1)le−ikr

]
. (291)

Note that this is the total wave function. In particular, the coefficient e2iδl of the exploding
wave includes contributions both from ψinc and ψsc , but the coefficient of the imploding wave
arises entirely from ψinc .

• The phases of the outgoing partial waves in the total wave function have been shifted by 2iδl
compared to the un-scattered outgoing waves in eikz . It is sometimes convenient to write this
as

ψ(r, θ)→ A
∞∑
l=0

il(2l + 1)Pl(cos θ)

kr
eiδl sin

(
kr − lπ

2
+ δl

)
. (292)
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Comparing with the expansion of eikz =
∑

l i
l(2l + 1)Pljl where jl → sin(kr−lπ/2)

kr , we see that
the effect of the potential on the total wavefunction is to shift the phase of the sine function by
δl and × it by eiδl .

• We may also state this in terms of the radial wave function. When V = 0, the radial wave
function had the asymptotic behavior

Rl(kr) ∝
sin
(
kr − lπ

2

)
kr

for kr � 1. (293)

In the presence of a potential, it has the phase-shifted asymptotic behavior

Rl(r) ∝
sin
(
kr − lπ

2 + δl
)

kr
for kr � 1. (294)

• We now relate the phase shifts δl to the partial wave amplitudes al by comparing (291) with
the known scattering boundary condition

ψ(r, θ)→ Aeikz +Af(θ, φ)
eikr

r
= A

∑
l

(2l + 1)Pl(cos θ)

[
eikr + (−1)le−ikr

2ikr
+ al

eikr

r

]
(295)

We find
e2iδl

2ik
= al +

1

2ik
⇒ al =

e2iδl − 1

2ik
=
eiδl sin δl

k
. (296)

Having exploited conservation of probability (unitarity) and angular momentum to replace the
complex partial wave amplitudes al by the real phase shifts δl , we write the partial wave
expansion for the scattering amplitude and differential cross section as

f(θ) =
∞∑
l=0

(2l + 1)alPl(cos θ)

⇒ dσ

dΩ
= |f |2 =

1

k2

∑
l,l′

(2l + 1)(2l′ + 1)e−i(δl−δl′ ) sin δl sin δl′Pl(cos θ)Pl′(cos θ). (297)

Integrating, the total cross section becomes

σ =
4π

k2

∞∑
l=0

(2l + 1) sin2 δl ≡
∑
l

σl. (298)

The partial x-sections are all non-negative and in particular, σ is bounded below by the S-wave
x-section σ ≥ σ0 . We also get the so-called ‘unitarity bound’ on the ‘partial cross sections’:

σl ≤
4π

k2
(2l + 1). (299)

The unitarity bound is saturated iff the phase shifts are odd multiples of π/2. So to find the cross
section, it suffices to find the scattering phase shifts δl , which are dimensionless real quantities
depending on the potential and the incoming wave number k . To do so, we must solve the
Schrödinger eigenvalue problem in the given potential. Soon, we will do this in some examples.

• More advanced treatments show that for an attractive potential V (r) < 0 in 3d, if the S-wave
phase shift is small, then it is positive and for a repulsive potential it is negative. Roughly, this
is because in a repulsive potential, the particle slows down and is able to accumulate less phase
shift while in an attractive potential, it speeds up and accumulates more phase shift compared
to a free particle. We will see this in some examples. The quantum mechanical phase shift is
related to Wigner’s time-delay.
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10.3.3 Semiclassical estimate of relative sizes of phase shifts

• Let us get a rough semi-classical estimate for which phase shifts can be significantly different
from zero. Suppose we scatter classical particles of momentum p from a potential that is
negligible for r > a . Then for impact parameters b > a there is negligible scattering/deflection.
The magnitude of angular momentum20 L = pb is proportional to b . So for fixed energy of
incoming particles (or fixed momentum p), there will be no scattering if L is too large, i.e.
L > pa . Semi-classically we write L = ~

√
l(l + 1) ≈ ~l and p = ~k and find that partial waves

with l > ka suffer no phase shift.

• For very low energy scattering, ka � 1 and the only partial wave that can have a non-zero
phase shift is the l = 0 S-wave. The corresponding scattering amplitude is

f(θ) =
1

k

∑
l

(2l + 1)Pl(cos θ)eiδl sin δl →
eiδ0 sin δ0

k
(300)

In particular, for S-wave scattering, the scattering amplitude is spherically symmetric. The
incoming wave eikz contains all angular momenta l . But at low energies, only its S-wave part
was scattered, leading to a spherically symmetric outgoing wave with a phase shift.

• A parameter that is often used to characterize the scattering at low energies is the (S-wave)
scattering length α defined as

α = − lim
k→0

f(θ). (301)

As we argued above, at low energies (k small) δl for l ≥ 1 vanish and S-wave scattering
dominates. The scattering length α is independent of θ , it is a real parameter with length
dimensions, but it can be positive or negative. Often a positive scattering length arises for a
repulsive potential and a negative scattering length for an attractive potential as we will see in
the examples.

10.3.4 Optical theorem

An immediate consequence of writing the total cross section in terms of the phase shifts is the
optical theorem. It relates the total cross section to the imaginary part of the forward scattering
amplitude. By forward scattering we mean scattering in the direction θ = 0.

f(θ) =
∑
l

(2l + 1)Pl(cos θ)
eiδl sin δl

k
⇒ =f(0) =

1

k

∑
l

(2l + 1) sin2 δl ⇒ σ =
4π

k
=f(0).

(302)
Here we used Pl(1) = 1, which follows from the Rodrigues formula by successive differentiation

Pl(x) =
1

2ll!

dl(x2 − 1)l

dxl
. (303)

20Angular momentum is defined with respect to an origin. We have been using the scattering center r = 0
as the origin. However, angular momentum of the projectile is more easily computed with respect to a point (s
in the −ẑ direction) far to the left along the beam pipe, since there, the momentum is known to be in the ẑ
direction. It turns out that the two angular momenta are equal, as we check now. Suppose the incoming particle
far to the left has momentum p directed along ẑ at a point r . We write r = s+b where b is a ‘vertical’ vector
with magnitude equal to the impact parameter. Thus Lorigin = r× p = s× p + b× p = b× p as p and s are
anti-parallel.
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The optical theorem can be thought of as a consequence of unitarity of the S -matrix. The pos-
sibility of writing the scattering amplitude in terms of real phase shifts was, after all, contingent
on the conservation of probability.

• The optical theorem implies that if the scattering amplitude is real, the total cross section
must be zero. If there is non-trivial scattering, the amplitude f cannot be a real function.
Moreover, its imaginary part must be +ve in the forward direction. The optical theorem and
differential cross section dσ/dΩ = |f |2 together give information on both the real and imaginary
parts of f in the forward direction.

10.4 Example: Infinitely hard sphere scattering

This could be used to model scattering of atoms by atoms, where the nuclei strongly repel
electrostatically when brought nearby but do not feel much of a force when far apart due to the
neutrality of atoms. An infinitely hard sphere refers to a repulsive spherical barrier given by the
potential

V (r) =

{
∞ for r ≤ a
0 for r ≥ a

(304)

Classically, the cross section is the cross sectional area seen by a projectile, i.e., σcl = πa2 .
Classically, if the impact parameter ≥ a , the particle passes undeflected, while if it is less than
a , it is deflected according to the law of reflection.

• In QM, the dimensionless quantity ka is a measure of the size of the obstacle relative to the
wavelength of the incident wave. Our aim is to find the phase shifts and thereby determine the
cross section. The phase shifts δl are dimensionless and we will express them in terms of ka .
To do so, we must solve the Schrödinger eigenvalue problem for the free particle in the exterior
of the hard sphere and impose the scattering boundary condition as r →∞ (which defines the
phase shifts) and the Dirichlet boundary condition ψ(r = a) = 0 on the surface of the sphere.

• The solution of the free particle Schrödinger eigenvalue problem outside the hard sphere is
given by ψ =

∑
lm clmRl(r)Ylm(θ, φ) where

− 1

r
(rRl)

′′ +

[
l(l + 1)

r2
− k2

]
Rl = 0, for r > a (305)

The radial function must be a linear combination of spherical Bessel and Neumann functions

Rl(r) = αl jl(kr) + βl nl(kr). (306)

Imposing ψ(r = a) = 0 gives

R(a) = 0 ⇒ −βl
αl

=
jl(ka)

nl(ka)
. (307)

The scattering b.c. at r =∞ which serves to define the phase shifts is

ψ → A
∑
l

(2l + 1)Pl(cos θ)
ileiδl

kr
sin

(
kr − lπ

2
+ δl

)
= A

∑
l

(2l + 1)Pl(cos θ)
ileiδl

kr

[
sin

(
kr − lπ

2

)
cos δl + cos

(
kr − lπ

2

)
sin δl

]
or
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Rl(r) ∝ 1

kr
sin(kr − 1

2
lπ + δl) ∝

1

kr

[
sin

(
kr − lπ

2

)
cos δl + cos

(
kr − lπ

2

)
sin δl

]
. (308)

We must compare this with the behavior of the wave function as r →∞ ,

Rl(r) = αl jl(kr) + βl nl(kr)→
1

kr

[
αl sin

(
kr − lπ

2

)
− βl cos

(
kr − lπ

2

)]
(309)

We get

− βl
αl

=
sin δl
cos δl

= tan δl (310)

Now combining with the b.c. at r = a we get a formula for the phase shifts in terms of the
physical parameters of the problem k and a

tan δl =
jl(ka)

nl(ka)
⇒ δl = arctan

jl(ka)

nl(ka)
. (311)

The partial wave amplitudes al = eiδl sin δl
k follow as a consequence.

• To understand this result, let us first consider the S-wave phase shift l = 0 in which case
j0(ρ) = sin ρ/ρ and n0(ρ) = − cos ρ/ρ . For this repulsive potential, the S-wave phase shift is
negative:

δ0 = arctan(− tan ka) = −ka mod π. (312)

The S-wave partial wave amplitude is a0 = −k−1e−ika sin ka .

• The partial x-sections are σl = 4π
k2 (2l + 1) sin2 δl and the total x-section is the sum of these

non-negative partial x-sections. Thus the S-wave scattering x-section is

σ0(k) =
4π

k2
sin2 ka (313)

So the S-wave x-section is maximal at the longest wavelengths (low energy, ka small)

σ0(k → 0) = 4πa2 (314)

and decreases with growing wave number. In fact, at long wavelengths, the S-wave x-section is
equal to the surface area of the hard sphere. So the total x-section (as k → 0) is at least as big
as the area of the sphere. Contrast this with the classical x-section which is equal to πa2 , the
x-sectional area of the hard sphere. So for low energy scattering, the target in wave mechanics
looks bigger than for classical particle scattering.

• Moreover the S-wave x-section oscillates within a decreasing envelope as k increases. Inter-
estingly, σ0 vanishes if ka = nπ . The target is transparent at these energies within the S-wave
approximation.

• When is the S-wave approximation good? i.e., when can we ignore the other phase shifts?
S-wave scattering dominates at low energies or large incident wavelengths compared to the
miniscule size of the obstacle. For a small obstacle ka� 1 and21

tan δl =
jl(ka)

nl(ka)
→ − 22l(l!)2

(2l)!(2l + 1)!
(ka)2l+1 (315)

21We use the behaviors for small ρ : jl(ρ)→ 2ll!
(2l+1)!

ρl = ρl

(2l+1)!!
and nl(ρ)→ − (2l)!

2ll!
1

ρl+1 = − (2l−1)!!

ρl+1 .
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So as ka→ 0, tan δl → 0 for l = 1, 2, 3 . . . . So the P,D,F . . . wave phase shifts all vanish for very
low energy scattering. The S-wave phase shift alone can have a non-zero low energy limit. At
low energies, even though the incoming plane wave had all angular momentum components, only
its S-wave component gets non-trivially scattered producing a spherically symmetric scattered
wave, while higher angular momentum components pass the minuscule obstacle unaffected. The
higher angular momentum components of ψinc , jl(ρ) ∝ ρl are suppressed near ρ = 0 and do
not feel the effects of the obstacle.

• Using the above phase shifts we can construct the scattering amplitude

f(θ) =
1

k

∑
l

(2l + 1)Pl(cos θ)eiδl sin δl (316)

In particular, at low energies (k → 0) δl = 0 for l ≥ 1 and this implies the (S-wave) scattering
length is equal to the radius of the obstacle a :

α = − lim
k→0

f(θ) = − lim
k→0

e−ika sin(−ka)

k
= a (317)

For a repulsive potential, the S-wave scattering length is usually positive.

10.5 Finite spherical well: S-wave scattering

• See Liboff for example. Let us consider low wave number scattering against a finite spherical
well. This could be used to model scattering of an electron against an atom. The nuclear
attraction is effective only within the atom and is effectively screened outside the neutral atom.
So we take

V (r) =

{
−V for r < a

0 for r ≥ a.
. (318)

At low energies ka � 1, it is adequate to truncate the partial wave expansion after the l = 0
term and consider S-wave scattering. The aim is to solve the Schrödinger eigenvalue problem
in the S-wave sector and read off the S-wave phase shift δ0 by comparing with the scattering
boundary condition. In the S-wave sector ψ(~r) = R(r)Y00 and we only need consider l = 0. In
the interior of the well, the radial eigenvalue equation for u = rR is

− ~2

2m
u′′ − V u =

~2k2

2m
u ⇒ −u′′ = k′2u where k′2 = k2 +

2mV

~2
. (319)

So R(r < a) = r−1 (A sin k′r +B cos k′r). Since the wave function must be regular at r = 0,
B = 0.

• Outside the well, we have the free particle SE −u′′ = k2u with solution u = c1 sin kr+c2 cos kr
which can be written as

R(r > a) =
B

r
sin(kr + ϕ) (320)

Comparing with the scattering boundary condition which defines the phase shift, R(r) ∼ sin(kr−
lπ/2+δ0), we conclude that ϕ = δ0 is just the S-wave phase shift. To find δ0 we need to impose
the continuity of the wave function ψ and its gradient ∇ψ across the surface r = a . Since
ψ = RY00 , we must impose continuity of R and R′ . Continuity of R (or u) gives

A sin k′a = B sin(ka+ δ0) (321)
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Continuity of R′ upon using continuity of R gives

Ak′ cos k′a = Bk cos(ka+ δ0) (322)

Taking a quotient, we get a relation between δ0 and the physical parameters of the problem:

k′ cot k′a = k cot(ka+ δ0(k)) where k′2 = k2 +
2mV

~2
(323)

In principle, this transcendental equation expresses δ0 as a function of incident wave number
k , V and a . In what follows we find δ0 approximately in some regimes. These approximations
could easily fail and one must check the conclusions for consistency.

• We first consider the case where δ0 is small. Since ka is also small, in this case, we can
approximate cot(ka+ δ0) ≈ (ka+ δ0)−1 and get22

δapprox
0 (k) = ka

(
tan k′a

k′a
− 1

)
when δ0 and ka are small. (324)

Note that when the energy is small compared to the depth of the well E � V , we may write

k′a = a

√
2mV

~2

√
1 +

~2k2

2mV
≈ a

~
√

2mV

(
1 +

E

2V
+ · · ·

)
where E =

~2k2

2m
. (325)

So that for small ka and small E/V , we have

δapprox
o (k) ≈ ka

tan
[
a
~
√

2mV
(
1 + E

2V

)]
a
~
√

2mV
(
1 + E

2V

) − 1

 . (326)

• Let us compute the S-wave scattering amplitude f and cross section σ0 for small ka and
small δ0 :

f(θ) =
∑
l

(2l + 1)Plal ≈ a0 =
1

k
eiδ0 sin δ0 (327)

• When δ0 � 1 we approximate eiδ0 ≈ 1 and sin δ0 ≈ δ0 to get

f(θ) ≈ a
(

tan k′a

k′a
− 1

)
and σ0 ≈ 4π|a0|2 ≈

4πδ2
0

k2
≈ 4πa2

(
tan k′a

k′a
− 1

)2

. (328)

As expected, the S-wave scattering amplitude is spherically symmetric. An interesting feature of
this approximate S-wave cross section is that it vanishes at energies satisfying the transcendental
relation k′a = tan k′a (mod πk′/k ). At those energies, the target appears transparent to S-
waves! Note that at these energies δ0 = 0 so we are allowed to use our approximate formula for
small δ0 provided ka is also small.

• The S-wave scattering length for small δ0 is obtained from the low energy limit of f(θ)

α ≈ − lim
k→0

f(θ) = a

1−
tan a

√
2mV
~2

a
√

2mV
~2

 . (329)

22Note that g(x) = tanx − x satisfies g(0) = 0 and g′(x) = tan2 x ≥ 0, so tanx ≥ x for 0 ≤ x ≤ π/2.
Thus δ0 is guaranteed to be positive (as is often the case for an attractive potential) for the energy range

0 ≤
√

2m(E+V )a2

~2 ≤ π/2.
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Figure 1: (a) Approx. S-wave phase shift δapprox
0 = ka

(
tan k′a
k′a − 1

)
(valid for small ka and small δ0 ) versus

k for V = a = m = ~ = 1. For small k < 1
2

or so, δapprox
0 is small (and positive in this case), and the

approximation may be relied upon. δapprox
0 diverges at the potential S-wave resonances k′a = (2n + 1)π/2,

where the formula cannot be trusted. But periodically, δapprox
0 vanishes (mod π ) signaling possible transparency

to S-wave scattering. Near such k the formula may be trusted provided ka is small. However, the first such
possibility for these parameters occurs only at ka ≈ 1.3 which is not small compared to 1. So this δapprox

0 cannot
a priori be trusted near these ‘higher zeros’ of δ0 (mod π ). (b) Numerical solution of transcendental equation for
δ0 for same V,m, a, ~ . S-wave phase shift does show some local maxima roughly where expected from δapprox

0 . It
does not vanish anywhere, though the phase shift has local minima. δapprox

0 can only be trusted for small k for
these parameters.

For 0 ≤ a
√

2mV
~2 ≤ π/2, i.e., if the well is not too deep, this scattering length is negative, as

is often the case for an attractive potential. Note that this is only an approximate scattering
length and is valid only when the S-wave phase shift δ0 is small.

• The above approximate phase shift δapprox
0 (k) most dramatically fails to be reliable at those

k where the tangent function blows up, i.e., when k′a ≈ (2n + 1)π/2. At those energies, δ0

is not small and we need to go back and solve k′ cot k′a = k cot(ka + δ0) without assuming δ0

is small. In fact near such values (k′a = (2n + 1)π/2), cot k′a = 0 and so sin(ka + δ0) ≈ ±1
which means sin(δ0) ≈ ±1 if ka� 1. So if ka is small and k′a is near an odd multiple of π/2,
the S-wave scattering phase shift reaches a peak of π/2 modulo π where the S-wave scattering
cross section saturates the unitarity bound

σunitarity bound
0 =

4π

k2
sin2 δ0 =

4π

k2
(330)

When the S-wave x-section goes through a maximum it is called an S-wave resonance (even if
it does not saturate the unitarity bound). The target looks very large at resonant energies. It
is as if the incoming particle gets nearly trapped bouncing around the potential well, before
eventually escaping to infinity. Note that in atomic scattering, infinity just means a few atomic
diameters, by which time the potential would have died out. Also, the time (∼ 10−10 s) particles
spend in the vicinity of the scattering center can be very small compared to human time scales.

• The case of low energy scattering by a repulsive finite spherical barrier V > 0 for r < a is
also interesting. See the problem set. In the interior region r < a , we have E < V so k′ is
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replaced by iκ where ~2κ2/2m = V −E . The S-wave cross section for low energy scattering is

σ = 4πa2

(
tanhκa

κa
− 1

)2

. (331)

When the barrier becomes infinitely high V → ∞ κ → ∞ and tanhκa → 1. We recover the
S-wave cross section σ = 4πa2 for scattering by a hard sphere.

10.6 Born series and approximation

• Max Born’s approximation to find the scattering amplitude f(θ, φ) is useful especially when
the scattering potential V (~r) is weak compared to the energy of the incoming wave ~2k2/2m .
In such a situation, the scattered wave is expected to be small compared to the incoming plane
wave. So it is useful in the regime of high energies while the partial wave approximation is useful
at low energies. Loosely, the Born series is an expansion in powers of the potential V , treated
as a perturbation to the kinetic term. V need not be spherically symmetric.

10.6.1 Integral form of the Schrödinger equation and Green’s function of the Helmholtz
operator

• The starting point for the Born series is a rewriting of the Schrödinger eigenvalue problem as
an integral equation. We begin by writing

− ~2

2m
∇2ψ + V (~r)ψ =

~2k2

2m
ψ ⇒

(
∇2 + k2

)
ψ =

2mV

~2
ψ. (332)

∇2 + k2 is the Helmholtz operator and if the rhs 2mV
~2 ψ had been a source χ(~r) independent of

ψ(~r), this would be the inhomogeneous Helmholtz equation. Recall that the general solution of
an inhomogeneous linear equation Aψ = χ is given by the sum of a particular solution and the
general solution of the homogeneous equation Aψ = 0. Though the SE is in fact a homogeneous
equation, it pays to think of it as an inhomogeneous Helmholtz equation and treat the rhs 2mV

~2 ψ
as a small source.

• The idea is to try to invert the operator ∇2 + k2 and take it to the rhs. However, ∇2 + k2

is not invertible, as it is ‘many to one’, it has zero eigenvalues. Indeed, it has a large null space

consisting of all free particle eigenstates: (∇2 + k2)ψ0 = 0, e.g., the plane waves ψ0(~r) = ei
~l·~r

for any vector ~l whose length is |~l| = k . These plane waves span the zero eigenspace of the
Helmholtz operator (though we could just as well use angular momentum eigenstates of the free
particle with energy ~2k2/2m).

• Though it isn’t invertible, we may be able to find a ‘right inverse’ in the sense of a ‘Green’s
function’ G(r, r′) satisfying (here ∇ is the gradient in ~r as opposed to the gradient ∇′ in ~r′ )(

∇2 + k2
)
G(~r, ~r′) = δ3(~r − ~r′). (333)

But such a Green’s function is not unique. However, any two Green’s functions G(1), G(2) for
the Helmholtz operator differ by a solution ψ0 of the homogeneous Helmholtz equation[

∇2 + k2
] (
G(1)(~r, ~r′)−G(2)(~r, ~r′)

)
= 0 ⇒ G(1)(~r, ~r′)−G(2)(~r, ~r′) = ψ0(r) (334)
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We will find a Green’s function for the Helmholtz operator shortly. The virtue of having one is
that it in effect provides a ‘particular solution’ of the inhomogeneous Helmholtz equation. In
more detail, we may write the ‘general solution’ of the SE as

ψ(~r) = ψ0(~r) +

∫
G(~r, ~r′)

2mV (~r′)

~2
ψ(~r′) d3r′ (335)

where ψ0(~r) is any solution of (∇2 + k2)ψ = 0, i.e., a free particle energy eigenstate. It is easily
checked that this ψ satisfies the SE. However, it is not an explicit solution since ψ appears
both on the left and right sides. Nevertheless, it is an integral equation for ψ which looks a bit
like the scattering boundary condition if we take ψ0 = eikz ! So we should expect the integral
expression on the rhs to tend to the scattered wave for large r .

• We can iterate this expression to get the Born series, which gives a formal solution of the SE:

ψ(r) = ψo(r) +

∫
G(r, r′)

2mV (r′)

~2
ψo(r

′) dr′ +

∫∫
G(r, r′)

2mV (r′)

~2
G(r′, r′′)

2mV (r′′)

~2
ψo(r

′′) dr′ dr′′

+

∫∫∫
G(r, r′)

2mV (r′)

~2
G(r′, r′′)

2mV (r′′)

~2
G(r′′, r′′′)

2mV (r′′′)

~2
ψo(r

′′′) dr′ dr′′ dr′′′ + · · · (336)

• We still have to find a Green’s function for the Helmholtz operator, i.e., any one solution of(
∇2 + k2

)
G(~r, ~r′) = δ3(~r − ~r′). (337)

We will select a solution that is appropriate to the scattering problem. A priori G(r, r′) is
a function of six coordinates and it is daunting to find a solution of this partial differential
equation that involves derivatives in three of them r, θ, φ . However, on account of the translation
invariance (~r → ~r + ~b) of the Helmholtz operator, we choose to look for a Green’s function
that depends only on the translation-invariant vector ~r − ~r′ . So we have gone from 6 to 3
variables. Furthermore, on account of the rotation invariance of the Helmholtz operator23, we
choose to look for a Green’s function that depends only on the rotation invariant quantity
s = |~s| = |~r− ~r′| . This reduces the above partial differential Helmholtz operator to an ordinary
differential operator. G(s) must satisfy24

1

s

d2sG(s)

ds2
+ k2G(s) = δ3(~s). (338)

Let us first consider the case s > 0 where this is a homogeneous linear ODE (sG)′′+ k2sG = 0.

The general solution is G(s) = Aeiks

s + Be−iks

s . However, we choose B = 0 since we will be
interested in the outgoing scattered wave. To find A , we look at the behavior for small s , where

23By rotation-invariance we mean that if ~r′ = (x′, y′, z′) = R~r for a rotation R applied to ~r = (x, y, z) , then

the formula for the Laplacian ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
= ∂2

∂x′2 + ∂2

∂y′2 + ∂2

∂z′2 is unchanged. It is good to check this first

in two dimensions, where x′ = cx − sy and y′ = sx + cy for s = sinα and c = cosα where α is the angle
of (counter-clockwise) rotation. Just as translation-invariance is manifest in Cartesian coordinates, rotation-
invariance is manifest in spherical polar coordinates. Suppose the rotation is by a counter-clockwise angle α
about some axis. Let us choose our coordinate system so the axis of rotation is the z -axis. Then under such a

rotation (r, θ, φ) 7→ (r, θ, φ+α) . Now the laplacian is ∇2 = 1
r
∂2

∂r2
r+ 1

r2 sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
r2 sin2 θ

∂2

∂φ2 . The formula
for this differential operator is clearly unchanged under φ→ φ+ α . Thus the Laplacian is rotation invariant.

24For G(~r, ~r′) = G(~r − ~r′) , we can re-cast the derivatives w.r.to ~r as derivatives with respect to ~s since
∂G(x−x′)

∂x
= ∂G(x−x′)

∂(x−x′) .
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G(s)→ A
s independent of k . So to find A , it suffices to consider the case k = 0. For k = 0, it

is easy to show that

∇2

(
1

r

)
= −4πδ3(~r) (339)

For r 6= 0, this is immediate since ∇2r−1 = 1
r (rr−1)′′ = 0. To check that it is correct also at

r = 0 we integrate over the interior of a unit sphere and use Stokes theorem:∫
~∇ · ~∇1

r
d3r =

∫
S2

~∇1

r
· r̂r2dΩ =

∫
− r̂

r2
· r̂r2dΩ = −4π. (340)

So we conclude that A = − 1
4π . Thus we have found one Green’s function for the Helmholtz

operator

G(s) = − 1

4π

eiks

s
or G(~r − ~r) = − 1

4π

eik|~r−~r
′|

|~r − ~r′|
. (341)

A Green’s function is not unique, we can add to this G(s) any solution of the homogeneous
equation and get another Green’s function. However, for the problem of interest, G(s) is most
appropriate, as it satisfies the scattering b.c.

• To summarize, we have written the Schrödinger eigenvalue problem as an integral equation

ψ(r) = ψ0(r)− 1

4π

∫
eik|~r−~r

′|

|~r − ~r′|
2mV (~r′)

~2
ψ(~r′) d3r′ (342)

and iterated it to obtain the Born series (336).

10.6.2 Born approximation

So far we have not made any approximation. Now we apply this to the scattering problem by

choosing ψ0(r) = ei
~k·~r to be the incoming plane wave with ~k = kẑ . Notice that successive terms

in the Born series involve higher powers of the potential. We suppose that the potential is weak
so that the total wave function does not differ much from the incoming plane wave and truncate
the Born series after one iteration. This gives the first Born approximation

ψ(r) = ei
~k·~r − 1

4π

∫
eik|~r−~r

′|

|~r − ~r′|
2mV (~r′)

~2
ei
~k·~r′ d3r′ +O(V 2). (343)

To find the scattering amplitude, we must extract the asymptotic behavior for large r and
compare with the scattering boundary condition

− 1

4π

∫
eik|~r−~r

′|

|~r − ~r′|
2mV (~r′)

~2
ei
~k·~r′ d3r′ → f(θ, φ)

eikr

r
. (344)

To extract the large r behavior of the integral, we assume that the potential is localized, so that
the integral over ~r′ receives non-trivial contributions only for small r′ . So we may assume that
r � r′ inside the integral. The simplest possibility is to take |~r − ~r′| ≈ r . Within this crude
approximation the scattering amplitude is independent of θ and φ (below ~k = kẑ for a plane
wave incident from the left)

fcrude(θ, φ) = − 1

4π

2m

~2
Ṽ
(
−~k
)

where Ṽ
(
~k
)

=

∫
V (~r′)e−i

~k·~r′ d3r′. (345)
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Though too crude, it indicates that the scattering amplitude is proportional to the Fourier
transform of the potential, which we will see is a general feature of the Born approximation.

• To do justice to the first Born approximation and extract the angular dependence of the
scattering amplitude, we need a better approximation for |~r − ~r′| . We write

|~r−~r′|2 = r2−2~r·~r′+r′2 = r2

(
1− 2

~r · ~r′

r2
+
r′2

r2

)
⇒ |~r−~r′| = r

(
1− 2

~r · ~r′

r2
+
r′2

r2

) 1
2

= r−r̂·~r′+O
(
r′2

r2

)
.

Using |~r − ~r′| ≈ r − r̂ · ~r′ in the first Born approximation, we get25

ψ(r) ≈ ei~ki·r̂ − 1

4π

2m

~2

eikr

r

∫
V (~r′)e−i(

~kf−~ki)·~r′d3r′ (346)

where we defined ~ki = ~k for the incoming wave vector and an26 outgoing wave vector ~kf = kr̂
in the direction defined by θ, φ . From this we can read off the scattering amplitude

f(θ, φ) = f(k̂f ) = f(r̂) = − 1

4π

2m

~2
Ṽ (~kf − ~ki) = − m

2π~2
Ṽ (~q) . (347)

This is the first Born approximation for the scattering amplitude and is valid even if V isn’t
spherically symmetric. The vector ~q = ~kf − ~ki is called the momentum transfer. The main
result of the Born approximation is that the scattering amplitude f(r̂) is proportional to the
Fourier transform of the potential with respect to the momentum transfer ~q = kr̂ − ~k .

• The Born approximation gives a solution to the direct scattering problem valid at high energies.

In treating the potential term in the hamiltonian H = p2

2m + V as a perturbation, V has been
assumed to be small compared to the free particle energy, which is the energy of the incoming
particle in the beam. This is what allows us to replace ψ(~r′) under the integral by the free
particle ψ0(~r′).

• The Born approximation also gives a partial result in inverse scattering: a way to extract the
potential if the scattering amplitude is known.

• In the limit of zero momentum transfer ~q → 0, the Born scattering amplitude simplifies. In
this limit, the scattering amplitude is spherically symmetric and sensitive only to the integral
of the potential:

f~q→0(r̂) = − m

2π~2
Ṽ (0) = − m

2π~2

∫
V (~r′)d3r′. (348)

10.6.3 Born approximation for spherically symmetric potential

• For a spherically symmetric potential, the Born approximation for the scattering amplitude
may be simplified. If ~k = kẑ and ~kf = kr̂ , then from the isosceles triangle, the momentum

25In the denominator we use the crude approximation |~r−~r′| ≈ r . This is because |~r−~r′|−1 ≈ 1
r

(
1− r̂·~r′

r

)−1

≈
1
r

(
1 + r̂·~r′

r
+ · · ·

)
≈ 1

r
+ r̂·~r′

r2
. The 2nd term is ∼ r−2 for r → ∞ and wouldn’t contribute to f(θ, φ) , which is

the coefficient of eikr

r
for large r .

26~kf = kr̂ is not the wave vector of a plane wave. The outgoing wave is a spherical wave. k̂f is just a convenient
notation for the unit vector r̂ in the direction in which we are interested in finding f(θ, φ) . But it is a reasonable
notation, since in an experiment, we would detect a outgoing scattered free particle at angular location θ, φ with
momentum ~~kf .
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transfer ~q = ~kf −~ki is seen to have a magnitude q = 2k sin θ
2 . To evaluate the Fourier transform

of the potential

Ṽ (~q) =

∫
e−i~q·r

′
V (r′)r′2dr′ sin θ′dθ′dφ′ (349)

we pick the ẑ′ axis to point in the direction of ~q so that ~q · ~r′ = qr′ cos θ′ and get

Ṽ (q) =

∫
V (r′)e−iqr

′ cos θ′r′2 sin θ′dr′dθ′dφ′ (350)

We can perform the θ′ integral by the substitution t = cos θ′∫ π

0
e−iqr

′ cos θ′ sin θ′dθ′ =

∫ 1

−1
e−iqr

′tdt =
2 sin qr′

qr′
(351)

Thus the Fourier transform of a spherically symmetric potential is rotationally invariant in
momentum space as well

Ṽ (~q) = Ṽ (q) =
4π

q

∫ ∞
0

V (r′) r′ sin qr′ dr′ (352)

Thus the scattering amplitude in the first Born approximation is

f(θ, φ) = −2m

~2q

∫ ∞
0

V (r) r sin qr dr where q = 2k sin
θ

2
. (353)

10.6.4 Rutherford scattering

• In the case of Rutherford scattering of charge q1 against charge q2 , the potential is V (r) =
q1q2

4πε0r
, and

Ṽ (q) =
q1q2

ε0q

∫ ∞
0

sin qr dr =
q1q2

ε0q2

∫ ∞
0

sin ρ dρ (354)

However, the dimensionless oscillatory integral appearing above is not absolutely convergent. In
the absence of additional (physical) input we could assign any numerical value to it. However
aside from this numerical constant, if we put q = 2k sin θ/2, we see that the cross section
| m
2π~2 Ṽ (q)|2 resembles the Rutherford cross section. We have already encountered difficulties

with the Coulomb potential in that its total scattering cross section is infinite classically. The
Coulomb potential does not die off fast enough as r → ∞ for us to be able to legitimately
treat the incoming and scattered particles as free. This is reflected in the above ambiguity in
defining the Fourier transform of the Coulomb potential. However, in many physical situations,
the Coulomb potential is screened beyond a screening length. So we can treat the Coulomb
potential as the µ→ 0 limit of a screened Coulomb (or Yukawa) potential

V (r) = α
e−µr

r
where α =

q1q2

4πε0
. (355)

µ−1 is called the screening length. For r > µ−1 , the Coulomb potential is effectively screened
by the exponential damping factor. For the Yukawa potential, we find

Ṽ (q) =
4π

q

∫ ∞
0

αe−µr

r
r sin qr dr =

4πα

µ2 + q2
. (356)

77



Putting α = q1q1/4πε0 in the limit µ→ 0 we get for the Coulomb potential

Ṽ (q)→ q1q2

ε0

1

q2
. (357)

Putting q = 2k sin(θ/2) we get the limiting scattering amplitude in the Born approximation

f(θ, φ) ≈ −2m

~2

q1q2

4πε0

1

q2
= − q1q2

16πε0E

1

sin2 θ/2
(358)

where E = ~2k2/2m . The differential cross section for Coulomb scattering in the Born approx-
imation is found to match Rutherford’s result from classical mechanics

dσ

dΩ
= |f |2 ≈

(
q1q2

16πε0E

)2 1

sin4 θ/2
. (359)

Scattering in the forward direction dominates, but there is significant scattering through wide
angles as well, as found in Rutherford’s alpha scattering experiment.

11 Time-dependent hamiltonians and perturbation theory

• Suppose an atom is exposed to electromagnetic radiation for a certain duration (e.g. shine
monochromatic light (e.g. laser) beam on an atom). How does it affect the atom? The atom
is typically in a stationary state before the light was turned on. An interesting question is
whether the atom will make a transition to another given stationary state and the rate of such
transitions. In effect, from the time the laser is turned on, the hamiltonian of the atom has been
perturbed by a time-dependent interaction of the electron with the oscillating electromagnetic
field of the light beam27. Since the atom is neutral, this interaction energy is to leading order in
the multipole expansion, given by the electric dipole energy −~p · ~E where ~p is the electric dipole
moment of the atom and ~E = ~Eo cos(~k ·~r−ωt) is the electric field in the electromagnetic wave.
For a hydrogen atom, ~p = e~r where ~r is the position vector of the electron (with respect to the
nucleus) and e < 0 its charge. The magnetic force ev ×B is smaller than the electric force eE
by a factor of v/c . This is because, in an EM wave, the amplitudes are related by Bo = Eo/c
and v/c� 1 for electrons in an atom. So we ignore the magnetic force.

• The wavelength of visible light (∼ 400− 700nm) is much larger than the size of atoms (∼ 0.1
nm), so the electromagnetic field can be assumed spatially constant over the atom, but its time-
dependence cannot be ignored. Indeed, as we learned from atomic spectroscopy, the frequency
of visible (or UV/IR) light is such that hν is of the order of the (electron volt) energy differences
between atomic energy levels. What is more, atomic transitions occur in about a nano-second,
while the time period of visible light is about T = 10−15 s, so the time dependence of the
electromagnetic wave cannot be ignored.

• Here we develop techniques to treat physical situations where a time-dependent perturbation
gH1(t) is applied to a system in a stationary state of its time-independent hamiltonian H0 . In
the above example, we may treat the electric dipole interaction energy as a perturbation since
the electric field in the light beam is typically much smaller (in commercial lasers used in eye

27We are treating the electron quantum mechanically but the light as a classical electromagnetic wave rather
than as photons.
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surgery, it is about 107−108 V/m) than the electric field felt by the electrons due to the nucleus
∼ 13.6V

.053nm ∼ 1011V/m.

• Time dependent perturbations can be of various sorts. E.g. (1) periodic as in the case of
monochromatic light shone on an atom. (2) adiabatic, where we have a perturbation which is
very slowly varying compared to the time scales associated with H0 , (3) impulsive, where the
perturbation lasts only a very short time as when an X-ray pulse is shone on an atom, possibly
ionising it, or when a fast charged particle passes by an atom (4) sudden, for example where a
sudden perturbation is applied resulting in a new time-independent hamiltonian. This happens
when a neutron in the nucleus of an atom beta decays leaving behind a new isotope with a
different atomic number.

• We will not solve these problems in detail, but will develop some of the formalism to treat
them and illustrate with simple examples. In all cases, the main quantity of interest is the
probability of transitions induced by the time-dependent perturbation.

11.1 Sudden perturbation: strong short-lived time dependence

A heavy isotope of hydrogen Tritium (nnpe) is unstable to beta decay n→ p+ + e− + ν̄e . The
resulting beta particle (electron) typically has a large kinetic energy (∼ 1000 eV) and escapes
from the atom in quick time28. The anti-neutrino also escapes very fast leaving behind a Helium-
3 ion (3

2 He+ nppe, He-3 is a very stable isotope of Helium, no decay has been observed). The
beta decay process happens almost instantaneously compared to atomic time-scales and in effect
the hamiltonian of the system has suddenly changed from that of Tritium to that of a Helium
ion. We are concerned with the electron wave function. Initially the Tritium atom was in one of
its stationary states ψTi (most often, its ground state). We would like to know the probability
of a transition to any of the stationary states of 3

2 He+ after the decay.

• Such a sudden and drastic perturbation to a system, which takes it from one time-independent
hamiltonian to another time-independent one can be modeled by

H(t) =

{
H0 = p2

2m −
e2

4πεor
for t < 0

H1 = p2

2m −
2e2

4πεor
for t > 0

(360)

So the hamiltonian operator behaves a bit like a step function with a finite discontinuity at
t = 0. We wish to find the wave function after the sudden change (i.e. at t = 0+ ), given
that the system was in a stationary state of H0 prior to the perturbation i.e., at t = 0− . The
Schrödinger equation i~∂ψ∂t = H(t)ψ(t) can be usefully written as an integral equation

|ψ(t)〉 = |ψ(0−)〉 − i

~

∫ t

0
H(t′)|ψ(t′)〉 dt′ (361)

Now we wish to take t → 0+ . Though the hamiltonian suffers a sudden change, the change in
each of its matrix elements is finite at t = 0, so the integral should vanish as t→ 0+ (provided
the wave function itself does not suffer an infinite discontinuity at t = 0). Thus we have

lim
t→0+

|ψ(t)〉 = lim
t→0−

|ψ(t)〉 (362)

28The beta particle is not mono-energetic, there is a continuous distribution of electron energies and neutrino
energies up to about 18 KeV. On rare occasions, where the beta particle has very low energy, it may be captured
by the He-3 ion to form a He-3 atom resulting only in a mono-energetic ν̄e escaping.
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and the wave function is continuous at t = 0. Taking the projection on |x〉 , for any fixed x ,
the wavefunction cannot have a finite discontinuity as t crosses 0. In other words, the change
to the nucleus happened so fast that the electron wave function did not have time to change
from its initial state ψTi . Now, after the decay, the electron finds itself near a He-3 nucleus

and if a measurement of the energy is made, one of the energy levels E
He+3
n of He+

3 is obtained,

and the electron wave function collapses to the corresponding eigenstate ψ
He+3
n . The transition

probability is
Pi−tritium→n−He+3

= |〈ψHen |ψTi 〉|2 (363)

Note that the energy difference between initial and final electronic states contributes to the
energies of the emitted beta particle and anti-neutrino. To evaluate these transition probabilities
we need to know the corresponding wave functions of Tritium and He+

3 . We know them since
they are both hydrogenic atoms with Z = 1 and Z = 2. The He-3 nucleus (npp, Z = 2)
has twice the nuclear charge as the Tritium nucleus (nnp, Z = 1), so the Tritium atom (in its
ground state) is much larger than the Helium ion (in its ground state). Indeed, the Bohr radius

of a hydrogenic atom is a = 4πεo~2

mZe2
. So though the g.s. of He-3 is the most likely final state, it

is also likely to make a transition to an excited state of He-3. The electronic energy difference
(along with the nuclear mass defect) is carried away by the β -electron and ν̄e .

• A sudden perturbation of this sort resulting in an abrupt and permanent change in the hamil-
tonian was not analyzed by treating the perturbation as small. But there are many situations
where the perturbation may be treated as small. Let us develop a method to deal with such
perturbations.

11.2 First order time-dependent perturbation theory

• Suppose a quantum system is initially in a stationary state ψ
(0)
i of the hamiltonian H0 . A

time dependent perturbation gH1(t) is turned on at time t = 0 so that the total hamiltonian
for t ≥ 0 is

H(t) = H0 + gH1(t) θ(t > 0) (364)

We want to solve the time-dependent Schrödinger equation

i~
∂ψ

∂t
= H(t)ψ(t) with initial condition ψ(x, t = 0) = ψ

(0)
i (x). (365)

We assume the stationary states of H0 are known

H0ψ
(0)
n = E(0)

n ψ(0)
n , are orthonormal

〈
ψ(0)
n |ψ(0)

m

〉
= δnm, (366)

non-degenerate and form a complete set. So we expand the wavefunction at subsequent times
as

ψ(t) =
∑
n

cn(t) ψ(0)
n where normalization requires

∑
n

|cn|2 = 1. (367)

In general, the coefficients cn(t) are complex and time-dependent. In the absence of the pertur-
bation (g = 0), we know cn(t). So we expect

cn(t) = cn(0)e−iE
(0)
n t/~ (1 +O(g)) (368)
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In the presence of the perturbation, the SE becomes for t > 0,

i~
∑
m

ċm(t)ψ(0)
m = (H0 + gH1)

∑
m

cm(t)ψ(0)
m . (369)

Taking the inner product with ψ
(0)
n we get

i~ċn(t) = cn(t)E(0)
n + g

∑
m

〈
ψ(0)
n |H1(t)|ψ(0)

m

〉
cm(t). (370)

This is a system of coupled first order ODEs for the coefficients cn(t). We know how they behave
in the absence of the perturbation, so let us absorb the unperturbed harmonic time dependence
and define

dn(t) = cn(t)eiE
(0)
n t/~. (371)

Then dn satisfy the system of ordinary differential equations

ḋn(t) = − i
~
∑
m

〈
ψ(0)
n

∣∣∣∣gH1(t)

∣∣∣∣ψ(0)
m

〉
e
−i
(
E

(0)
m −E

(0)
n

)
t/~
dm(t) (372)

with initial conditions dn(0) = cn(0) = δni (since the system was initially in the eigenstate
|ψi〉). We will solve this system of equations for dn(t) essentially in a series in powers of g ,
dn(t) = δni + O(g). To do so, it is convenient to write this as a system of integral equations.
Integrating once,

dn(t) = δni −
i

~

∫ t

0
dt′
∑
m

〈
ψ(0)
n

∣∣∣∣gH1(t)

∣∣∣∣ψ(0)
m

〉
e
−i
(
E

(0)
m −E

(0)
n

)
t′/~

dm(t) (373)

So far we haven’t made any approximation. The advantage of this formulation is that dn is
expressed as a zeroth order part plus a term of order g . We may solve this by iteration.

• To get a sense for what an iterative solution is, let us look at a toy version of this. Consider
the equation x = 1 + gx whose solution is x = (1 − g)−1 . For |g| < 1, we may expand the
solution in a series x = 1+g+g2 + · · · . We could have obtained this series solution by iteration.
The nth iterate is given by

x(n) = 1 + gx(n−1). (374)

In favorable cases, the first few iterates already give a good approximation. In this case, the
first few iterative approximations are

x(0) = 1, x(1) = 1+g, x(2) = 1+g(1+g) = 1+g+g2, x(3) = 1+g(1+g+g2) = 1+g+g2+g3.
(375)

We see that we can recover the power series solution by iteration.

• Returning to (373), the first iterate involves putting the zeroth order solution dm = δmi on
the rhs. Thus to first order in g we have

dn(t) = δni −
gi

~

∫ t

0
dt′
〈
ψ(0)
n

∣∣∣∣H1(t)

∣∣∣∣ψ(0)
i

〉
e
−i
(
E

(0)
i −E

(0)
n

)
t′/~

+O(g2). (376)

This tells us how the initial state ψ
(0)
i evolves in time, since

ψ(t) =
∑
n

cn(t)ψ(0)
n =

∑
n

dn(t)e−iE
(0)
n t/~ψ(0)

n and ψ(0) = ψ
(0)
i . (377)
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dn(t)e−iE
(0)
n t/~ is the component of the state at time t that is in the direction of the unperturbed

eigenstate ψ
(0)
n . If the perturbation is switched off at time t , and a measurement of energy H0

is made, then |dn(t)|2 is the probability of getting the value E
(0)
n . So |dn(t)|2 is the probability

that the system makes a transition from initial state i to final state n due to the perturbation.
If i 6= n , this transition probability is just the absolute square of the above time-integral of the
matrix element of the perturbing hamiltonian between initial and final states

P (i→ n 6= i; t) =
g2

~2

∣∣∣∣∫ t

0
dt′
〈
ψ(0)
n

∣∣∣∣H1(t′)

∣∣∣∣ψ(0)
i

〉
e
−i
(
E

(0)
i −E

(0)
n

)
t′/~
∣∣∣∣2 +O(g3) (378)

The probability that the final state is the same as the initial state i = n can be estimated to
order g2 by using the normalization of the wave function

∑
n |cn(t)|2 =

∑
n |dn|2 = 1. So29

P (i→ i; t) = 1−
∑
n6=i

P (i→ n, t). (380)

• To go further, we must specify the perturbing hamiltonian H1(t). We will study some special
cases.

11.3 Connection to time-independent perturbation theory

• Let us first consider a perturbation gH1 that is slowly withdrawn e−t/τgH1θ(t > 0). This
allows us to make contact with the results of time-independent perturbation theory for H0+gH1 .

• As before, we begin at t = 0 with a stationary state ψ
(0)
i of H0 . The eigenstates of H0 ,

ψ
(0)
n and energies E

(0)
n are assumed known. Suppose the small perturbing hamiltonian gH1(t)

is switched on at t = 0. Here g � 1 is dimensionless. Moreover, H1(t) is assumed to be slowly
varying with time and eventually turned off. The time scale over which H1(t) varies is called τ .
This may be relevant to an atom in a weak magnetic field that is introduced, and then slowly
turned off. After it is turned off, the system is again governed by the hamiltonian H0 and if a

measurement of energy is made after a long time t� τ , one of the values E
(0)
f is obtained. In

other words, the perturbation gH1(t) may induce a transition from an initial eigenstate i to a
final eigenstate f of H0 .

• To model such a situation, let us assume all the matrix elements of H1(t) have the same
time dependence (which may be given by how we turn off the current in the coil producing the
magnetic field), which we take for simplicity of calculations to be

H1(t) = H1e
−t/τ for t > 0 and τ large (381)

29Merely squaring the approximate formula for di(t) (376) does not give the correct answer, as the term of
order g2 (say γg2 ) in di that we have not computed, also contributes! Let I =

∫ t
0
dt′〈ψi|H1(t)|ψi〉 ∈ R , then

di(t) = 1− igI

~
+ γg2 + · · · ⇒ |di|2 = 1 +

g2I2

~2
+ 2g2<γ +O(g3). (379)

In fact, if we do not account for this term γg2 , it would even appear that the probability to remain in the state
i exceeds 1! Stated differently, normalization puts a constraint on what <γ can be.

82



We are interested in the transition probability to another stationary state ψ
(0)
f of H0 after a

time t . Slowly turned off means τ is large in the sense that

τ � ~
|E(0)

f − E
(0)
i |

. (382)

In particular, we are looking for a transition to a different energy level, i 6= f .

• The component of ψ(t) in the direction of the f th eigenstate of H0 is df (t)e−iE
(0)
f t/~ where

df (t) = δfi −
i

~

〈
ψ

(0)
f

∣∣∣∣gH1

∣∣∣∣ψ(0)
i

〉∫ t

0
dt′e

−i
(
E

(0)
i −E

(0)
f −

i
τ

)
t′/~

+O(g2)

= δfi −
1

~

〈
ψ

(0)
f

∣∣∣∣gH1

∣∣∣∣ψ(0)
i

〉
1− e−t/τe−i

(
E

(0)
i −E

(0)
f

)
t/~

E
(0)
i −E

(0)
f

~ − i
τ

+O(g2). (383)

So far, we have not made use of the slow removal of the perturbation nor the largeness of t . Let
us focus on the transition probability after a long time t � τ when the perturbation has been

turned off and the hamiltonian is again H0 . Using τ � ~/(|E(0)
i − E

(0)
f |) in the denominator

and t� τ in the numerator,

|df (t� τ)|2 →

∣∣∣∣∣∣∣∣
〈
ψ

(0)
f

∣∣∣∣gH1

∣∣∣∣ψ(0)
i

〉
E

(0)
i − E

(0)
f

∣∣∣∣∣∣∣∣
2

for i 6= f and small g . (384)

Therefore the transition probability is the absolute square of the ratio of the matrix element
of the (time-independent) perturbing hamiltonian H1 between initial and final states and the
difference in energies. We recognize this factor from the formula for the first order correction to
the wave function arising in non-degenerate perturbation theory:

ψi = ψ
(0)
i + gψ

(1)
i , where ψ

(1)
i =

∑
f 6=i

〈ψ(0)
f |H1|ψ(0)

i 〉 ψ
(0)
f

E
(0)
i − E

(0)
f

. (385)

Starting from ψ
(0)
i , due to the effect of H1 , it is as if the system evolved approximately into the

corresponding stationary state ψ
(0)
i + gψ

(1)
i of H0 + gH1 . The perturbation was turned off by

waiting a long time t� τ and we asked for the probability that a measurement of energy causes
the system to collapse to the final eigenstate f 6= i of H0 . This probability is approximately

given by the absolute square of the component of ψ
(0)
i + gψ

(1)
i in the direction of ψ

(0)
f . This was

what we computed in first-order non-degenerate time-independent perturbation theory.

11.4 Impulse approximation

• Here we consider a system in a stationary state subject to a sudden effect that is withdrawn
quickly. For example, a fast electron may pass near a hydrogen atom, or an X-ray pulse may
be shone on an atom for a short duration of time. These impulsive perturbations may end up
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ionizing the atom or exciting it to a new stationary state. We model an impulse at t = 0 by the
hamiltonian

H = H0 + gH1δ(t) (386)

H1 could be quite a big change compared to H0 , so one wonders if perturbation theory is appli-
cable. But the change only lasts a short time and it is the integrated effect that enters the formula
for the transition probability, so perturbation theory could serve as a good approximation. For
t > 0 we find

df (t > 0) = δfi−
ig

~

〈
ψ

(0)
f |H1|ψ(0)

i

〉
e−i(E

(0)
i −E

(0)
f ) t′

~ +· · · ⇒ P (i→ f 6= i, t) =
g2

~2

∣∣∣〈ψ(0)
f |H1|ψ(0)

i

〉∣∣∣2+· · ·
(387)

In particular, there can be no transition to final state f in the impulse approximation, if the
perturbing hamiltonian has zero matrix element (H1)fi between the initial and final states.

11.5 Harmonic perturbation

The effect of electromagnetic radiation on an atom is primarily due to the electric dipole inter-
action between the oscillating electric field of the EM wave and the dipole moment of the atom.
For monochromatic light, the electric field ~E = ~Eo cosωt varies sinusoidally with time but is
roughly constant over the dimensions of the atom (whose hamiltonian is H0 ), so

gH1 = −e~r · ~E0 cosωt (388)

Note that the electromagnetic wave may be due to light that is shone on the atom or could
also arise from light emitted by the atom. Even if light isn’t shone on the atom by an external
agency, there are virtual photons present due to quantum fluctuations of the vacuum and these
could interact with the atom.

• We will consider a general sinusoidal perturbation of the form

H = H0 + gH1 cosωt (389)

If we denote the energies of the initial and final eigenstates of H0 as E
(0)
i,f = ~ωi,f , then

df = δfi −
ig

~

〈
ψ

(0)
f |H1|ψ(0)

i

〉∫ t

0
e−i(ωi−ωf )t′ cosωt′ dt′ +O(g2)

= δfi +
g

2~

〈
ψ

(0)
f |H1|ψ(0)

i

〉[e−i(ωi−ωf+ω)t − 1

ωi − ωf + ω
+
e−i(ωi−ωf−ω)t − 1

ωi − ωf − ω

]
+O(g2). (390)

To understand this result of perturbation theory, we ask for what angular frequency of the
perturbation ω > 0 (e.g. what color of incident light) the transition probability from initial
state i to final state f is significant. This happens if the denominator of one of the two terms is
nearly zero. If ω ≈ ωf − ωi , this corresponds to absorption of a photon by the atom in making
a transition to an excited state. If ω ≈ ωi − ωf , this corresponds to decay of the atom from
an excited state to a lower energy level while emitting a photon. In either case, one of the two
terms dominates and we have the transition probability from state i to state f 6= i given by (±
refer to absorption and emission respectively)

Pi→f (t) ≈ g2

4~2

∣∣∣〈ψ(0)
f |H1|ψ(0)

i

〉∣∣∣2 ∣∣ei(∆ω∓ω)t − 1
∣∣2

(∆ω ∓ ω)2
=
g2

~2

∣∣∣〈ψ(0)
f |H1|ψ(0)

i

〉∣∣∣2 sin2
(

∆ω∓ω
2 t

)
(∆ω ∓ ω)2

for ω ≈ ±∆ω.

(391)
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We used |eiθ− 1|2 = 4 sin2(θ/2) and denoted the change in angular frequency as ∆ω = ωf −ωi .
• P is a probability in the sense that

∑
f Pi→f = 1. However, P is not in general a probability

distribution in the t or ω variables.
∫
dtP (t) =∞ and

∫
P (ω)dω 6= 1 in general.

• An interesting feature of this formula is the possibility of stimulated emission. Suppose there
are two levels at energies ~ω1 < ~ω2 (say the g.s. and an excited state) and we shine light
of frequency nearly equal to ω2 − ω1 on a population of such atoms which are mostly in the
g.s. Atoms that are in state E1 are then likely (with probability P1→2 ) to absorb photons
and get excited to state E2 . On the other hand, suppose many of the atoms were originally in
the ‘population inverted’ excited state E2 and we stimulate them by shining light of frequency
ω ≈ ω2 − ω1 . Then with the same probability as before, P2→1 = P1→2 , those atoms are likely
to emit photons of frequency ω2−ω1 . So the emitted photons have roughly the same frequency
as the stimulating photons. This is called stimulated emission. It leads to a cascade since a
single photon can stimulate an atom to emit a photon of the same frequency and we have two
photons. These two photons can stimulate two other atoms to emit, producing 4 photons, all of
the same frequency ω2 − ω1 . The laser is based on this phenomenon of stimulated emission.

• The above formula says that the probability of the system being found in final state f at
time t oscillates slowly in time with a frequency ∆ω∓ω , which by assumption is much smaller
than ω . So we may maximize our chances of finding the atom in state f by waiting till time
Tn given by one of

Tn =
(2n+ 1)π

∆ω ∓ ω
, n = 0, 1, 2, · · · (392)

For small times t� 2π
∆ω∓ω , the probability of a transition grows quadratically with time.

• On the other hand, suppose we fix a time t . Notice that as the frequency of light ω is tuned off
from the ‘resonant’ frequency ±∆ω , the probability of a transition decays rapidly (quadratically
in 1

∆ω∓ω ). In fact, let us consider the ‘average transition rate per unit time’,

Pi→f (t)

t
≈ g2

~2

∣∣∣〈ψ(0)
f |H1|ψ(0)

i

〉∣∣∣2 sin2
(

1
2(∆ω ∓ ω)t

)
(∆ω ∓ ω)2t

. (393)

If we wait a time t large compared to the period of this oscillatory behavior 2π
∆ω∓ω , then the

transition rate gets more sharply peaked at ω = ±∆ω . Indeed, using a representation of the
Dirac Delta function30

2

π
lim
t→∞

sin2 1
2Ωt

Ω2t
= δ(Ω), and putting Ω = ∆ω ∓ ω, (394)

we get for a harmonic perturbation that lasts for a long time 0 ≤ t ≤ T 31

lim
T→∞

Pi→f (t)

T
≈ g2

4~2

∣∣∣〈ψ(0)
f |H1|ψ(0)

i

〉∣∣∣2 2πδ(∆ω ∓ ω). (395)

30Let Dt(ω) = 2
π

sin2(ωt/2)

ω2t
. Then we see that Dt(ω) → 0 as t → ∞ for any ω 6= 0. Moreover, at ω = 0,

Dt(0) = t
2π
→∞ as t→∞ . So as t→∞ , Dt(ω) tends to a distribution supported at t = 0. To show it is the

Dirac delta distribution we need to show limt→∞
∫
RDt(ω)dω = 1, but in fact this integral U(t) =

∫
RDt(ω)dω = 1

for all t > 0. First by rescaling ω = φ/t we see that U(t) = U(1) . So it only remains to show that U(1) =
1
π

∫
R

sin2 x
x2

dx = 1. This may be established using contour integration.
31Here ω > 0 and ∆ω = ωf − ωi . Absorption: −sign, ∆ω > 0 and ω ≈ ∆ω . Emission +sign, ωf < ωi ,

ω ≈ −∆ω .
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This is called Fermi’s Golden rule. For a harmonic perturbation, the average transition rate
after a long time is proportional to the absolute square of the perturbing hamiltonian between
initial and final states, and is significant only when the frequency of the perturbation matches
the gap between the levels.

11.5.1 Selection rules for transitions due to dipole radiation

• Returning to where we began, one of the most significant early results of quantum mechan-
ics is that an atom does not radiate in a stationary state. E.g. in a stationary state of the
hydrogen atom, though ψ changes with time, the charge density ρ(~r, t) = e|ψ(~r)|2 is time-
independent where e is the electron charge. From E & M a static charge distribution does
not radiate. This solved the classical problem of instability of an atom to radiation. In E
& M we learn that the simplest and dominant type of radiation is dipole radiation, arising
from a time-dependent electric dipole moment vector. The expectation value of the dipole mo-
ment of the hydrogen atom in a stationary state ψnlm is not just time-independent but zero:
e〈nlm|~r|nlm〉 = e

∫
~r|ψ(~r)|d3r = 032. So there is no dipole radiation (absorbed/emitted) for an

‘isolated’ atom in a stationary state.

• But even atoms in stationary states often collide with neighboring atoms or with photons and
emit and absorb radiation by making transitions between electronic stationary energy levels. In
the dipole approximation, the perturbing hamiltonian is

gH1 cosωt = −~d · ~E0 cosωt, where ~d = e~r (396)

is the dipole moment. For instance let us consider light polarized along ẑ , ~E0 = E0ẑ . Then the
probability of a transition from i→ f

Pi→f (t) =
e2E2

0

~2
|〈ψf |z|ψi〉|2

sin2 1
2(∆ω ∓ ω)t

(∆ω ∓ ω)2
. (397)

Let us specialize to the case of hydrogen. For such a transition to take place (by the absorp-
tion/emission of light polarized along ẑ ), the matrix element 〈n′l′m′|z|nlm〉 must be non-zero.
More generally, the relevant matrix elements are 〈n′l′m′|~r|nlm〉 where ~r = (r1, r2, r3) = (x, y, z).
If this matrix element is zero, a dipole transition is forbidden at first order in perturbation theory.
We may factorize these matrix elements into three integrals using ψnlm ∝ Rnl(r)Plm(cos θ)eimφ :

〈n′l′m′|ri|nlm〉 ∝
∫
Rn′l′m′(r)

∗Rnlm(r)r3dr

∫ 2π

0

dφei(m−m
′)φ

∫ π

0

Pl′m′(cos θ)∗Plm(cos θ)
xi
r

sin θ dθ.

(398)

The r -integral just alters the intensity of the radiation for a given transition. But the θ or φ
integrals could vanish. For example, for x3 = z = r cos θ the matrix element is zero if m′ 6= m :

〈n′l′m′|z|nlm〉 ∝
∫ 2π

0
ei(m−m

′)φ

∫ π

0
Pl′m′(cos θ)∗Plm(cos θ) sin θ cos θ dθ ∝ δmm′ . (399)

32There is no preferred direction picked out by |ψnlm|2 ∝ |Rnl(r)|2|Plm(θ)|2 . More precisely, |ψ(−~r)|2 = |ψ(~r)|2
so that the charge distribution is symmetric under ~r → −~r . Under r̂ → −r̂ (θ, φ) → (π − θ, π + φ) Since |ψ|2
is independent of φ we only need to examine the transformation of Plm(θ) under θ → π − θ which is the same

as cos θ → − cos θ . Plm(x) are found to be either even or odd in x = cos θ . Plm = (1 − x2)|m|/2d
|m|
x Pl(x) and

Pl(x) are themselves alternatively even and odd in x . In either case |Plm|2 is symmetric under θ → π− θ . E.g.,
state nlm = 210 : |R(r) cos θ|2 is larger along the polar z -axis θ = 0, but is symmetric under z → −z , so there

is no preferred direction for 〈~d〉 to point in.
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For ẑ polarized light the transition probability is zero unless m = m′ . This is the simplest
selection rule.

• For light polarized in the x-y plane, it is convenient to consider the matrix elements of
x ± iy = r sin θe±iφ (from which the matrix elements of x and y may be obtained by adding
and subtracting.)

〈n′l′m′|x± iy|nlm〉 ∝
∫ 2π

0
e±iφei(m−m

′)φ dφ ∝ δm′,m±1. (400)

Thus for light polarized in the x-y plane, we have the selection rule m′ = m±1 or 〈n′l′m′|x|nlm〉 =
〈n′l′m′|y|nlm〉 = 0. This may be understood is we assume the photon γ has spin one, and there-
fore Sγz = 0 or ±~ . So by conservation of the z -component of angular momentum, the change
in electronic Lz , i.e., ∆ml , must be 0 or ±1

• One also obtains another selection rule l′ = l ± 1 by considering the θ -integral in the matrix
elements 〈n′l′m′|xir |nlm〉 . This rule is a consequence of two general facts. (1) Harmonics Pl′m′

and Plm of distinct angular momenta l, l′ (but same m) are orthogonal; and (2) xi
r × a harmonic

of order l can be expressed as a linear combination of harmonics of order l − 1 and l + 1.

• In the case of z -polarization we already know that m′ = m so we need only consider the
integral

〈n′l′m′|z|nlm〉 ∝ δmm′
∫
Pml′ (cos θ) Pml (cos θ) cos θ sin θ dθ (401)

Using the recursion & orthogonality relations for associated Legendre functions (in Liboff’s
conventions)

(2l + 1) cos θ × Pml = (l +m)Pml−1 + (l −m+ 1)Pml+1 and

∫
Pml′ P

m
l sin θ dθ ∝ δll′ (402)

we find
〈n′l′m′|z|nlm〉 ∝ δm′m

[
(l +m)δl′,l−1 + (l −m+ 1)δl′,l+1

]
(403)

In other words, for ẑ -polarized light, transitions are forbidden unless m′ = m and l′ − l = ±1.

• Similarly, we now show that 〈n′l′m′|x|nlm〉 and 〈n′l′m′|y|nlm〉 vanish if m′−m 6= ±1 (already
shown) and l′ − l 6= ±1. Let us consider the matrix element of x+ iy = r sin θ eiφ :

〈n′l′m′|x+ iy|nlm〉 ∝
∫
Pm

′
l′ P

m
l sin2 θ dθ

∫
ei(m−m

′+1) dφ (404)

and utilize the recursion relation

(2l + 1) sin θ × Pml = Pm+1
l−1 − P

m+1
l+1 (405)

and above orthogonality condition to find

〈n′l′m′|x+ iy|nlm〉 ∝ δm′,m+1

∫ (
Pm+1
l′ Pm+1

l−1 − P
m+1
l′ Pm+1

l+1

)
d cos θ ∝ δm′,m+1

(
δl′,l−1 − δl′,l+1

)
.

(406)
The matrix element of x + iy vanishes if m′ 6= m − 1 and l′ 6= l ± 1. As for x − iy we do
something similar, though the recursion relation is used on the primed indices

(2l′ + 1) sin θ × Pm′l′ = Pm
′+1

l′−1 − P
m′+1
l′+1 (407)
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so that

〈n′l′m′|x− iy|nlm〉 ∝ δm′,m−1

∫
Pm

′
l′ sin θ Pml d cos θ ∝ δm′,m−1

∫ (
Pml′−1 − Pml′+1

)
Pml d cos θ

∝ δm′,m−1

[
δl′−1,l − δl′+1,l

]
(408)

• Thus, for dipole radiation, we must have the selection rules l′ = l ± 1. We can understand
this if we assume the photon has spin one. So the composite of an electron with orbital angular
momentum l and a photon of spin one behaves as a system with angular momentum l′ = l − 1
or l′ = l or l′ = l + 1. But the l→ l transition has zero matrix element (as shown above or by
the parity argument below) and we have the selection rules

∆m = 0,±1, and ∆l = ±1. (409)

We could turn the argument around to infer that photons have spin one, based on the obser-
vation that atoms make transitions with ∆l = ±1 and ∆m = 0,±1 accompanied by emis-
sion/absorption of single photons.

• One consequence is that the transition 1S → 2S is forbidden at first order. Similarly, the 2S
level is stable against emission of dipole radiation in first order of perturbation theory, since there
is no lower level to go to. This accounts for the experimentally observed long life-time of the 2S
level. Dipole transitions between a pair of S-wave states are forbidden for the same reason. The
2P state 211 can decay to the g.s. 100 by emitting a photon but it can’t ‘decay’ to 200 since
there is no energy difference. But 211 can decay/be excited to 210 by emission/absorption of
a photon when the two levels are split in the presence of a magnetic field.

11.5.2 Use of parity to obtain a selection rule

• As an example to illustrate the use of parity, let us show that if l′ = l , then the matrix element
〈n′lm′|ri|nlm〉 must vanish for each of the components of ~r .

• First we note that if |f〉 and |g〉 are states of opposite parity, (say without loss of generality)
Pf = f, Pg = −g , then 〈f |g〉 = 0. This is because P2 = I and P = P† , so

〈f |g〉 = 〈f |P2|g〉 = 〈Pf |Pg〉 = −〈f |g〉 ⇒ 〈f |g〉 = 0. (410)

So states of opposite parity are orthogonal. We will show that riψnlm(r, θ, φ) and ψn′lm′(r, θ, φ)
are states of opposite parity. This will imply that the matrix elements of the electric dipole
energy vanishes between states with the same value of l . Thus there cannot be any electric
dipole transition between them at first order in perturbation theory.

• Now parity acts by (r1, r2, r3) 7→ (−r1,−r2,−r3). In spherical coordinates this is P :
(r, θ, φ) 7→ (r, π − θ, π + φ). Now ψnlm = Rnl(r)Plm(cos θ)eimφ where

Plm(x) = (1− x2)|m|/2d|m|x

1

(2l)!!
dlx(x2 − 1)l (411)

Under parity x = cos θ → −x = − cos θ . So it is seen that Plm(−x) = (−1)l+|m|Plm(x). On the
other hand Peimφ = (−1)meimφ . Since (−1)m+|m| = 1 we find that

PYlm = (−1)lYlm and Pψnlm = (−1)lψnlm. (412)
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Furthermore, riψnlm has parity opposite to that of ψnlm since ri changes sign under parity:

Priψnlm = −(−1)lriψnlm. (413)

So we conclude that ψn′lm′ and riψnlm which have the same value of l are states of opposite
parity. So their inner product vanishes and we have the selection rule l′ 6= l for dipole radiation!
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