Quantum Mechanics 1, Spring 2011 CMI

Problem set 3
Due by the beginning of class on Friday January 28, 2011
Waves and cavity radiation

1. Find a simpler expression (as the product of two traveling waves) for the superposition of three waves with slightly different wave numbers and frequencies of the form

$$
\begin{equation*}
\psi(x, t)=\psi_{-}+\psi_{0}+\psi_{+}=\sin ((k-\delta k) x-(\omega-\delta \omega) t)+2 \sin (k x-\omega t)+\sin ((k+\delta k) x-(\omega+\delta \omega) t) \tag{1}
\end{equation*}
$$

Hints: Combine them in a convenient order! $\langle 2\rangle$
2. Find the intensity of the combined wave and plot it at a convenient time. Describe the resulting waveform. You may assume $\delta k \ll k$ and $\delta \omega \ll \omega$. 〈3〉
3. Explain how you can assign a pair of speeds to the above waveform. Find formulae for the speeds, give them appropriate names. $\langle 2\rangle$
4. Explain how to assign a reasonable width to the constituents of the above waveform and find a formula for the width. Are the constituents more or less sharply localized than when we combine just two of the waves? $\langle 3\rangle$
5. How many waves do you think need to be combined to form a wave packet whose intensity decays away from a single region of localization. $\langle 2\rangle$
6. What is the definition of the spectral radiance $u(v)$? Work out the dimensions of the RaleighJeans and Planck distributions $u(v)$ and check that they have the dimensions appropriate to the above definition. $\langle 2\rangle$

$$
\begin{equation*}
u_{R J}(v)=\frac{8 \pi v^{2}}{c^{3}} k T, \quad u_{P}(v)=\frac{8 \pi v^{2}}{c^{3}} \frac{h v}{e^{h \nu / k T}-1} \tag{2}
\end{equation*}
$$

7. Wien's empirical law $\lambda_{\max } T=\kappa$ states that the wavelength at which a body radiates maximally is inversely proportional to the temperature. Obtain this law from Planck's distribution for the spectral radiance $u_{P}(v)$ and find the constant $\kappa .\langle 5\rangle$
8. Consider standing waves of the form $\sin \left(k_{1} x\right) \sin \left(k_{2} y\right) e^{i \omega t}$ in a two-dimensional square cavity of side $L(0 \leq x \leq L, 0 \leq y \leq L)$. Assuming the waves vanish on the boundary, express the allowed values of k_{1} and k_{2} in terms of appropriate non-negative integers n_{1}, n_{2} and find the relation between $k=\sqrt{k_{1}^{2}+k_{2}^{2}}$ and $n=\sqrt{n_{1}^{2}+n_{2}^{2}} .\langle 1.5\rangle$
9. What is the relation between n and the frequency v ? $\langle 1\rangle$
10. Find an approximate formula for the number of standing electromagnetic waves $g(v) d v$ in the above square in the frequency range $[v, v+d v]$ for v large enough. Keep in mind that an electromagnetic wave in 2 spatial dimensions has only one polarization state. $\langle 2\rangle$
11. Assigning an energy of $k T$ to each standing wave in equilibrium at temperature T, find the analogue of the Raleigh-Jeans distribution for the above square cavity. $\langle .5\rangle$
12. What is the total energy per unit area radiated across all frequencies? Is there an ultra-violet catastrophe in this planar case? $\langle 1\rangle$
