Quantum Mechanics 1, Spring 2011 CMI Problem set 13 Due by beginning of class on Monday April 18, 2011 Angular momentum

1. Using the expressions for the differential operators L_z, L_x, L_y in spherical coordinates

$$L_{z} = -i\hbar\frac{\partial}{\partial\phi}, \quad L_{x} = i\hbar\left(\sin\phi\frac{\partial}{\partial\theta} + \cot\theta\cos\phi\frac{\partial}{\partial\phi}\right), \quad L_{y} = i\hbar\left(-\cos\phi\frac{\partial}{\partial\theta} + \cot\theta\sin\phi\frac{\partial}{\partial\phi}\right)$$
(1)

show that the square of angular momentum $L^2 = L_x^2 + L_y^2 + L_z^2$ takes the simple form

$$L^{2}\psi = -\hbar^{2} \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\psi}{\partial\theta} \right) + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}\psi}{\partial\phi^{2}} \right].$$
(2)

Hint: For brevity, denote partial derivatives by subscripts.

2. We saw that L^2 and L_z are compatible observables, $[L^2, L_z] = 0$. Here we begin the task of finding common eigenstates for L^2 and L_z . Define the raising and lowering operators

$$L_{+} = L_{x} + iL_{y}, \quad L_{-} = L_{x} - iL_{y}, \quad L_{\pm} = L_{x} \pm iL_{y}.$$
 (3)

(a) Show that

$$[L^2, L_{\pm}] = 0$$
 and $[L_z, L_{\pm}] = \pm \hbar L_{\pm}.$ (4)

(b) Now suppose ψ is a simultaneous eigenfunction of L^2 and L_z

$$L^2 \psi = \lambda \psi, \quad L_z \psi = \hbar m \, \psi. \tag{5}$$

What are the physical dimensions of λ and *m*? Is *m* the mass of the particle?

- (c) Can λ be less than zero? Why? Give a state ψ for which λ is zero.
- (d) Using the commutation relations (4), show that $L_{\pm}\psi$ are also eigenfunctions of L^2 . What are the corresponding eigenvalues?
- (e) Show that $L_{\pm}\psi$ are eigenfunctions of L_z . What are the corresponding eigenvalues?
- (f) Suppose $L^2 \psi = \lambda \psi$ and $L_z \psi = \hbar m \psi$. How large and how small can *m* be compared to λ ? Hint: Use positivity of $L^2 = L_x^2 + L_y^2 + L_z^2$.