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2 Events, sample space, probabilities and combination of events

Outcomes of an experiment. Suppose the performance of an experiment can lead to vari-
ous mutually exclusive outcomes. E.g.: (a) Tossing a coin can lead to the outcomes heads and
tails. (b) Rolling a die can lead to the outcomes 1,2,3,4,5,6 displayed on the die. (c) Switching
on a digital thermometer can lead to outcomes consisting of temperature estimates such as 24.1,
22.5. 23.0 Celsius etc.

Elementary events are the possible mutually exclusive outcomes of an experiment. The typ-
ical elementary event is denoted w. The set of possible elementary events of a given experiment
is called the sample space, denoted €.



General events. Event A is associated to the elementary events of an experiment if given
any elementary event, we can say whether or not the outcome w leads to the occurrence of A.
For example, event A could be that the outcome of rolling a die is even. In this case, there are
three elementary events w = 2,4, 6 that lead to the occurrence of A. Thus, a general event A
is associated to a set of elementary events. Bearing this in mind, we may view an event A as
simply a subset of the sample space 2.

Probability of an event when outcomes are equally likely. Consider an experiment
with a finite number N of mutually exclusive outcomes. This means the sample space €2 is a
finite set of N elementary events. Suppose further that the elementary events are all equally
likely. Then the probability of the event A is defined as the fraction of outcomes in which A
occurs: P(A) = N(A)/N where N(A) is the number of elementary outcomes leading to the
occurrence of A. For example, in the rolling of a die, the event A corresponding to an even
outcome has probability P(A) = 3/6.

Frequentist definition of probability. Experience allows us to extend the notion of proba-
bility beyond experiments with equally likely outcomes. Suppose an experiment can be repeat-
edly performed resulting in a sequence of independent trials under the same conditions. These
trials may be the repeated tossing of a coin or the repeated estimation of the direction of wind
in the horizontal plane at a fixed point in a room. In each of these trials, we suppose that (based
on chance) an event A of interest either occurs or does not occur. The event A could be, for
instance, the occurrence of heads or the wind direction lying between North and North-East.
Now, suppose the experiment is repeated n times and the event A occurs in n(A) of the trials.
Then the relative frequency of the event A in the given sequence of trials is n(A)/n. Remark-
ably, it is found that the relative frequencies arising in different sequences of n trials approach
a common value as the number of trials grows indefinitely. This limiting frequency’

P(A) = nhﬁnéo n(A)/n (1

is called the probability of the event A in the given experiment.

e Evidently, the probability of any event A must be a real number with 0 < P(A) < 1.

e A pair of events A; and A, are mutually exclusive or incompatible if they cannot both occur
simultaneously. For example the events corresponding to an even and an odd outcome from the
roll of a die are incompatible. Viewed as subsets of the sample space {2, mutually exclusive
events have empty intersection. An event A and its complement A (the event that A does not
occur) are mutually exclusive.

Combining events. Unions and intersections of sequences of events are defined in a natural
way. One often abbreviates A N B = AB. The difference between two events A; \ As is one
where A1 occurs but As does not. In particular A = Q \ A.

Visualizing relations between events. It is convenient to represent the sample space ) by
a plane region whose points are the elementary events. Then events, which are subsets of 2
are represented by various subsets of the plane region. In particular, A; is the complement of
Aj1. The complement of €2 is the empty set () corresponding to the event that nothing happened.
Mutually exclusive events are represented by disjoint subsets. Draw figures to illustrate the
following general relations (i) If A1 C As then Ay D Ay, (DIfA = AL U Ay then A =
AiNAzand (c)If A = A; N Ay then A = A; U Ay. More generally, given a relation between
events, we may obtain an equivalent relation by replacing events by their complements and
changing U, N, C, D toN,U, D, C.

IThis formula is further justified by the strong law of large numbers.



Addition law for probabilities. Suppose A; and A are a pair of mutually exclusive events
associated with the outcomes of a random experiment and let A = A; U A>. Suppose the exper-
iment is repeated n times resulting in a series of independent trials under identical conditions.
Let n(A1), n(Az2) and n(A) be the number of trials in which A, A2 and A occur. Since they
are mutually exclusive, n(A) = n(A41) + n(A2) whence

n(4) _ n(Ay) | n(ds).

(@)

For large n, these relative frequencies approach limits which coincide with the corresponding
probabilities. Thus, for mutually exclusive events,

P(A1 UAQ) :P(A1)+P(A2) 3)

Similarly, if A1, A2, As are mutually exclusive, then A; U Ag is mutually exclusive of As.
Applying the previous addition law twice,

P(A1UA2 UA3) =P(A1) + P(A2) + P(As). 4)

This addition law extends to n mutually exclusive events for n = 2, 3,4, .. ..
eP()=1and P(P) =0

3 Conditional probability and statistical independence

Conditional probability. This concerns how the occurrence of one event is influenced by
that of another event. The probability of A occurring given that B is known to have occurred is
denoted P(A|B) and may be expressed as

P(A|B) = P(AB)/P(B), ©)

assuming P(B) # 0 (so we cannot take B = ). This may be understood by writing it as
P(AB) = P(B)P(A|B). In other words, the probability that both A and B occur may be
factorized as the product of the probability of B times the probability that A occurs given that
B did. Evidently, one also has P(AB) = P(A)P(B|A).
e Some consequences of the definition of conditional probabilities follow.

. Since P(AB) < P(B), conditional probabilities must lie in the interval [0, 1]

. If A and B are mutually exclusive, P(A|B) = 0 = P(BJA).

1
2
3. If B implies A so that B C A, then P(A|B) = 1.
4

. Suppose A1, As,- - are mutually exclusive events with (disjoint) union A = Uy Ay.
Then
P(A|B) = P(AB). (6)
k
5. Suppose A1, As, - - - is an exhaustive collection of mutually exclusive events in the sense

that precisely one of the Ay always occurs (Ui A = ), then

P(A) = ZP(A|Ak) for any event A. ™)
ko

This formula is often helpful in calculating P(A).



Statistical independence. Two events A; and A are said to be statistically independent or
simply independent if the probability that both occur factorizes as a product:

P(A;1As) = P(A1)P(Ay). ®)

If this factorization does not hold, the events are statistically dependent.

This definition is motivated by the intuitive idea that A; and A2 are independent, if the
occurrence of Ay has no bearing on the probability of occurrence of A; and vice versa. In
terms of conditional probabilities, this is the assertion that

P(A1|A2) :P(Al) and P(A2|A1) :P(AQ) (9)
It follows that P(AlAQ)/P(AQ) = P(Al)
Statistical independence generalizes to several events. A, --- , A, are mutually inde-

pendent if the probability that any ¢ (for 2 < g < n) of them to occur simultaneously factorizes
as a product of individual probabilities:

P(Ai4;) = P(A)P(4;), P(AiA;Ax) = P(A)P(A;))P(Ak),- -,
P(A1Az---A,) = P(A)P(A2)---P(Ay), (10)
for all combinations of indices such that 1 < ¢ < j < --- < n. Notice that mutual indepen-

dence is a stronger condition than pairwise statistical independence.
4 Random variables and probability distributions

Random variable. Suppose ) is a sample space of events. A real random variable £ is a
function that assigns a real number to each elementary event w € €2. For a coin toss, the
function &(heads) = 1, &(tails) = —1 is an example of a random variable. Of course, there are
other random variables such as n(heads) = 23.45 and n(tails) = —n /7.

Probability distribution of a random variable. Let P{z’ < ¢ < 2"’} be the probability
of the event that £ lies in the interval [x’, z"’]. Knowledge of P{z’ < ¢ < "} forall 2’ < x”
is said to characterize the probability distribution of the random variable &.

Discrete random variable. A random variable £ is discrete (or has a discrete distribution)
if it takes only a finite or denumerably infinite number of distinct values x with probabilities

Pe(x) = P{{ =z}, a1
subject to the condition that
> Pe(ai) =1. (12)
icl

Here z; (for ¢ in some index set I) denote all the possible values taken by £. For the above
random variable associated to a fair coin, P¢(+1) = 1.
e For a discrete random variable,

P{e' <¢<a"}= S Pew). (13)

i€l, o/ <z; <z’

e The probability density function (PDF) for a discrete random variable ¢ that takes the values
x; with probabilities P¢(z;), is defined as a sum of Dirac delta functions

pe(r) =D Pe(w:)d(z — xs). (14)

iel



The utility of this definition is that the above sums of probabilities may be written as integrals:

oo

P{z' <¢<2'’} = / pe(x) dx. (15)

Such formulae then apply also to continuous random variables which we turn to next.

Continuous random variable and probability density. The random variable ¢ is con-
tinuous (or has a continuous distribution) if

"

P{x' <¢<a'} = / pe(x) dz, (16)
where the probability density function p¢ () is a nonnegative function with unit integral
/ pe(x)de = 1. (17)
— 00

Assuming that pe(x) is a continuous function, the probability of the event £ = x is zero:
P{¢ = x} = 0 since it is the integral of a continuous (and hence bounded) function over an
interval of zero length. However, the probability that £ lies in a dx neighborhood of x is given
by P{{ € [z,z + dz]} ~ pe(x) du.

Cumulative distribution function. The (cumulative) distribution function (CDF) ®¢(x)
is defined as the probability of the event that £ < x:

De(z) =P{{ <z} for —o0<z<o00. (18)

It follows from the definition that limg o P¢(z) = 1.
e For a discrete random variable, the cumulative distribution is a staircase function

De(x) = Y Pe(wi) =D Pe(w)0(x — ) (19)

icl,r;<x el

where 0(x) is the unit step function, equal to 0 for z < 0 and 1 for z > 0. At the discrete
values x; taken by the random variable, ®¢(z) jumps up by Pe(z;).
e For a continuous random variable,

oe(o) = [ pelal)do’ 0)
Evidently, the cumulative distribution function is a nondecreasing function.

e The derivative of the cumulative distribution function is the probability density

d‘bg (I)
dx

= pe(). 2L

This formula also applies to a discrete random variable if we define the derivative of the unit
step function 0(x) to be the Dirac delta function §(z).



Mixture of discrete and continuous distributions. There are situations where a random
variable is neither discrete nor continuous but a mixture of both. The density of states of a
quantum system with partly discrete and partly continuous energy spectrum is of this sort. The
corresponding probability density function is a sum of a continuous function p¢ and a weighted
sum of Dirac deltas:

pe(x) = pe(x) + Y Pe(:)d(x — m:). (22)
i€l
To qualify as a probability density, we must of course have

/ pe(x)dz + > Pe(xs) = 1. (23)

5 Joint distribution and independent random variables

Joint probability distribution and density. The joint probability distribution of a pair of
discrete random variables 1, £2 is characterized by the probabilities

Py gy (w1, 22) = P{&1 = 1,62 = 22}, (24)

We may say that £ = (£1, £2) is a 2 dimensional vector-valued random variable. The probability
of the event (§1,&2) € B where B is a subset of R?is

P{(&,&)€BY= Y Pz, m2). (25)

(z1,22)€EB

The joint probabilities may be expressed in terms of conditional probabilities:
Pey o (21, 22) = Pey g, (21]22) Pe, (22). (26)

Here P, |¢, (21]|x2) is the probability that &; takes the value 1 given that &> takes the value x2.
e For a pair of continuous random variables {1, £2, by the joint probability density, we mean a
function pe, ¢, (z1, x2) such that the probability of any event of the form (£1,&2) € B is given
by

P{({1,&) € B} = // DPe1 &0 (71, 22) dr1das. 27
B

e The joint density of £; and &2 can be expressed in terms of the conditional probability density:
Pen (T, y) = el (x]y)py (y)- (28)
Independent random variables. A family of random variables &1, &2, - -+ , &, is statisti-
cally independent if the events x}, < & < z for k = 1,2,--- ,n are independent for any
xy, < . The infinite sequence of random variables 1, €2, - - - are statistically independent if

&1,&2,- -+ , &, are independent for eachn = 2,3, --.

e Recall that independent events were defined via factorization of probabilities. It follows that
the joint probability distribution of a pair of independent random variables is such that

Pey ey (21, 22) = Pey (21) Pey (22)  and  pg, g, (01, 72) = pey (T1)pey (x2)  (29)

for discrete and continuous random variables &; and & respectively.



Marginal distribution Suppose ¢ and 7 are a pair of discrete random variables with joint
probability distribution encoded in the probabilities Pk ,,(z,y). We wish to find the (marginal)
probability distribution of one of them, say, £ without reference to the value of 1. Since we
must account for all possible values of 7, the marginal distribution of £ is obtained by summing
over all possible values of i

Pe(z) = Pen(,y;). (30)
Yj

If P, is normalized to have integral 1, then check that P is automatically normalized to one.
e Suppose the values of the probabilities Pk ,,(z,y) are written in a rectangular array with rows
labelled by ¢ and columns by n. Then the marginal probabilities of £ and 7 are obtained by
adding up the entries in each row or column. These sums are conventionally written along the
margins of the paper on which the array is written down. This explains the name marginal
distribution.

e Analogously, for a pair of continuous random variables &, n the marginal density of £ is given
by averaging over all possible values of 7:

pe() = / pen(@,y) dy. 31)

e The same averaging procedure is used in the construction of the reduced density matrix of
a subsystem by tracing over the remaining degrees of freedom in the system. The idea of
a marginal distribution also finds use in the passage from the micro-canonical to canonical
distributions in classical statistical mechanics.

Convolution: distribution of the sum of two independent random variables. Sup-
pose &1 and & are a pair of independent continuous random variables with probability densities
pe, (z1) and pe, (x2). Then the probability density of their sum 7 = &1 + &2 is given by the
convolution -
palo) = [ by - alpes (o) do ()
—o0
To see why this is the case, we begin by noting that on account of their independence, the joint
probability density is given by pe, ¢, (€1, Z2) = pe, (X1)pe, (x2). It follows that the probability
that 7 lies in the interval [y, '] is given by

Py <<y} = / / P, (1)pe (22) dary iy
y' <z14xo <y’

y// o)
/ dy / Pey (y — @)pe, (x) do (33)
y’ —oo

where we let y = x1 + 2 and denoted x> by x.

Uniform distribution. Suppose a point ¢ is ‘tossed at random’ into the interval [a, b]. This
means the probability of ¢ falling in the subinterval [z',2”] C [a,b] is independent of the
location of the interval. In other words, this probability must be translation invariant: P{{ €
[z, 2"} = P{€ € [z’ + ¢, 2" + ]} for all ¢ not too big in magnitude. Thus this probability
can depend on z’ and z”’ only through the length 2’/ — z’: ie., P{¢ € [2',2"]} = f(2" —
x'). Furthermore, using the idea of mutually exclusive events, the probability of falling in a
subinterval of length [ 41’ is equal to the sum of probabilities of falling in subintervals of length
land length I’. So f(I +1") = f(I) + f(I') for any allowed ,1’. It can be shown that such a



function is either linear f(l) o ! or unbounded for every . However, f(I) < f(b—a) = 1 for
every | < b — a. It follows that f(I) =1/(b — a). Thus

"

, . m//_m/ x dx
P/ <¢<a} = — :/, — (34)

Thus £ is a continuous random variable with probability density

1/(b—a) if a<z<b
= 35
pe(®) {0 if z<a or x>0 (35)

It is said to have a uniform distribution.

e Statistical characterization of a probability distribution. Since random variables take a
variety of values in different trials of an experiment, we say that a random variable fluctuates. In
physics such random variations (say in the position of a particle or pressure of a gas) typically
arise due to quantum and thermal fluctuations. This means we need to treat the behavior of
random variables probabilistically. We can characterize the distribution of a random variable
using some statistical quantities. The mean value is the simplest of them. Fluctuations around
the mean measure the width of the probability density function and are encoded in quantities
such as the variance. Moments are more general quantities that measure fluctuations. In what
follows, we will introduce these quantities and study their properties and interpretation.

6 Expectation or mean value

Expectation value. The expectation value or mean/average value of a discrete random vari-
able with probability distribution P¢(z) = P{¢ = z} is defined as a weighted sum of all values
that the random variable takes:

E¢= () =) aP{{=w} = ziPe(w), (36)
iel el

assuming the series converges absolutely. If n = () is some function of the random variable
&, then

En = (p(€)) = Z (@) Pe (1) 37)

To see why, we note that 7 is a discrete random variable that takes the values y = (). If ¢ is
not one-to-one there may be several values of x corresponding to a given value of y. Thus,

Py(y) =P{n=y}= >  Pe(a). (38)
zip(z)=y
Consequently,
(= yP) =y > Pela) =) ol:)Pe(w). (39)
Y Yy xip(r)=y i

e The expected value of a continuous random variable £ with probability density function pe (x)
is

(€ = / ~ apels) da. (40)



As before, if n = (), then

oo

((€)) = / o(@)pe(z) da. 1)

—o0

e More generally, if (&, ) is a function of a pair of discrete or continuous random variables
with probability distribution P ,(x,y) or probability density function p¢ ,(x, y), then

(pl&m) = Z@(xuyj)Ps,n(%yj) or

ij
wen) =[] ewnPestay) dody 2)
Properties of expectation value. We list some basic properties of the expectation value of
discrete as well as continuous random variables

1. (1) = 1. One way to interpret this is via (1) = [*_pe(x)dz = 1.

2. (c&) = (&) for any real constant c.

3. (&1 + &) = (&1) + (&2) for a pair of random variables &1 and &2 with expectation values
appearing on the right.

4. The expectation of a nonnegative random variable is nonnegative: If £ > 0, then (§) > 0
and more generally, if & < &2, then (&1) < (&2).

5. Suppose &1 and &5 are independent random variables. Since the joint probability density
of a pair of independent random variables factorizes, ({1&2) = (£1)(&2).

e The expectation value of a random variable £ that is uniformly distributed in the interval
[a,b] is (a + b)/2. In fact, the probability density is 1/(b — a) for a < z < b and zero outside
the interval, so that

b ¢dx a+b

&=] g7a="5" (43)

7 Mean square, Chebyshev’s inequality and variance

Mean square value. By the mean square value of a real random variable £ we mean the
expectation value of £%:

(€)= Y atpw) or (€)= [a*pe(a)do @)

according as £ is discrete or continuous.
Chebyshev’s inequality. For any real random variable and any € > 0,
1
P{i¢| > e} < 5 (€7). (45)

We will use Chebyshev’s inequality to establish the (weak) law of large numbers in §2?. To
establish Chebyshev’s inequality, consider the new ‘piece-wise constant’ random variable n

defined for any € > 0 by
0 if &2<é
= - 46
K {62 if &2 > € (46)



Roughly, where £2 is smaller than an arbitrary threshold value €2, 7 vanishes while when when
&2 exceeds the threshold, 7 takes the constant threshold value. By construction, n < £2. It
follows that

(m < (&%) or EP{¢] > e} <(€7), (47)
which is Chebyshev’s inequality (45). To heuristically interpret Chebyshev’s inequality, sup-
pose 5 (¢%) < 4. Then P{|¢| < e} > 1 — 4. Soif § is small, then |¢| < e with a high
probability. In particular, if the mean square value (€2) = 0, then & = 0 with probability one.
Roughly speaking, if the mean square value is small, then the random variable is likely to be
small.

Variance or dispersion of a random variable. By the variance or dispersion of the ran-
dom variable £ we mean the mean square value of £ — (£):

var(€) = D€ = ((€ — (£))*) = (€% — 26(¢) + (6)")) = (€*) — (&)°. (48)

Note that (¢ — (£)) is identically zero. This is why we squared it before taking the expectation
value.
e Standard deviation. The square-root of the variance is called the standard deviation o (&)

o(§) = v/var(§). (49)

The dispersion and standard deviation are measures of the fluctuations of £ around its mean
value.

o Properties of the dispersion or variance
1. var(1)=0
2. var (c€) = ¢? var (£) for any real number c.

3. If & and & are independent random variables, then
var (&1 + &2) = var (&1) + var (&2). (50)

Show that this is true using the property that the expectation value of a product of inde-
pendent random variables factorizes: (£1€2) = (£2)(&2).

e What is the variance of a random variable £ with a uniform distribution on the interval [a, b]?

Covariance. Given a pair of random variables £ and 7, we define their covariance by

cov(&,m) = (€ — () (n — (m))- (51)

Evidently, it is symmetric: cov(§,n) = cov(n,&). The covariance is a measure of the cor-
relation between random variables. If £ and n are independent random variables then their
covariance vanishes. On the other hand, if n = £ then cov(&,n) = cov(£,€) = var €.

e For any pair of real random variables (not necessarily independent), show that

var (€1 + &) = var (&) + var (€2) + 2 cov(&1, &2). (52)

10



8 Moments, cumulants, generating and characteristic functions
Moments. Given a random variable &, its moments G, when they exist, are defined as
Gn=E&" = (") for n=0,1,2,.... (53)

Evidently, Go = 1, G1 = E¢ is the expected value and G2 = (£2) is the mean square value.
Moreover, the variance is given by D¢ = G2 — G3. If £ is discrete, taking the values z; with
probability P¢(z;), then

Gn=E" = Pe(x:)a} (54)
while for a continuous random variable with probability density pe (z),
G, = / x"pe(x) dz. (55)

Of course, not all moments may exist. If pe(x) goes to zero exponentially fast as |z| — oo,
then all moments are guaranteed to exist.

Generating function for a discrete random variable. Suppose ¢ is a discrete ran-
dom variable taking the values 0,1,2,... with probabilities P{{ = k} = P:(k) for k =

0,1,2,3,.... Associated to such a discrete random variable is a generating function, which is
the function of a complex variable defined as

Fe(z) =) Pe(k)z" for |2 < 1. (56)
k=0

Clearly, F:(1) = 1. Since Pk is a probability distribution, the series converges for |z| = 1.
In fact, the series defines an analytic function for |z| < 1. What is more, we may recover the
probability distribution of £ via derivatives of F¢ at z = 0. In fact,

Pe(k) = %Fé’“’(o). (57)
Interestingly, for any fixed z, F¢(z) may be interpreted as the expectation value of the random
variable z%:
Fe(z) = (2%) = ) Pe(k)2". (58)
k>0
Differentiating this expression successively with respect to z and putting z = 1 allows us to
express the moments of £ in terms of derivatives of F' at z = 1. For instance,

F'(z)= (") = F'(1)=(¢) =0, (59)

and

F'(z) = (-1 = G=({)=F'(1)+F (). (60)
e The generating function of a sum of independent random variables each taking the values
k = 0,1,2,3,... is the product of individual generating functions. In fact, suppose & =
&4+ &, Then

Fg(Z) _ <Z€1+m§n> _ <Z£1252 . ”Zin> — H<Z§z> — HF&(Z) 61)

A similar factorization is used in calculating the partition function of a system of noninteracting
(free) particles in statistical mechanics.

11



Characteristic function. Given a real random variable ¢, its characteristic function f (t) is
defined as ‘
fe(t) = Ee™" for teR. (62)

e For a discrete random variable that takes the values £k = 0,1, 2, ..., we see that the charac-
teristic function reduces to the generating function evaluated on the boundary of the unit circle
(|z] = 1) in the complex plane:

fe(t) = Fe(z =€) ZP Je'*t. (63)

In fact, in this case, the characteristic function is a Fourier series with Fourier coefficients given
by the probabilities P (k).

e For a continuous random variable £, the characteristic function is the Fourier transform of
the probability density function pe (x):

fe(t) = () = / ” pel)etdz, (64)

By inverting the Fourier transform, we may recover the probability density function (where it is
well-behaved) from the characteristic function

0= [ fetwe g (©9)

Moments from characteristic function. Provided the moments exist, by differentiating
under the integral sign, we may obtain the moments as successive derivatives of the character-
istic function evaluated at t = 0. To begin with, f(0) = (1) = Go = 1. Next,

Flty=i / ze'pe(z)de = f'(0) =i(¢) = iGh. (66)
Similarly, ”/(0) = >G> and more generally,

Gn = (=0)"f"™(0) for n=01,2,.... (67)

All moments need not exist. As long as (|£|*) exists, the above formulae for G, hold for n. < k.

Characteristic function as generating series for moments. By expanding €% in a
power series and assuming the probability density is sufficiently well-behaved to permit inter-
changing the order of integration and summation, we may express the characteristic function as
a power series with coefficients proportional to the moments:

SN . =L (it)"
:/zozﬁt (ix) pg(I)dI:Z o Gn. (68)

Thus, we may view the characteristic function as a generating function (or series) for moments.
Evidently, if the characteristic function is analytic at ¢ = 0, then the generating series of mo-
ments converges. This happens if the moments do not grow too fast in magnitude (e.g., not
faster than exponentially, i.e., |G| < ¢ for some constant ¢ > 0).

e What is the characteristic function f¢(t) = (e*") of the uniform distribution on the unit
interval [0, 1]?

12



e Closely related to the characteristic function is the moment generating function, defined as
Me(t) = (e'€) for real t. Crudely, it is the characteristic function evaluated at imaginary
arguments. Unlike the characteristic function which is the expectation value of the bounded
random variable e*¢* the moment generating function is the expectation value of the unbounded
random variable e¢. Thus, the latter may fail to exist if the probability density does not vanish
sufficiently fast for large |£|.

e Cumulants. The cumulants C, > of a real-valued probability distribution provide an alter-
native to its moments GG,,. They may be defined as the coefficients in the series expansion of
the logarithm of the characteristic function

We(t) = log fe(t) = log(e'®) = 3 ¢, (©9)

The first few cumulants are
Co=0, Ci=(=G1, Co=varé=G2—Gi, Cs=(¢— (). (70

Derive formulae for C), in terms of G forn = 0,1,2, 3.
o We will see later that the third and higher order cumulants of a Gaussian vanish.

9 Bernoulli trials and the binomial distribution

Bernoulli trials are identical independent experiments in each of which an event A may
occur with probability p and fail to occur with probability ¢ = 1 — p. Occurrence of A is
called a success and its nonoccurrence a failure. It is convenient to introduce the ‘Bernoulli’
random variable £ associated to the k'™ Bernoulli trial, taking the values 1 or 0 depending
on whether the trial is a success or a failure. With this understanding, each elementary event
w in n consecutive Bernoulli trials may be described by an n digit binary number such as
0100111 ---01011.

Binomial distribution. Let us define the random variable £ = &; + - - - + &,, which is the
number of successes in n Bernoulli trials. We wish to find the probability of £ successes i.e.,
P{& = k}. Since the trials are independent, the probability of any elementary event w with k
successes and n — k failures is P(w) = p*¢"~*. There are (}) elementary events w with k

successes. Thus P{¢ = k} = (})p"¢"~". This leads us to the binomial distribution

P§<k)=<z>pk(1—p)"’“ for k=0,1,2,---,n. (71)

It is the probability distribution of the discrete random variable £ equal to the number of suc-
cesses in n Bernoulli trials with p being the probability of success in each trial.

Mean and variance of Binomial random variable £. To find these it is not necessary to
evaluate >, P¢(k)k and 3°, P¢(k)k” etc. Instead we note that £ = & + - - - + &, implies that
(&) = (&1) + - -+ + (&) and since &; are independent, var (§) = var (§1) + -+ + var (&n).
What is more, since &, are identically distributed for i = 1,2,3,--- ,n, (&1) = -+ = (&)
and var &; = var &z = --- = var &,. Furthermore, (£;) = p-1+ (1 —p) - 0 = p. Moreover,
€ = & 50 var & = (€2) — (6)> = (&) —p” = p — p° = pq. Consequently, (€) = np and
var(§) = npq. Thus there are on average np successes in n Bernoulli trials with a variance of
np(1 —p).

e Show that the generating function of a binomial random variable with parameters n, p is

Fe(z) = (pz+ )™ (72)
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10 Poisson distribution: a limit of the binomial distribution

Poisson distribution. The Poisson distribution is a limit of the binomial distribution as the
number of trials n — oo and the probability of success p — 0 while the mean number of
successes np = a has a finite limit (we will apply this to radioactive decay shortly). In fact,

k
<n>pk(1 _ p)’ﬂ*k N 7670’ for k= 07 ]_7 27 N (73)

To see this we consider £ = 0, 1, 2, . .. successively. To begin with,

P(0)y=1-p)"=(1—a/n)" —e “ (74)
Furthermore,
Pe(k) P F (n— k4 1)I(k - 1)! _pn—Fk+1) La 75)
Pe(k—1) (n—k)kl nlpk-tgn—Fkt+l kq k
asn — oo and p — 0. It follows that
P = (RO =aT R@)= R0 - L k
Pe3) = SR =155t o Plk) = TRk—1) = et (76)

e Thus, the probability of k£ successes in n Bernoulli trials when the probability p of each
success is small and the number of trials n — oo holding a = np fixed is

k
Pe(k) = %e—“ for k=0,1,2,.... 7
A random variable ¢ taking values £ = 0,1,2,... and possessing this distribution is said to

have a Poisson distribution with parameter a. It is straightforward to check that the distribution
is normalized: >, ., P:(k) = e%e™* = 1.

e Unlike the binomial distribution that depends on two parameters n and p, the Poisson distri-
bution depends only on one positive real parameter a > 0, which is equal to its mean value.
This is immediate since the mean value of a Binomial random variable is np, which in the limit
considered is equal to a. Thus,

(€)= kPe(k) =a. (78)

e The variance of a binomial random variable is npg which becomes a in the limit n — oo,
p — 0 and ¢ — 1. Thus, the variance of a Poisson distribution is the same as its mean, a.
o The generating function of the Poisson distribution with mean a is

oo oo

F ( _ k __ (az)k —a __ _a(z—1)
() =) Pe(k)" =" e = . (79)
£ !
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Modeling radioactive decay via a Poisson distribution. A gram of radium has about
10?2 atoms. Tt gradually decays to radon through the emission of about 10*° alpha particles per
second. Suppose there are a large number ng of radium atoms in a container at ¢ = 0. The atoms
are sufficiently far separated to justify the assumption that each atom decays independently of
all the others. Moreover, since they are identical, each radium atom has the same probability
p(t) to decay in ¢ seconds. In fact, for moderate times, this decay probability is quite small,
p(1) ~ 109722 = 1072, Thus, it is natural to model the radioactive decay of radium atoms
in terms of a large number of Bernoulli trials, each with a small probability of success (decay).
Let the random variable £(t) denote the number of alpha particles emitted in ¢ seconds. It is the
number of successes in no Bernoulli trials with probability of success p(t). Since ng and p(t)
are small, the binomial distribution of £(¢) may be well approximated by a Poisson distribution

P{¢(t) =k} = %I:e_“ for k=0,1,2,... where a= (£(t)) = nop(t) (80)

is the average number of alpha particles emitted in ¢ seconds. This probability distribution
agrees well with experimental measurements of the number of alpha particles emitted in ¢ sec-
onds.

Related continuous probability distributions. Interestingly, if we think of ¥ = 0, 1,2, ...

as a parameter, then

k_—s
P (s) = Sz, for s>0 (81)

may be viewed as a probability density function for a continuous positive real random variable
1. We verify that

[eS) oo k,_—s
/ pg,k)(s)ds = / 5 ;l =1 forany k£=0,1,2,.... (82)
0 0 :

Interpretation: The probability density pg,k)(s) arises in the spectral statistics of (unfolded)

quantum energy levels of a classically integrable system. It turns out that pg,k)(s)ds is the
probability that the spacing between k*" nearest neighbor energy levels lies between s and
s+ ds.

11 Gaussian or Normal distribution

De Moivre-Laplace limit theorem. Suppose &1, &, .. ., &, are n independent identically
distributed (‘iid’) random variables, each taking the values 1 and 0 with probabilities p and
q = 1 — p. & are of course the ‘Bernoulli’ random variables introduced in the context of
Bernoulli trials. As before, we define the sum

Sp=8&+-+& (83)
which is a random variable (previously denoted &) taking the values 0, 1, ..., n with mean and

variance (S,,) = np and var(S,) = npg. We know that S, is the number of successes in n
Bernoulli trials. It has a binomial distribution

P{S, =k} = <Z>pkqn_k. (84)
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Now consider the normalized sum
Sn — (Sn)

Sp= :
var(Sp)

(85)

which is a random variable taking the values x = (k — np)/ /npq for k = 0,1,2,....,n
with probabilities given by the binomial formula (Z) pFq"~*. Now, it can be shown using the

Stirling approximation (n! ~ v/2wnn"e™") that as n — oo, S;, tends to a continuous real
random variable with probability distribution given by

1 I,, 5
lim P{2’ < S <a2"} = 7/ e ™ 2 dg. (86)
- - Vo S

n—oo

This result was discovered by de Moivre in 1733.

Gaussian probability density. The corresponding limiting probability density

1 e
ple) = —=e "

is called the (standard) Gaussian or normal distribution. The graph of the probability density is
a bell-shaped curve. It is an even function.

e The Gaussian probability density occurs in the work of de Moivre from 1733. Laplace consid-
ered normal random variables around 1780. They are named after Gauss, who discussed them
in 1809.

e A random variable £ with the standard Gaussian probability density is called a standard Gaus-
sian random variable. It has mean zero and variance one. In fact,

for —oco<ax<o0 (87)

€ = [ ap(a)dz =0 (89)

since the integrand is odd. On the other hand,
var(€) = o? = (€%) — (&) = —— /oo 2P P dr = 1. (89)
V2T J o
Normal cumulative distribution function. The corresponding cumulative distribution

function is 1 .
2
O(x) = —/ e /2 du. (90)
@) V21 )

We verify that ®(z) — 0,1 as x — Foo as required of a cumulative distribution function.
Since p(z) = p(—z), it follows that ®(—z) = 1 — ®(x). In particular ®(0) = 1/2. Since
®(x) is the probability that £ < =z,

P{lg] < 2} = 2(®(x) — 2(0)). ©n

Normal distribution with mean a and variance 0. Note that if X is a standard Gaus-
sian random variable with mean zero and variance one, then Y = o(X +a) is a normal random
variable with mean @ and variance 2. To obtain the pdf py (y) of Y from the standard gaussian
for X we change variables y = o(z + a) and dy = odz in px (z)dx and use

py (y)dy = px (z)dz (92)
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to deduce that 1
_ —(y—a)? /202
pr(y) = e 93)

arandom variable with this probability density function is called a normal random variable with
mean a and variance o2,

Error function. The error function is conventionally defined as

erf(z) = % /OI e dt. 94)

It is closely related to the cumulative distribution function of a standard gaussian random vari-
able:

erf(z) = 2(®(V2z) — ®(0)) = 2&(v2z) — 1. (95)
From this we deduce that erf(x) is the probability that a standard Gaussian random variable &
is at most v/2z in magnitude:

erf(z) = P{|¢] < v2z}. (96)

e Suppose £ is a normal random variable with mean @ and variance o>. Then the probability
P{|¢ — a| < no} that £ lies within no of uforn = 1,2, 3, - are = 0.683,0.954, 0.997. So
with &~ 99.7% probability, a gaussian random variable takes values within 3¢ of its mean. It
lies within one standard deviation of the mean with probability ~ 68%.

Characteristic function of the Gaussian. Suppose ¢ is a standard Gaussian random vari-

. o I . . . . .
able with probability density e~ * /2 /v/27. It is possible to show that its characteristic function
is also a Gaussian

1 < ; 4
fe(t) = \/7/ e 2t Gy = 12, 97)
T J -0
To see this, we complete the square to express this as a Gaussian integral:
e’IQ/Ze””t _ 67%(1272110 _ 67%{@7#)2“2}‘ (98)

Thus

1  L{(w—it)2 442} —¢272 1 42/ 422
felt) = — ezl dr = e — eV Py =e (99)
V21 J oo V2T J oo

where we put y = x — it and used dy = dx. It follows that the cumulant generating function
of the standard Gaussian is
We(t) = log fe(t) = —t*/2. (100)

Consequently, the cumulants (C,, = (—i)"W (™ (0)) of the standard Gaussian are Cp =
0,C1 = 0,C2 = 1and C,, = 0 for n > 3. The standard gaussian may be characterized
as the distribution for which all cumulants other than the second vanish and Cs = 1.
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