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0.2 Formulation of classical mechanics

• The set of possible instantaneous locations of a classical particle is called its config-
uration space. This is usually three dimensional Euclidean space R3. The number of
coordinates needed to specify the instantaneous configuration of a system is the num-
ber of degrees of freedom. A system consisting of a pair of particles has 6 degrees
of freedom x1, y1, z1, x2, y2, z2, its configuration space is R3 × R3 = R6. A particle
attached to a fixed support by a rod of fixed length has two degrees of freedom, its
configuration space is a sphere. The configuration space and number of degrees of
freedom are kinematical notions. They do not depend on the nature of forces between
the particles.
• If the forces acting on/between the particles are known, then we may determine
the dynamical time evolution of the system by solving Newton’s equations for the
trajectories. For one particle, mr̈ = F. Newton’s equations are second order in time,
they require two sets of initial conditions, the initial positions r(0) and initial velocities
ṙ(0). In other words, the initial coordinates r(0) and initial momenta p(0) = mṙ(0)
determine the future trajectory. We say that the instantaneous state of the system
is specified by giving the coordinates and momenta of all the particles. The set of
possible instantaneous states of a system is its phase space. For a particle moving
along a line, its phase space is the x − p phase plane. Newton’s equations may be
formulated as Hamilton’s 1st order equations for the time evolution of coordinates
and momenta

ẋ =
∂H

∂p
and ṗ = −∂H

∂x
. (1)

For a particle in a potential H(x, p) = p2

2m + V (x) and Hamilton’s equations are a
pair of first order equations

ẋ =
p

m
and ṗ = −dV

dx
, (2)

which may be written as a single second order equation expressing Newton’s second
law mẍ = −V ′(x). The curve in phase space (x(t), p(t)) is called the phase tra-
jectory. Draw the phase portrait for a free particle as well as for a simple harmonic
oscillator, indicating the direction of trajectories. A dynamical variable that is constant
along trajectories is called a constant of motion. Its value may differ from trajectory
to trajectory. The hamiltonian H = T + V is a conserved quantity for conservative
systems (i.e. where the force is the negative gradient of a scalar potential).
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• Dynamical variables like angular momentum and the hamiltonian are functions of
the basic dynamical variables position and momentum. In general, any real function of
position and momentum is called an observable. Observables are simply real-valued
functions on phase space. They must be real since observables are physical quantities
that may be measured.
• For a Hamiltonian H(q, p), Hamilton’s equations can be expressed in terms of Pois-
son brackets:

q̇ = {q,H} and ṗ = {p,H} (3)

and more generally, for any observable f(q, p),

df

dt
= {f,H}. (4)

Here, the PB of any two observables is defined as

{f(q, p), g(q, p)} =

n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (5)

The sum runs over the n degrees of freedom. It follows that f is conserved (ḟ = 0)
if its Poisson bracket with the Hamiltonian is zero: {f,H} = 0. Dynamical variables
that Poisson commute with the Hamiltonian are conserved.

0.3 States and observables in quantum mechanics

0.3.1 Hilbert space of states of a quantum system

• States of a quantum system are vectors in a linear space (“vector space”) called a
complex Hilbert space H. For a particle moving on a line, its configuration space is
R1, parametrized by one coordinate x. Its quantum state space H = L2(R) is the
space of square-integrable functions ψ(x) on the classical configuration space. ψ is
called the state function or state vector or wave function of the particle.
• By Born’s probability postulate, |ψ(x)|2dx is interpreted as the probability of find-
ing the particle between x and x + dx. Since the total probability of the particle
being somewhere should be one, we normalize the wave function

∫∞
0
|ψ(x)|2dx = 1.

This is why we restrict to square-integrable wave functions. ψ(x) itself is called a
probability amplitude, its square is a probability density.
•Unlike the classical space of states (phase space) which can be a non-linear manifold
(e.g. if a particle is constrained to move on a circle), the quantum Hilbert space is
always a linear space. The sum of two states ψ + φ is a possible state and so is
a complex multiple cψ of any state. This is the principle of linear superposition of
states, used to explain the interference of matter waves in the double slit experiment.
•A complex Hilbert spaceH is a vector space over the complex numbers. It is a space
of ket vectors |ψ〉 closed under linear superposition. If |ψ〉 and |χ〉 are state vectors,
then so is α|ψ〉 + β|χ〉, for any α, β ∈ C. A simple example is the two dimensional
complex vector space of spin states of a spin half particle which are usually denoted
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as column vectors |ψ〉 =

(
ψ1

ψ2

)
in a suitable basis. Notably, the space of states of a

quantum system is a complex, rather than a real vector space.
• The quantum state space is equipped with an inner or dot product. The inner product
of a pair of vectors ψ, χ is denoted 〈ψ|χ〉. For the spin- 1

2 Hilbert space, the inner
product is

〈ψ|χ〉 =

(
ψ1

ψ2

)†(
χ1

χ2

)
=
(
ψ∗1 ψ∗2

)(χ1

χ2

)
= ψ†χ = ψ∗1χ1 + ψ∗2χ2. (6)

ψ† is called the hermitian adjoint, it is the complex conjugate transpose, it is a row
vector. So associated with a vector space of colummn/ket vectors there is a ‘dual’
space of row/bra vectors, the adjoints of the kets |ψ〉† = 〈ψ| =

(
ψ∗1 ψ∗2

)
. The inner

product may also be regarded as producing a complex number from a ket vector |χ〉
and the bra vector dual/adjoint to |ψ〉: 〈ψ|χ〉. However, the inner product of a non-
zero vector with itself is always a positive real number 〈ψ|ψ〉 > 0, it is called the
squared-norm ||ψ||2 = 〈ψ|ψ〉 or squared-length of the vector.
• Another example is n-dimensional complex vector space Cn with the inner product
〈u|v〉 =

∑
i u
∗
i vi. The Hilbert space of a particle moving on a line is L2(R) with

〈f |g〉 =
∫∞
−∞ f∗(x)g(x) dx.

• From these examples (keep 〈u|v〉 = u∗i vi in mind) we abstract the basic properties
of the inner product (these are its defining properties in an axiomatic approach)

〈αu|v〉 = α∗〈u|v〉, 〈u|βv〉 = β〈u|v〉, 〈u+v|w〉 = 〈u|w〉+〈v|w〉, 〈u|v〉∗ = 〈v|u〉.
(7)

〈u|v〉 is linear in the second vector v and anti-linear in the first vector u on account of
complex conjugation of the components of the first vector.
• The norm/length of a vector is ||v|| =

√
〈v|v〉. The norm of a vector is unchanged

upon multiplying by a phase eiα. If 〈u|v〉 = 0 then the vectors are orthogonal.
• Two state vectors that differ by multiplication by a non-zero complex numberψ2(x) =
cψ1(x) represent the same physical state. We often work with unit norm states.
• A basis for the Hilbert space is a set of vectors |ei〉 such that any vector |v〉 may
be expressed as a linear combination of |ei〉 in a unique way. The number of basis
vectors is the dimension of the vector space. The standard basis vectors of the two
dimensional spin Hilbert space C2 are

|e1〉 =

(
1
0

)
, |e2〉 =

(
0
1

)
, so

(
v1

v2

)
= v1|e1〉+ v2|e2〉. (8)

The coefficients vi in the expansion |v〉 =
∑
i vi|ei〉 are called the components of |v〉.

The components of the adjoint are the complex conjugates: 〈v| =
∑
i〈ei|v∗i . [We will

often drop the summation symbol and assume repeated indices are summed.] E.g. the
adjoints of the basis vectors are row bra-vectors

〈e1| = e†1 =
(
1 0

)
, 〈e2| = e†2 =

(
0 1

)
. (9)

Cn is an n-dimensional vector space. The state space of a particle moving on a line,
L2(R) is infinite dimensional, it is called a function space. It is intuitively clear that
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this is an infinite dimensional space since the values of the function ψ(x) at each
x ∈ R can be freely specified (subject to normalizability). x here plays the role of the
index i = 1, 2 in the two dimensional spin-half vector space C2. A possible basis for
a function space is the set of monomials {1, x, x2, x3, x4, · · · }. Indeed, any function
ψ that has a Taylor series around x = 0 admits an expression as a linear combination
of these. The coefficients are the derivatives of ψ at x = 0:

ψ(x) = ψ(0) + ψ′(0)x+
1

2
ψ′′(0)x2 +

1

3!
ψ′′′(0)x3 + · · · (10)

However this basis of monomials is a bit inconvenient. The basis vectors are not
orthogonal, in fact they are not even normalizable with respect to the above L2 inner
product. A more convenient basis for L2(R) consists of the energy eigenstates of the
harmonic oscillator |n〉.
• It is often convenient to work with an orthonormal (o.n.) basis, i.e., a basis of vectors
|ei〉 which are pairwise orthogonal and each normalized to have unit norm, 〈ei|ej〉 =
δij . The standard basis |ei〉 for Cn with components |ei〉j = δij is orthonormal with
respect to the usual inner product 〈u|v〉 =

∑
i u
∗
i vj .

• A set of orthonormal vectors is said to be a complete orthonormal set if it forms a
basis for the vector space, i.e., if we may write any vector as a linear combination.

0.3.2 Linear operators, Adjoint, (anti-)Hermitian and Unitary operators

An observable A in quantum mechanics (e.g. hamiltonian, position, momentum, an-
gular momentum, spin, magnetic moment) is a hermitian (self-adjoint) linear operator
on the Hilbert space of statesH. Hermiticity is the quantum analogue of classical ob-
servables being real-valued functions. We will see that a hermitian operator has real
eigenvalues, which are possible results when A is measured. To define a hermitian
operator, we first note that a linear operator on a vector space takes vectors to vectors
in a linear way: A(a|ψ〉 + b|χ〉) = aA|ψ〉 + bA|χ〉. When A acts on a vector |v〉 it
produces a new ket vector A|v〉 which is also denoted |Av〉.
• A linear operator is an abstract concept, whose concrete realisation is a matrix. A
linear operator on C2 is simply a 2 × 2 matrix, once we choose a basis to represent

it. For example, the Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are linear operators represented as matrices in the standard basis for C2.
• If |ej〉 are a basis forH, then a linear operator A is determined by how it acts on the
basis vectors. Since A takes vectors to vectors, A|ej〉 must be a linear combination of
the basis vectors themselves

A|ej〉 =
∑
k

|ek〉Akj . (11)

Akj are the components of A in this basis, they may be written as entries in a matrix,
with Akj occupying the slot in the kth row and jth column. The vector that makes up
the first column Ak1 is the ‘image’ of e1 (i.e. coefficients in the linear combination
appearing in A|e1〉), the second column Ak2 is the image of e2 and so on.
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• If the basis ei is orthonormal 〈ei|ej〉 = δij , then we have

〈ei|A|ej〉 =
∑
k

〈ei|ek〉Akj =
∑
k

δikAkj = Aij . (12)

We say that Aij are the matrix elements of A between the o.n. basis states ei and ej .
• A matrix A is hermitian if it equals its own complex conjugate transpose. The latter
is called its adjoint A† = (A∗)t. So A is hermitian if A = A†, i.e., if it is self-adjoint.
In terms of matrix entries,A∗ij = Aji. In particular, the diagonal entries of a hermitian
matrix are real, while the off diagonal entries are complex conjugates of each other.
The Pauli matrices are hermitian. Note that the adjoint of a product is the product of
adjoints in the opposite order. (AB)† = B†A† and that (A|ψ〉)† = 〈ψ|A†. We also
denote A|ψ〉 = |Aψ〉, so that |Aψ〉† = 〈Aψ|.
• The concept of hermiticity makes sense for a linear operator, even if we have not
represented it explicitly as a matrix by choosing a basis. To explain the concept, we
need the idea of matrix elements between states. If u, v are a pair of states, then
〈u|A|v〉 is called the matrix element of A between the states u and v. To know an
operator is to know its matrix elements.
• The adjoint of A is the operator A† defined via its matrix elements 〈u|A†|v〉 =
〈Au|v〉 = 〈v|Au〉∗. So if we know the matrix elements of A, then we may find the
matrix elements of A†. A linear operator is hermitian if 〈u|Av〉 = 〈Au|v〉 for all
states u, v ∈ H. A hermitian operator is also called symmetric since it does not matter
whether A is written on the left or on the right.
• Now, let us see how this abstract definition of hermiticity reduces to the formula
Aij = A∗ji for hermitian matrices. We must equate the matrix elements of A and
those of A†. Let ei be an orthonormal basis, then the matrix element of A between the
states ei and ej is justAij , as is seen by taking the inner product of the above equation
with ei

〈ei|A|ej〉 =
∑
k

〈ei|ek〉Akj =
∑
k

δikAkj = Aij . (13)

On the other hand, what are the matrix elements of A†? By the definition of the
adjoint,

〈ei|A†ej〉 = 〈Aei|ej〉 = 〈ej |Aei〉∗ = (Aji)
∗ (14)

So a linear operator is self-adjoint if its matrix elements in an o.n. basis satisfy Aij =
(Aji)

∗.
• An anti-hermitian operator is one that satisfies A† = −A. A unitary operator is
one whose inverse is its adjoint, UU† = U†U = I . It is clear that the identity I
is hermitian as well as unitary. If A is anti-hermitian, then iA is hermitian since
(iA)† = A†i† = −A(−i) = A.

0.3.3 Outer products of vectors and completeness relation

• Outer products of vectors: Consider the vector space Cn with standard basis |ei〉.
Just as we may multiply row and column n-vectors to get a scalar inner product, we
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may also form their ‘outer’ product (column times a row), to get an n× n matrix. For
n = 2 show that

|e1〉〈e1| = e1e
†
1 = ( 1 0

0 0 ) , |e2〉〈e2| = ( 0 0
0 1 ) , |e1〉〈e2| = ( 0 1

0 0 ) , |e2〉〈e1| = ( 0 0
1 0 ) .

(15)
More generally, check that |ei〉〈ej | is a matrix with a 1 in the ij-entry and 0’s else-
where. From this we see that a matrix whose entries are Aij in the ith row and jth

column, can be expressed as

A =
∑
ij

Aij |ei〉〈ej | (16)

Now let us use this expression to find how a matrix acts on a vector v = vk|ek〉. We
get using the associativity of multiplication of operators (freedom to place brackets)

Av =
∑
ij

Aij |ei〉〈ej |vk|ek〉 = Aijvk|ei〉〈ej |ek〉 = Aijvkδjk|ei〉 = Aikvk|ei〉.

(17)
So the ith component of Av is

∑
k Aikvk.

• In particular, the identity operator I , may be expressed as

I =
∑
i

|ei〉〈ei| =
∑
ij

δij |ei〉〈ej |. (18)

The identity operator has the components δij in any basis since it takes every vector
to itself. This ‘resolution’ of the identity operator as a sum of outer products of a set
of orthonormal basis vectors is called the completeness relation. It is quite useful in
many physical problems and calculations. E.g. the energy eigenstates of the Harmonic
oscillator form a complete orthonormal set and satisfy the above completeness rela-
tion. Coherent states for the harmonic oscillator also satisfy a completeness relation
even though they are not orthogonal and are in fact an over-complete set.
• In the Hilbert space of a spin half particle C2, we have the basis vectors | ↑〉 and
| ↓〉 which we will interpret as states where the z-component of spin Sz has the values
±~/2. Then Sz = ~/2(| ↑〉〈↑ | − | ↓〉〈↓ |). The raising and lowering operators are

S+ = ~| ↑〉〈↓ | and S− = ~| ↓〉〈↑ |. (19)

Justify the names of S± by analysing how they act on | ↑〉 and | ↓〉.

0.3.4 Projection matrix

• As before, let |ei〉 be an orthonormal basis. Define the matrix Pi = |ei〉〈ei| via the
outer product of ei with itself. If |v〉 is any vector, notice that Pei |v〉 = |ei〉〈ei|v〉 =
vi|ei〉 (no sum on i) is the (orthogonal) projection of v along ei. We say that Pei is
the projection matrix or operator to the subspace spanned by ei. In general, given any
nonzero vector |u〉,

Pu =
|u〉〈u|
〈u|u〉

(20)
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is called the projection operator to the subspace spanned by u.
• Verify the following properties:

1. P †u = Pu is hermitian.

2. P 2
u = Pu.

3. trPu = 1
||u||2

∑
i〈ei|u〉〈u|ei = 1

||u||2
∑
|ui|2 = 1. Alternatively, using trAB =

trBA, trPu = tr 〈u|u〉/〈u|u〉 = 1. The trace of a projection to a 1d subspace is
equal to one.

4. Pu is a positive semidefinite operator. This means 〈v|Pu|v〉 ≥ 0 for all |v〉. In fact,
this diagonal matrix element vanishes iff v is orthogonal to u.

• More generally, given a subspace W ⊆ V we have the (orthogonal) projection to
the subspace W . If wi for 1 ≤ i ≤ k is an orthonormal basis for W , then

PW =

k∑
i=1

|wi〉〈wi| (21)

is the projection to W . We verify that P †W = PW , P 2
W = PW , trPW = k and that

PW is positive semidefinite.
• In general, a projection matrix is a hermitian matrix P with P 2 = P . The trace of a
projection is the dimension of the subspace to which it projects.
• In R3, the projection of a vector onto the x-y plane may be viewed as the shadow of
the vector if the sun is positioned infinitely far away on the z-axis (z = ±∞ depending
on whether the vector is above or below the x-y plane.).
• The completeness relation (18) expresses the identity as a sum of projections to the
1d subspaces spanned by the vectors in an orthonormal basis.

0.3.5 Hermiticity of position and momentum operators

• Physically interesting examples of hermitian operators for a particle with one de-
gree of freedom moving on a line include the position operator x̂ψ(x) = xψ(x), and
momentum operator p̂ψ(x) = −i~ψ′(x). Check that x̂† = x̂ and d̂ = ∂

∂x is anti-
hermitian. We must show 〈f |x̂g〉 = 〈x̂f |g〉 for any two states f, g. This is seen as
follows:

〈f |x̂g〉 =

∫
f∗(x)xg(x) dx =

∫
(xf(x))∗g(x) dx = 〈x̂f |g〉. (22)

Showing hermiticity of p̂ = −i~ ∂
∂x requires integration by parts. Let us show that

d̂ = ∂
∂x is anti-hermitian, from which it will follow that p̂ = −i~d̂ is hermitian. Let

us denote complex conjugate of f by f̄ here for convenience

〈f |d̂g〉 =

∫
f̄(x)g′(x)dx = −

∫
f̄ ′(x)g(x) dx+

[
f̄g
]∞
−∞ = −〈d̂f |g〉. (23)

Here we assumed f, g vanish at ±∞, which is the case for square-integrable func-
tions. Boundary conditions play an important role in determining the hermiticity of
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momentum. If we have a particle moving on a finite interval [a, b] (as in a square
well), then

〈f |d̂g〉 =

∫ b

a

f̄(x)g′(x)dx = −
∫ b

a

f̄ ′(x)g(x)dx+
[
f̄g
]b
a

= −〈d̂f |g〉+
[
f̄g
]b
a
. (24)

For d̂ to be anti-hermitian, the boundary term must vanish. This happens, for instance,
if the functions vanish at the end points (f(a) = f(b) = 0, as in an infinite square
well) or satisfy ‘periodic boundary conditions’ f(a) = f(b).

0.3.6 Expectation values

• Of particular importance is the concept of expectation value of an observable A in
a state ψ, which is defined as the normalized diagonal matrix element of A in the state
ψ

〈A〉ψ =
〈ψ|Aψ〉
〈ψ|ψ〉

(25)

The expectation value of a hermitian operator in any state is a real number. For, by
hermiticity, and 〈u|v〉 = 〈v|u〉∗, we have

〈ψ|Aψ〉 = 〈Aψ|ψ〉 = 〈ψ|Aψ〉∗ (26)

In other words, the diagonal matrix element of A is equal to its own complex con-
jugate. We are familiar with this: the diagonal entries of a hermitian matrix in an
orthonormal basis 〈ei|A|ei〉 = Aii are real.
• It follows from the reality of expectation values of a hermitian operator that the
eigenvalues (to be introduced shortly) of a hermitian operator are also real. In fact, the
eigenvalues are simply the expectation values in the corresponding eigenstates.

0.3.7 Commutators of operators

• Multiplication of matrices/operators is in general not commutative AB 6= BA
(in general). The amount by which they fail to commute is called the commutator
[A,B] = AB − BA. Any operator commutes with itself or any power of itself
[A,An] = An+1 −An+1 = 0. On the other hand, check that xp− px = [x, p] = i~I
by acting on a state ψ(x):

xpψ = −i~xψ′(x), while pxψ = −i~ ∂

∂x
(xψ) = −i~xψ′(x)−i~ψ(x) ⇒ [x, p]ψ = i~ψ.

(27)
• x and p are said to be canonically conjugate observables. In QM, the commuta-
tor plays the role that the Poisson bracket plays in CM. Just as the Poisson bracket
{f, g} of two observables is another observable, 1

i~ [A,B] is again an observable (i.e.,
hermitian) if A,B are hermitian. To show this it suffices to check that [A,B] is anti-
hermitian if A and B are hermitian.

([A,B])† = (AB −BA)† = B†A† −A†B† = BA−AB = −[A,B]. (28)
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An important property of the commutator is the product or Leibnitz rule, check that

[A,BC] = [A,B]C +B[A,C]. (29)

• In three dimensions, we have three coordinate and momentum operators x, y, z and
px = −i~ ∂

∂x , py = −i~ ∂
∂y , pz = −i~ ∂

∂z . It is easily seen that the momenta com-
mute with each other and the coordinates commute among themselves, more over
[x, px] = i~ while [x, py] = 0 etc. These so-called Heisenberg canonical commuta-
tion relations may be summarised as [xi, pj ] = i~ δij .

0.3.8 Eigenvalue problem for hermitian operators

• The eigenvalue problem for a linear operator (hermitian or not) is the equation
A|ψ〉 = λ|ψ〉. A non-zero vector |ψ〉 6= 0 that satisfies this equation for some complex
number λ is called an eigenvector of A with eigenvalue λ. Taking the adjoint of the
eigenvalue equation we also have

(A|ψ〉)† = 〈ψ|A† = λ∗〈ψ| (30)

So if |ψ〉 is an eigen-ket of A with eigenvalue λ, then 〈ψ| is an eigen-bra of A† with
eigenvalue λ∗. In particular, if A = A† is hermitian, then 〈ψ|A† = 〈ψ|A = λ∗〈ψ|. In
other words, if |ψ〉 is an eigen-ket of A, then 〈ψ| is an eigen-bra of A with eigenvalue
λ∗. We will soon show that λ is real if A is hermitian (see also §0.3.6).
• Exercise: Show that the eigenvalues of a projection matrix P (P 2 = P ) are 1 (with
degeneracy trP ) and 0 (with degeneracy n = trP ).
• The eigenstate of the position operator x̂ with eigenvalue x′ is denoted |x′〉, i.e.,
x̂|x′〉 = x′|x′〉. We will see that measurement of the position of a particle that is in
state |x′〉 is guaranteed to give the value x′. The ‘position-space’ or ‘coordinate-space’
wave function of any state |ψ〉 is defined as the inner product 〈x|ψ〉 = ψ(x). It follows
that ψ∗(x) = 〈ψ|x〉.
• Similarly, the eigenvalue problem for momentum is p̂|k〉 = ~k|k〉. It is conventional
to write the momentum eigenvalue in terms of wave number as ~k. We will see that
|k〉 is a state in which a measurement of the particle’s momentum will give ~k. The
momentum space wave function of a particle in state |ψ〉 is defined as ψ̃(k) = 〈k|ψ〉.
ψ̃ is pronounced ‘psi-tilde’.
• Here are some useful facts about hermitian matrices/operators:

1. The eigenvalues of a hermitian operator are real. This is because the eigenvalues
of a hermitian operator are simply the (necessarily real) expectation values in the
corresponding eigenstates

A|ψ〉 = λ|ψ〉 ⇒ 〈ψ|A|ψ〉 = 〈ψ|λψ〉 = λ〈ψ|ψ〉 ⇒ λ =
〈ψ|A|ψ〉
〈ψ|ψ〉

.

(31)

2. Eigenvectors |χ〉, |ψ〉 corresponding to distinct (necessarily real) eigenvalues µ 6=
λ are orthogonal. To see this, we calculate 〈χ|Aψ〉 in two ways using hermiticity
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and reality of eigenvalues and subtract.

〈χ|Aψ〉 = λ〈χ|ψ〉 and 〈χ|Aψ〉 = 〈Aχ|ψ〉 = 〈ψ|Aχ〉∗ = µ∗〈ψ|χ〉∗ = µ〈χ|ψ〉.
(32)

Thus (λ− µ)〈χ|ψ〉 = 0. Since λ 6= µ we must have 〈χ|ψ〉 = 0, i.e., eigenvectors
corresponding to distinct eigenvalues are orthogonal.

3. It can be shown that a hermitian operator can be diagonalised by a unitary trans-
formation U†HU = Λ where Λ is a diagonal matrix with eigenvalues along the
diagonal. Moreover, the eigenvectors of a hermitian operator can be chosen to form
a complete orthonormal basis forH

A|ψi〉 = λi|ψi〉, 〈ψi|ψj〉 = δij ,
∑
i

|ψi〉〈ψi| = I, . (33)

Furthermore, two hermitian operators which commute can be simultaneously diag-
onalised. In other words, there is a basis of common eigenvectors in which both are
diagonal. And if they do not commute, as in the case of [x, p] = i~I , they cannot
be simultaneously diagonalised. Operators that commute are said to be compatible,
we will see that they can be simultaneously measured.

4. The eigenvalue problem for the momentum operator is p̂|k〉 = ~k|k〉. The position
space eigenfunction 〈x|k〉 of the momentum operator is a plane wave. p̂ψ(x) =
~kψ(x) becomes −i~ψ′ = ~kψ or ψ = Aeikx. We will choose A = 1. In other
words 〈x|k〉 = eikx and so 〈k|x〉 = e−ikx. Note that ψk(x) = eikx has an infinite
norm.

5. The position-space or coordinate-space eigenfunctions of the position operator are
delta-functions. Let’s see why. The eigenvalue problem is

x̂ ψ(x) = xψ(x) = λψ(x) where λ is a constant. (34)

The only way this can be satisfied for all x is for ψ(x) to vanish at all x 6= λ. Now
if ψ(x) were to vanish at x = λ as well, then it would be the zero function and not
qualify as a non-trivial eigenvector. The value of ψ(x) at x = λ can either be finite
or ψ(λ) = ±∞. If |ψ(λ)| < ∞, then the state will have zero norm and cannot
describe a particle that can be found somewhere. So ψ must be infinite at x = λ.
In fact, ψ(x) is proportional to the Dirac delta function. It is normalized so that
ψ(x) = δ(x− λ). It is conventional to denote the position eigenvalue by x′ rather
than λ. So δ(x − x′) is an eigenfunction of the position operator with eigenvalue
x′, it is a function of x that is zero every where except at x′. Think of it as a limit
of functions that are sharply peaked at x = x′. Thus the coordinate space wave
function of the eigenstate |x′〉 of x̂ is 〈x|x′〉 = δ(x − x′). Now if we have two
position eigenstates |x′〉 and |x′′〉, then their coordinate space wave functions are
〈x|x′〉 = δ(x− x′) and 〈x|x′′〉 = δ(x− x′′). Their inner product is

〈x′′|x′〉 =

∫
δ(x− x′′)δ(x− x′) dx = δ(x′ − x′′). (35)
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So position eigenstates are orthogonal and ‘delta-normalized’. They form a com-
plete set in the sense that they satisfy a completeness relation∫

dx |x〉〈x| = I. (36)

To see this, take the matrix elements of the LHS between coordinate basis states
|x′〉 and |x′′〉∫

dx 〈x′|x〉〈x|x′′〉 =

∫
dx δ(x− x′)δ(x− x′′) = δ(x′ − x′′). (37)

On the other hand, the matrix elements of the identity are also the same 〈x′|I|x′′〉 =
〈x′|x′′〉 = δ(x′ − x′′). Since

∫
dx |x〉〈x| and I have the same matrix elements,

they are equal.

• Similarly, momentum eigenstates form a complete set∫
dk

2π
|k〉〈k| = I. (38)

Check this by evaluating the matrix elements between position basis states |x′〉 and
|x′′〉. On the rhs we get 〈x′|I|x′′〉 = δ(x′ − x′′). On the lhs we get the same using
the Fourier representation of the delta function∫ ∞

−∞

dk

2π
〈x′|k〉〈k|x′′〉 =

∫ ∞
−∞

dk

2π
eikx

′
e−ikx

′′
= δ(x′ − x′′). (39)

How do we get the last equality? If x′ = x′′ then we are integrating the function 1,
and the answer should be infinite, and indeed δ(0) =∞. On the other hand, when
x′ 6= x′′, then we have∫

dk

2π
[cos(k(x′ − x′′)) + i sin(k(x′ − x′′))] = 0 (40)

Since the average value of both the sine and cosine functions is zero.

•Momentum eigenstates with distinct wave numbers are orthogonal (as we expect
for the eigenstates of a hermitian operator)

〈k′|k′′〉 =

∫
dx 〈k′|x〉〈x|k′′〉 =

∫
dx e−ik

′xeik
′′x = 2π δ(k′ − k′′). (41)

6. Among hermitian operators, the positive operators are particularly interesting physically. A
hermitian operator is positive (or non-negative) if its diagonal matrix element (or expectation
value) in every state is non-negative 〈ψ|A|ψ〉 ≥ 0, for all ψ ∈ H. Since eigenvalues
are simply the expectation values in eigenstates, we see that positive operators have non-
negative eigenvalues. If A is any linear operator, then we check that A†A and AA† are both
hermitian and positive operators.

E.g. (AA†)† = A†
†
A† = AA†. (42)
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To check positivity, we work out the expectation value in any (unit norm) state:

〈ψ|A†A|ψ〉 = 〈Aψ|Aψ〉 = ||Aψ||2 ≥ 0 and 〈ψ|AA†|ψ〉 = 〈A†ψ|A†ψ〉 = ||A†ψ||2 ≥ 0.
(43)

An example is kinetic energy T = 1
2m
p2 = 1

2m
p†p = 1

2m
pp†, since p = p† is hermitian.

So we may conclude that the energy eigenvalues of a free particle must all be non-negative.

0.3.9 Measured value of observables in states and interpretation of expectation values

• Born’s measurement postulate. Measurement of an observable A in state |ψ〉 of
unit norm produces a real number that is one of the eigenvalues of A. For now, we
assume that eigenvalues ofA are nondegenerate and state Born’s probability postulate.
Suppose we have several identically prepared systems in the same unit norm state
ψ and we measure the value of A in each system and record the values. Then the
frequency of occurrence of the measured value λ is pλ = |〈ψλ|ψ〉|2 where |ψλ〉 is
the unit norm eigenstate corresponding to the eigenvalue λ. If the initial state and
eigenvector had not been normalized, then

pλ =
|〈ψλ|ψ〉|2

||ψλ||2||ψ||2
. (44)

More generally, suppose λ is an n-fold degenerate eigenvalue of A (the λ-eigenspace
Vλ ofA has dimension n). Moreover, suppose ψ(i)

λ for i = 1, · · · , n is an orthonormal
basis for Vλ. If the system is initially in the unit norm sate |ψ〉, then the probability of
getting eigenvalue λ upon measuring A is

pλ = |〈ψ(1)
λ |ψ〉|

2 + |〈ψ(2)
λ |ψ〉|

2 + · · ·+ |〈ψ(n)
λ |ψ〉|

2. (45)

• Expectation value. The expectation value of an observable A in a state ψ is the
mean value obtained when A is measured on many copies of the system prepared in
the same state ψ. How do we see this? Each measurement gives a (possibly different)
eigenvalue λ with probability pλ. So the mean measured value is a sum over the
eigenvalues of A (counted with multiplicity)∑

λ

pλλ =
∑
λ

λ|〈ψ|ψλ〉|2 =
∑
λ

λ〈ψ|ψλ〉〈ψ|ψλ〉∗ =
∑
λ

λ〈ψ|ψλ〉〈ψλ|ψ〉

=
∑
λ

〈ψA|ψλ〉〈ψλ|ψ〉 = 〈ψ|A|ψ〉. (46)

We used the eigenvalue equation and completeness of the normalized eigenvectors∑
λ |ψλ〉〈ψλ| = I .

• Physical interpretation of 〈x|k′〉 = eik
′x and 〈x|x′〉 = δ(x − x′) in the context of proba-

bility of results of measurements. Suppose a particle is in a position eigenstate |x′〉. Then its
coordinate space wave function is 〈x|x′〉 = δ(x− x′). Now suppose we make a measurement
of its position. Then the probability of getting the value x is P{position = x} ∝ |〈x|x′〉|2.
Notice that P{position = x} = 0 for x 6= x′. So if we measure the position of a particle
known to be in the position eigenstate |x′〉, then the only value of position that can result is x′

itself.
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• Suppose a particle is in a position eigenstate |x′〉. Then its momentum space wave function
is 〈k|x′〉 = e−ikx′ . Suppose we make a measurement of its momentum. Then the probability
of getting the value ~k is pk ∝ |〈k|x′〉|2 = |eikx|2 = 1. In other words, all momenta are
equally probable. This makes physical sense in light of the Heisenberg uncertainty principle.
If the particle is in a position eigenstate, then its position is known with perfect accuracy. So
we would expect its momentum to be maximally uncertain. And indeed, what we find is that
all possible momenta are equally likely, so we have no knowledge as to what the result of a
momentum measurement may give.
• Collapse postulate and projective measurements. After measuring an observable
A and getting the eigenvalue λ, the system ‘collapses’ from state |ψ〉 to eigenstate
|ψλ〉, assumed nondegenerate, corresponding to the eigenvalue λ (A|ψλ〉 = λ|ψλ〉).
Such a measurement is called a projective measurement. This is because the state after
the measurement can be expressed as Pλ|ψ〉 where Pλ = |ψλ〉〈ψλ|/〈ψλ|ψλ〉 is the
projection operator to the state |ψλ〉. Viewing a projective measurement this way also
indicates the generalization to when the eigenvalue λ is degenerate. In this case too,
we postulate that the system collapses to the state Pλ|ψ〉 where Pλ is the projection
operator to the λ-eigenspace. For instance, if the λ-eigenspace is two-dimensional
with two orthonormal eigenvectors u and v corresponding to the same eigenvalue λ,
then Pλ = |u〉〈u| + |v〉〈v|. In general, if |ψ(j)

λ 〉 for j = 1, 2, · · · , n furnishes an
orthonormal basis for the λ-eigenspace, then Pλ =

∑
j |ψ

(j)
λ 〉〈ψ

(j)
λ |. The state after a

projective measurement is

Pλ|ψ〉 =

n∑
j=1

|ψ(j)
λ 〉〈ψ

(j)
λ |ψ〉. (47)

Moreover, the probability pλ of getting the eigenvalue λ upon measuring A in the unit
norm state |ψ〉 can be expressed as the expectation value of Pλ:

pλ =

n∑
j=1

|〈ψ(j)
λ |ψ〉|

2 =

n∑
j=1

〈ψ|ψ(j)
λ 〉〈ψ

(j)
λ |ψ〉 = 〈ψ|Pλ|ψ〉. (48)

• Reproducibility of measurements: If A is measured again, soon after a previous
measurement of A, then the same value λ will be obtained and the system will remain
in the same eigenstate of A. If a system is in an eigenstate |ψ0〉 of the Hamiltonian,
then we know in advance that measurement of energy will result only in the eigenvalue
E0 and that the state will not change after the measurement.
• Simultaneous measurability of compatible observables. If two observables (her-
mitian operators A,B) commute, they have common eigenvectors and are simulta-
neously diagonalisable. We say they are simultaneously measurable or compatible.
What this means is that if A has been measured, and a value a obtained, then a mea-
surement of B will not affect the eigenstate |ψa〉 of A to which the system had col-
lapsed. This is because |ψa〉 is an eigenstate ofB as well. An immediate measurement
of B will certainly result in the eigenvalue of B corresponding to the eigenvector ψa.
A subsequent measurement of A will again result in the value a. It is in this sense that
A and B can be simultaneously measured.
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• Let us indicate why commuting observables have common eigenfunctions. Suppose
A is hermitian and has eigenvalues λi (assumed non-degenerate) with corresponding
eigenfunctions ψi, so Aψi = λiψi. Non-degeneracy means that each eigenspace
is one dimensional. Now suppose B commutes with A. Then consider B(Aψ),
we evaluate it in two ways. On the one hand, B(Aψi) = λiBψi. On the other,
BAψi = ABψi. Thus A(Bψi) = λi(Bψi). In other words, both ψi and Bψi are
eigenfunctions of A with the same eigenvalue. Since the eigenspaces of A are as-
sumed one dimensional Bψi and ψi must be linearly dependent, i.e. multiples of
eachother: Bψi = µiψi. In other words we have shown that an eigenfunction of A is
also an eigenfunction of B! What happens if A has a degenerate eigenvalue?
• It is worth noting that measurement of an observable in a state ψ is a complicated
process that is still not well-understood, and is certainly not the multiplication of the
operator A with the state vector ψ (which would produce a vector rather than a real
number).

0.3.10 Heisenberg uncertainty principle and inequality

• Given an observable A and a unit norm state |ψ〉, we have the variance of A in the
state ψ (or the square of the standard deviation or simply the square of the uncertainty
of A)

(∆A)2 = 〈ψ|(A− 〈A〉)2|ψ〉 = 〈A2〉 − 〈A〉2 (49)

The uncertainty in A measures the spread/width of the distribution of possible mea-
sured values of A in the state |ψ〉. It depends both on A and |ψ〉. If ψ is an eigenstate
of A with eigenvalue a, then the uncertainty of A is zero. We say that A takes a defi-
nite value a in an eigenstate. We say that A has quantum fluctuations in the state ψ if
〈A2〉 6= 〈A〉2.
• Supposeψ is a unit norm state, then the Heisenberg uncertainty inequality is ∆x∆p ≥
1
2~. It says that if you prepare a large number of copies of a system in the same state ψ,
and make measurements of position on half of them and momentum on the other half,
the product of standard deviations in the measurements of position and momentum is
bounded below by ~/2.
• An extreme case: if ψ is a position eigenstate |x0〉. In such a state, the uncertainty
in x is zero, a measurement of position always results in the value x0. However, the
uncertainty in momentum is infinite in a position eigenstate, all values of momentum
are equally likely.
• The ground state ψ0 of the SHO is a minimum uncertainty state. ∆x∆p = ~/2 in
this state. Check this statement.
• To show this we define an uncertainty functional U in a unit norm state ψ for a
pair of observables A,B with [A,B] = iC. Later we will specialize to A = x,B =
p, C = ~I .

U(ψ) = (∆A)2(∆B)2 = 〈ψ|(A− Ā)2|ψ〉〈ψ|(B − B̄)2|ψ〉 = 〈α|α〉〈β|β〉 (50)

where |α〉 = (A − Ā)|ψ〉 ≡ δA|ψ〉 and |β〉 = (B − B̄)|ψ〉 = δB|ψ〉. By the
Cauchy-Schwarz inequality,

U ≥ |〈α|β〉|2 = |〈ψ| δA δB |ψ〉|2 (51)
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We bring in the commutator and the anticommutator via

δAδB =
1

2
[δA, δB] +

1

2
{ δA, δB } =

1

2
iC +

1

2
{ δA, δB }. (52)

Now C is hermitian as is { δA, δB }. It follows that 1
2 〈iC〉 is purely imaginary and

1
2 〈{ δA, δB }〉 is real. So the absolute square of the sum is just the sum of the squares
of the imaginary and real parts:

U ≥ | i
2
〈C〉+

1

2
〈{ δA, δB }〉|2 =

1

4
〈C〉2ψ +

1

4
〈ψ|{δA, δB}|ψ〉2. (53)

The second term is ≥ 0. So we get

(∆A)2(∆B)2 = U ≥ 1

4
〈C〉2ψ. (54)

Specializing to A = x,B = p, C = ~I we get the Heisenberg uncertainty inequality
∆x∆p ≥ ~/2.

0.3.11 Relation between wave function in position and momentum space

• The wave function is a complete specification of the state of a quantum mechanical
system, just as giving the position and momentum of a particle completely specifies its
classical state. For a particle moving in 3-space, the coordinate space wave function
is ψ(x, y, z; t). For a system of n particles, the coordinate space wave function is
a function of the three coordinates of each of the n particles ψ(~r1, ~r2, · · ·~rn; t). In
other words, the coordinate space wave function is a (time-dependent) function on the
classical configuration space of the system.
• We have seen that the position space wave function of a state |ψ〉 is defined as
ψ(x) = 〈x|ψ〉. Let us denote a momentum eigenstate with momentum eigenvalue
p = ~k by |k〉, where k is the wave number. Then the momentum space wave function
of the same state |ψ〉 is ψ̃(k) = 〈k|ψ〉. The point is that |ψ〉 is an abstract state vector.
We can study it (‘represent it’) via its components in any basis. In particular, we
may look at its components 〈x|ψ〉 = ψ(x) in the basis of position eigenstates or its
components 〈k|ψ〉 = ψ̃(k) in the basis of momentum eigenstates. Let us see how
ψ(x) is related to ψ̃(k).
• Now inserting a complete set of momentum eigenstates and using 〈x|k〉 = eikx,

ψ(x) = 〈x|ψ〉 =

∫
dk

2π
〈x|k〉〈k|ψ〉 =

∫
dk

2π
eikxψ̃(k) (55)

So the position space wave function is the inverse-Fourier transform of the momentum
space wave function. Similarly, we have the Fourier transform

ψ̃(k) =

∫
dxe−ikxψ(x). (56)

• ψ(x) and ψ̃(k) are to be compared with the state of a classical mechanical system,
which is given by a simultaneous specification of coordinates and momenta. In the
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quantum theory, ψ cannot depend on both the coordinates and momenta (in an arbi-
trary manner). This is related to the uncertainty principle.
• The absolute square of the wave function |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) gives the
probability density for finding the particle at location x at time t. Similarly, |ψ̃(k, t)|2 dk2π
is the probability of finding the particle in momentum interval [k, k + dk] at time t.

0.3.12 Density matrix

• Suppose a system is in the state represented by the nonzero vector |ψ〉. Associated
to |ψ〉, we have the projection operator Pψ = |ψ〉〈ψ|/〈ψ|ψ〉 that projects to the 1d
subspace spanned by |ψ〉. Notice that Pψ is unchanged if we multiply |ψ〉 by a nonzero
complex number. Since such a scaling does not alter the physical state, Pψ is an
efficient way of representing the state. In this case, ρ = Pψ is called the (pure) density
matrix specifying the state of the system. The expectation value of any observable A
is then expressible in terms of the density matrix. Using trAB = trBA,

〈A〉 =
〈ψ|A|ψ〉
〈ψ|ψ〉

= tr (ρA). (57)

• We may think about a pure state via an ensemble consisting of several identical
copies of the system, all in the same state |ψ〉. Such an ensemble is called a pure
ensemble. Then according to Born, the expectation value 〈A〉ψ is the mean value
obtained when A is measured in each element of the ensemble.
• A pure ensemble density matrix has the following properties. (a) It is Hermitian
ρ† = ρ, (b) It is positive semidefinite ρ ≥ 0, (c) It has trace one tr ρ = 1 since this
holds for a projection to a 1d subspace and (d) it is a projection ρ2 = ρ.
• The viewpoint in terms of an ensemble allows us to generalize the concept of a
pure state. Consider an ensemble consisting of many copies of the system, each in a
possibly different (pure) state. Suppose the state ψi occurs with frequency pi ≥ 0 in
the ensemble, with

∑
i pi = 1. We may represent this so-called mixed ensemble via a

density matrix:

ρ =
∑
i

piPψi
=
∑
i

pi
|ψi〉〈ψi|
〈ψi|ψi〉

. (58)

• Notice that ρ is hermitian, positive semidefinite and has tr ρ =
∑
i pi = 1. How-

ever, it is in general not a projection. The expectation value of an observable in such a
statistical mixture is given by 〈A〉 = tr ρA.
• Inspired by this, we define a (mixed) density matrix ρ as a hermitian, positive
semidefinite operator on the quantum Hilbert space that has unit trace. If, in addi-
tion, it is a projection, then it is a pure density matrix.
• An example of a mixed density matrix is the thermal density matrix. Suppose a
system with hermitian Hamiltonian has energy eigenvalues −∞ < E0 ≤ E1 ≤ E2 ≤
· · · with corresponding energy eigenvectors ψi and is in equilibrium at temperature
T . If kb denotes Boltzmann’s constant, then the thermal density matrix is defined as

ρ =
1

Z

∑
i

e−Ei/kbT |ψi〉〈ψi| where Z =
∑
i

e−βEi . (59)
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In the thermal ensemble of Boltzmann and Gibbs, the probabilities pi decrease expo-
nentially with energy.

0.4 Time evolution: Schrödinger equation

•When left to itself, the state of the system evolves according to the Schrödinger equa-
tion i~ ∂

∂t |ψ(t)〉 = H|ψ(t)〉. H is the hermitian hamiltonian. Given the initial state
|ψ(0)〉, the SE determines the state at subsequent times, just as Hamilton’s equations
ẋ = ∂H

∂p , ṗ = −∂H∂x do in classical mechanics.
• In the position basis, the SE is

i~
∂

∂t
〈x|ψ(t)〉 = 〈x|Hψ(t)〉 or i~

∂ψ(x, t)

∂t
= (Hψ)(x, t) (60)

For a particle in a potential (Hψ)(x, t) = − ~2

2m
∂2ψ(x,t)
∂x2 + V (x)ψ(x, t), and we get

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x). (61)

The SE is a linear PDE, first order in time and second order in space derivatives of
the unknown ψ. Contrast this with Newton’s equation which in general is a system of
non-linear ODEs for xi(t).
• We often need to work with the adjoint of the Schrodinger equation, which is ob-
tained using H = H†

− i~ ∂
∂t
〈ψ(t)| = 〈ψ(t)|H. (62)

In the coordinate basis, the adjoint of the SE reads

−i~ ∂
∂t
〈ψ(t)|x〉 = 〈ψ(t)|H|x〉 = 〈Hψ|x〉 = 〈x|Hψ〉∗

⇒ −i~ ∂
∂t
ψ∗(x, t) = ((Hψ)(x))∗ (63)

or−i~ ∂
∂tψ
∗(x, t) = − ~2

2m
∂2ψ∗(x)
∂x2 +V (x)ψ∗(x) for a particle in a real potential V (x).

So in the coordinate basis, the adjoint of the SE is just its complex conjugate.

0.4.1 Separation of variables, stationary states

• The problem of time-evolution is to solve the Schrodinger equation i~∂|Ψ(t)〉
∂t =

Ĥ|Ψ(t)〉 given the initial state Ψ(t = 0)〉. For a particle in a potential V (x), the SE is
a LINEAR partial differential equation for the unknown function Ψ(x, t) = 〈x|Ψ(t)〉.

i~
∂Ψ(x, t)

∂t
= (HΨ)(x, t) = − ~2

2m

∂2Ψ(x, t)

∂t
+ V (x)Ψ(x, t). (64)

To solve it we use the method of separation of variables. We look for separable so-
lutions in the form of a product Ψ(x, t) = ψ(x)T (t). Now, not every solution of the
SE is such a product. But due to the linearity of the equation linear combinations of
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solutions are again solutions. The idea is to find sufficiently many separable solutions
so that every solution can be written as a linear combination of separable solutions.
Putting the ‘ansatz’ (guess) Ψ(x, t) = ψ(x)T (t) into the equation, we get

i~Ṫ (t)ψ(x) = T (t)(Hψ)(x). (65)

Dividing by Tψ we get

i~
Ṫ (t)

T (t)
=

(Hψ)(x)

ψ(x)
= E. (66)

LHS depends only on time while the RHS depends only on position, provided H is
not explicitly time-dependent. The only way these can be equal is for both to equal
the same constant, say E, so-named, since it turns out to have the physical meaning
of energy eigenvalue. Now we have two separate equations. The one for T (t) has the
solution T (t) = c exp(−iEt/~). The other equation

(Hψ)(x) = Eψ(x) or 〈x|H|ψ〉 = E〈x|ψ〉 or H|ψ〉 = E|ψ〉 (67)

is simply the eigenvalue equation for the hamiltonian operator. It is also called the
time-independent Schrodinger eigenvalue equation. It typically has lots of solutions,
namely all the eigenstates |ψn〉 of the hamiltonian, with their corresponding energy
eigenvalues En. As for any hermitian operator, we can take these |ψn〉 to be orthonor-
mal. Thus the separable solutions of the Schrodinger equation are

Ψn(x, t) = cnψn(x)e−iEnt/~. (68)

where ψn are eigenstates of the hamiltonian. These separable solutions are called
stationary states since the probability density in these states P (x, t) = |Ψ(x, t)|2 =
|cn|2|ψn(x)|2 are independent of time. Stationary states have the simplest possible
time dependence of all solutions of the Schrodinger equation, i.e., sinusoidal or har-
monic time dependence.
•Now the general solution of the SE is got by taking a linear combination of stationary
states

Ψ(x, t) =
∑
n

cnψn(x)e−iEnt/~. (69)

To find the solution of the initial value problem, we must choose the cn so that the
initial state is |Ψ(0)〉. In other words, we must have∑

n

cn|ψn〉 = |Ψ(0)〉 (70)

To find the cn we take the inner product with |ψm〉, and use orthogonality of energy
eigenstates∑
n

cn〈ψm|ψn〉 =
∑
n

δmncn = cm = 〈ψm|Ψ(0)〉 ⇒ cm =

∫
ψ∗m(x)Ψ(x, 0)dx.

(71)
Thus we have solved the initial value problem for the Schrödinger equation.
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0.4.2 Conserved probability density and current

• The absolute square of the wave function |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) gives the
probability density for finding the particle at location x at time t. Suppose n copies of
a system are prepared in the same quantum mechanical state ψ(x). (For example, we
could have a hydrogen atom in its ground state in each of 100 different boxes) Then a
measurement of the position of each particle (at the same time) gives a (possibly) dif-
ferent result (this is an experimental fact). Born’s statistical interpretation of the wave
function is that, as n→∞, the distribution of position measurements approaches the
probability density |ψ(x, t)2|.
• To qualify as a probability density, the total probability of finding the particle any-
where must be one. In other words, we need ||ψ||2 =

∫
dx |ψ(x, t)|2 = 1. However,

there could be a problem. For consistency, the total probability of finding the particle
somewhere must remain equal to one at all times, total probability must be conserved.
This is indeed the case, as is checked using the Schrödinger equation and its adjoint

i~
∂

∂t
〈ψ|ψ〉 = 〈ψ|Hψ〉 − 〈ψH|ψ〉 = 0. (72)

In other words, if the wave function is normalized to one initially (t = 0), then it con-
tinues to have norm one in the future. This is called global conservation of probability.
But it is not merely the total probability that is conserved. Probability cannot jump
from one place to another, it flows continuously like a fluid. There is a local conser-
vation of probability just like for mass in a fluid. The rate of increase of mass of fluid
in a box is equal to the inward flux of fluid across the walls of the box (provided there
isn’t a source/sink of fluid inside the box). The probability density |ψ(x, t)|2 satisfies
a continuity equation with an associated probability current. Consider a particle in a
potential

i~ ∂t(ψ∗ψ) = i~ (ψ∗tψ + ψ∗ψt) =

(
~2

2m
ψ∗′′ − V ψ∗

)
ψ + ψ∗

(
− ~2

2m
ψ′′ + V ψ

)
=

~2

2m

[
ψ∗′′ψ − ψ∗ψ′′

]
=

~2

2m
∂x
(
ψ∗′ψ − ψ∗ψ′

)
. (73)

Let P (x, t) = |ψ(x, t)|2 and define the probability current density

j(x, t) =
~

2mi
(ψ∗ψ′ − ψ∗′ψ) , then ∂tP (x, t) + ∂xj(x, t) = 0. (74)

The last equation is called the law of local conservation of probability (in differential
form) or a continuity equation. To interpret this formula we consider how the prob-
ability for the particle to be in an interval [x0, x1] changes with time. So integrate
∂tP + ∂xj = 0 over this interval at a fixed time t to get the law of local conservation
of probability in integral form:

∂t

∫ x1

x0

P (x) dx+

∫ x1

x0

∂j(x)

∂x
dx = 0 ⇒ ∂t

∫ x1

x0

P (x) dx = j(x0)− j(x1)

(75)
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by the fundamental theorem of calculus. This equation says the rate of increase of
probability in [x0, x1] equals the probability current flowing in at x0 minus that flow-
ing out at x1.
• All of this also works in three dimensions. The rate of increase of probability in
a region (volume) Ω must equal the inward flux of probability across the surface ∂Ω
that borders Ω:

P (~r, t) = ψ∗(~r, t)ψ(~r, t), ~j =
~

2mi
[ψ∗ (∇ψ)− (∇ψ∗)ψ] =

~
m
=ψ∗∇ψ

∂tP (~r, t) +∇ ·~j(x, t) = 0, i.e.
∂ρ

∂t
+
∂j1
∂x

+
∂j2
∂y

+
∂j3
∂z

= 0.

∂t

∫
Ω

P (~r, t)d3r +

∫
Ω

d3r∇ ·~j = 0 or ∂t

∫
P (~r, t)d3r = −

∫
∂Ω

~j · d~S. (76)

d~S is the outward pointing area element on the bounding surface ∂Ω. It says that the
rate of increase of probability in a region must equal the inward flux of probability
current across the surface of the region. We used the divergence theorem to write the
volume integral of a divergence as a surface integral.

0.4.3 Ehrenfest’s theorem

• The expectation values 〈x〉, 〈p〉, 〈E〉 etc are functions of time (space has been inte-
grated over). The average position and momentum of an electron will depend on time
in a way governed by the Schrödinger equation. According to Ehrenfest’s theorem,
these expectation values evolve as do the corresponding classical variables, whose
evolution is given by Newton’s/Hamilton’s equations! E.g. d〈x〉dt = 〈p〉

m , so the average
position evolves in the same way as given by the first of Hamilton’s equations. To see
this and related results, we first derive a general equation for the time evolution of the
expectation value of an observable A in a unit-norm state that evolves via the SE

i~
∂

∂t
〈ψ|A|ψ〉 = −〈ψ|HA|ψ〉+ 〈ψ|AH|ψ〉 = 〈ψ|[A,H]|ψ〉. (77)

• Putting A = H and using [H,H] = 0 shows that the average energy (expectation
value of hamiltonian) is constant ∂〈Ĥ〉

∂t = 0. This is the analogue of the classical
constancy of energy along a trajectory.
• Taking A = p we find the time evolution of mean momentum for a particle subject
to the hamiltonian H = p2

2m + V . Show that

[p,H] = [p, V ] = −i~V ′ (78)

Thus we have
∂〈p〉
∂t

= 〈−V ′〉. (79)

Thus Newton’s second law (or the second of Hamilton’s equations) ṗ = −V ′(x)
continues to hold in quantum mechanics, but in the sense of expectation values. The
average momentum evolves as though it is a classical variable subject to an ‘average
force’!



22 CONTENTS

• If A = x, then [x,H] = [x, p
2

2m ] = i~p
m . So

∂〈x〉
∂t

=

〈
p

m

〉
. (80)

This is the first of Hamilton’s equations ẋ = ∂H
∂p = p

m , but now in the sense of
expectation values.
• So if the electron is in the initial state ψ(x, t = 0), Schrödinger’s equation tells us how the
state evolves in time. We have used this to determine the motion of the average position of the
electron and found that it is related to the average momentum in the same way as the actual
position and momentum of a particle are related by Hamilton’s equation of classical mechanics.
To the extent that the expectation value of x provides an approximate position for a localized
electron wave packet, we see that the quantum mechanical motion of the wave-packet mimics
the classical motion of a particle. However, the wave packet typically spreads out in time, and
ceases to be well-described by merely its mean position. This reduces the utility of the Ehrenfest
result in determining where a quantum particle may be found at later times, based purely on its
classical motion.

0.5 Summary of postulates of quantum mechanics

• The states of a quantum system are vectors in a Hilbert space H. For a system of
particles, H is the space of square-integrable functions on the classical configuration
space. Two state vectors that differ by a multiplicative complex constant represent the
same physical state. So more precisely, the space of states of a quantum system are
rays in a Hilbert space.
• Observables (such as the hamiltonian) are hermitian (more precisely self-adjoint)
operators onH.
• Time evolution of a state is given by Schrödinger’s equation.
•Measurement of an observable A in a state |ψ〉 (of norm one) produces a real num-
ber that is one of the eigenvalues λ of A. After the measurement, the system col-
lapses to the state Pλ|ψ〉, where Pλ is the projection operator to the λ-eigenspace.
Moreover, the probability of getting eigenvalue λ is equal to the expectation value
pλ = 〈ψ|Pλ|ψ〉. If the λ-eigenspace is 1-dimensional and spanned by the unit-norm
eigenvector |ψλ〉, then pλ = |〈ψλ|ψ〉|2.
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