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2 Formulation of classical mechanics

• The set of possible instantaneous locations of a classical particle is called its configuration
space. This is usually three dimensional Euclidean space R3. The number of coordinates needed
to specify the instantaneous configuration of a system is the number of degrees of freedom.
A system consisting of a pair of particles has 6 degrees of freedom x1, y1, z1, x2, y2, z2, its
configuration space is R3 × R3 = R6. A particle attached to a fixed support by a rod of fixed
length has two degrees of freedom, its configuration space is a sphere. The configuration space
and number of degrees of freedom are kinematical notions. They do not depend on the nature
of forces between the particles.
• If the forces acting on/between the particles are known, then we may determine the dynamical
time evolution of the system by solving Newton’s equations for the trajectories. For one particle
in an inertial frame, mr̈ = F. Newton’s equations are second order in time, they require two
sets of initial conditions, the initial positions r(0) and initial velocities ṙ(0). In other words, the
initial coordinates r(0) and initial momenta p(0) = mṙ(0) determine the future trajectory. We
say that the instantaneous state of the system is specified by giving the coordinates and momenta
of all the particles. The set of possible instantaneous states of a system is its phase space. For
a particle moving along a line, its phase space is the x − p phase plane. Newton’s equations
may be formulated as Hamilton’s 1st order equations for the time evolution of coordinates and
momenta

ẋ =
∂H

∂p
and ṗ = −∂H

∂x
. (1)

For a particle in a potential H(x, p) = p2

2m
+ V (x) and Hamilton’s equations are a pair of first

order equations

ẋ =
p

m
and ṗ = −dV

dx
, (2)

which may be written as a single second order equation expressing Newton’s second lawmẍ =
−V ′(x). The curve in phase space (x(t), p(t)) is called the phase trajectory. Draw the phase
portrait for a free particle as well as for a simple harmonic oscillator, indicating the direction
of trajectories. A dynamical variable that is constant along trajectories is called a constant of
motion. Its value may differ from trajectory to trajectory. The hamiltonian H = T + V is a
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conserved quantity for conservative systems (i.e. where the force is the negative gradient of a
scalar potential).
• Dynamical variables like angular momentum and the hamiltonian are functions of the basic
dynamical variables position and momentum. In general, any real function of position and
momentum is called an observable. Observables are simply real-valued functions on phase
space. They must be real since observables are physical quantities that may be measured.
• For a HamiltonianH(q, p), Hamilton’s equations can be expressed in terms of Poisson brack-
ets:

q̇ = {q,H} and ṗ = {p,H} (3)

and more generally, for any observable f(q, p),

df

dt
= {f,H}. (4)

Here, the PB of any two observables is defined as

{f(q, p), g(q, p)} =

n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (5)

The sum runs over the n degrees of freedom. It follows that f is conserved (ḟ = 0) if its Poisson
bracket with the Hamiltonian is zero: {f,H} = 0. If {f, g} = 0, we say that f and g Poisson
commute. Dynamical variables that Poisson commute with the Hamiltonian are conserved.

3 States, observables and measurement in quantum mechanics

3.1 Hilbert space of states of a quantum system

• States of a quantum system are vectors in a linear space (“vector space”) called a complex
Hilbert space H. For a particle moving on a line, its configuration space is R1, parametrized
by one coordinate x. Its quantum state space H = L2(R) is the space of square-integrable
functions ψ(x) on the classical configuration space. ψ is called the state function or state vector
or wave function of the particle.
• By Born’s probability postulate, |ψ(x)|2dx is interpreted as the probability of finding the
particle between x and x + dx. Since the total probability of the particle being somewhere
should be one, we normalize the wave function

∫∞
0
|ψ(x)|2dx = 1. This is why we restrict to

square-integrable wave functions. ψ(x) itself is called a probability amplitude, its square is a
probability density.
• Unlike the classical space of states (phase space) which can be a non-linear manifold (e.g. if a
particle is constrained to move on a circle), the quantum Hilbert space is always a linear space.
The sum of two states ψ + φ is a possible state and so is a complex multiple cψ of any state.
This is the principle of linear superposition of states, used to explain the interference of matter
waves in the double slit experiment.
• A complex Hilbert space H is a vector space over the complex numbers. It is a space of
ket vectors |ψ〉 closed under linear superposition. If |ψ〉 and |χ〉 are state vectors, then so is
α|ψ〉+β|χ〉, for any α, β ∈ C. A simple example is the two dimensional complex vector space

of spin states of a spin half particle which are usually denoted as column vectors |ψ〉 =

(
ψ1

ψ2

)
in a suitable basis. Notably, the space of states of a quantum system is a complex, rather than a
real vector space.
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• The quantum state space is equipped with an inner or dot product. The inner product of a pair
of vectors ψ, χ is denoted 〈ψ|χ〉. For the spin- 1

2
Hilbert space, the inner product is

〈ψ|χ〉 =

(
ψ1

ψ2

)†(
χ1

χ2

)
=
(
ψ∗1 ψ∗2

)(χ1

χ2

)
= ψ†χ = ψ∗1χ1 + ψ∗2χ2. (6)

ψ† is called the hermitian adjoint, it is the complex conjugate transpose, it is a row vector.
So associated with a vector space of colummn/ket vectors there is a ‘dual’ space of row/bra
vectors, the adjoints of the kets |ψ〉† = 〈ψ| =

(
ψ∗1 ψ∗2

)
. The inner product may also be

regarded as producing a complex number from a ket vector |χ〉 and the bra vector dual/adjoint
to |ψ〉: 〈ψ|χ〉. However, the inner product of a non-zero vector with itself is always a positive
real number 〈ψ|ψ〉 > 0, it is called the squared-norm ||ψ||2 = 〈ψ|ψ〉 or squared-length of the
vector.
• Another example is n-dimensional complex vector space Cn with the inner product 〈u|v〉 =∑
i u
∗
i vi. The Hilbert space of a particle moving on a line isL2(R) with 〈f |g〉 =

∫∞
−∞ f

∗(x)g(x) dx.
• From these examples (keep 〈u|v〉 = u∗i vi in mind) we abstract the basic properties of the
inner product (these are its defining properties in an axiomatic approach)

〈αu|v〉 = α∗〈u|v〉, 〈u|βv〉 = β〈u|v〉, 〈u+ v|w〉 = 〈u|w〉+ 〈v|w〉, 〈u|v〉∗ = 〈v|u〉.
(7)

〈u|v〉 is linear in the second vector v and anti-linear in the first vector u on account of complex
conjugation of the components of the first vector.
• The norm/length of a vector is ||v|| =

√
〈v|v〉. The norm of a vector is unchanged upon

multiplying by a phase eiα. If 〈u|v〉 = 0 then the vectors are orthogonal.
• Two state vectors that differ by multiplication by a non-zero complex number ψ2(x) =
cψ1(x) represent the same physical state. We often work with unit norm states.
• A basis for the Hilbert space is a set of vectors |ei〉 such that any vector |v〉 may be expressed
as a linear combination of |ei〉 in a unique way. The number of basis vectors is the dimension
of the vector space. The standard basis vectors of the two dimensional spin Hilbert space C2

are

|e1〉 =

(
1
0

)
, |e2〉 =

(
0
1

)
, so

(
v1

v2

)
= v1|e1〉+ v2|e2〉. (8)

The coefficients vi in the expansion |v〉 =
∑
i vi|ei〉 are called the components of |v〉. The

components of the adjoint are the complex conjugates: 〈v| =
∑
i〈ei|v

∗
i . [We will often drop

the summation symbol and assume repeated indices are summed.] E.g. the adjoints of the basis
vectors are row bra-vectors

〈e1| = e†1 =
(
1 0

)
, 〈e2| = e†2 =

(
0 1

)
. (9)

Cn is an n-dimensional vector space. The state space of a particle moving on a line, L2(R) is
infinite dimensional, it is called a function space. It is intuitively clear that this is an infinite
dimensional space since the values of the function ψ(x) at each x ∈ R can be freely specified
(subject to normalizability). x here plays the role of the index i = 1, 2 in the two dimen-
sional spin-half vector space C2. A possible basis for a function space is the set of monomials
{1, x, x2, x3, x4, · · · }. Indeed, any function ψ that has a Taylor series around x = 0 admits an
expression as a linear combination of these. The coefficients are the derivatives of ψ at x = 0:

ψ(x) = ψ(0) + ψ′(0)x+
1

2
ψ′′(0)x2 +

1

3!
ψ′′′(0)x3 + · · · (10)
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However this basis of monomials is a bit inconvenient. The basis vectors are not orthogonal,
in fact they are not even normalizable with respect to the above L2 inner product. A more
convenient basis for L2(R) consists of the energy eigenstates of the harmonic oscillator |n〉.
• It is often convenient to work with an orthonormal (o.n.) basis, i.e., a basis of vectors |ei〉
which are pairwise orthogonal and each normalized to have unit norm, 〈ei|ej〉 = δij . The
standard basis |ei〉 for Cn with components |ei〉j = δij is orthonormal with respect to the usual
inner product 〈u|v〉 =

∑
i u
∗
i vj .

3.2 Linear operators, Adjoint, (anti-)Hermitian and Unitary operators

An observable A in quantum mechanics (e.g. hamiltonian, position, momentum, angular mo-
mentum, spin, magnetic moment) is a hermitian (self-adjoint) linear operator on the Hilbert
space of states H. Hermiticity is the quantum analogue of classical observables being real-
valued functions. We will see that a hermitian operator has real eigenvalues, which are possible
results when A is measured. To define a hermitian operator, we first note that a linear operator
on a vector space takes vectors to vectors in a linear way: A(a|ψ〉+ b|χ〉) = aA|ψ〉+ bA|χ〉.
When A acts on a vector |v〉 it produces a new ket vector A|v〉 which is also denoted |Av〉.
• A linear operator is an abstract concept, whose concrete realisation is a matrix. A linear
operator on C2 is simply a 2 × 2 matrix, once we choose a basis to represent it. For example,

the Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are linear operators

represented as matrices in the standard basis for C2.
• If |ej〉 are a basis for H, then a linear operator A is determined by how it acts on the basis
vectors. Since A takes vectors to vectors, A|ej〉 must be a linear combination of the basis
vectors themselves

A|ej〉 =
∑
k

|ek〉Akj . (11)

Akj are the components of A in this basis, they may be written as entries in a matrix, with Akj
occupying the slot in the kth row and jth column. The vector that makes up the first column
Ak1 is the ‘image’ of e1 (i.e. coefficients in the linear combination appearing in A|e1〉), the
second column Ak2 is the image of e2 and so on.
• If the basis ei is orthonormal 〈ei|ej〉 = δij , then we have

〈ei|A|ej〉 =
∑
k

〈ei|ek〉Akj =
∑
k

δikAkj = Aij . (12)

We say that Aij are the matrix elements of A between the o.n. basis states ei and ej .
• A matrix A is hermitian if it equals its own complex conjugate transpose. The latter is called
its adjoint A† = (A∗)t. So A is hermitian if A = A†, i.e., if it is self-adjoint. In terms
of matrix entries, A∗ij = Aji. In particular, the diagonal entries of a hermitian matrix are
real, while the off diagonal entries are complex conjugates of each other. The Pauli matrices
are hermitian. Note that the adjoint of a product is the product of adjoints in the opposite
order. (AB)† = B†A† and that (A|ψ〉)† = 〈ψ|A†. We also denote A|ψ〉 = |Aψ〉, so that
|Aψ〉† = 〈Aψ|.
• The concept of hermiticity makes sense for a linear operator, even if we have not represented
it explicitly as a matrix by choosing a basis. To explain the concept, we need the idea of matrix
elements between states. If u, v are a pair of states, then 〈u|A|v〉 is called the matrix element
of A between the states u and v. To know an operator is to know its matrix elements.
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• The adjoint of A is the operator A† defined via its matrix elements 〈u|A†|v〉 = 〈Au|v〉 =
〈v|Au〉∗. So if we know the matrix elements of A, then we may find the matrix elements of
A†. A linear operator is hermitian if 〈u|Av〉 = 〈Au|v〉 for all states u, v ∈ H. A hermitian
operator is also called symmetric since it does not matter whether A is written on the left or on
the right.
• Now, let us see how this abstract definition of hermiticity reduces to the formula Aij = A∗ji
for hermitian matrices. We must equate the matrix elements of A and those of A†. Let ei be an
orthonormal basis, then the matrix element of A between the states ei and ej is just Aij , as is
seen by taking the inner product of the above equation with ei

〈ei|A|ej〉 =
∑
k

〈ei|ek〉Akj =
∑
k

δikAkj = Aij . (13)

On the other hand, what are the matrix elements of A†? By the definition of the adjoint,

〈ei|A†ej〉 = 〈Aei|ej〉 = 〈ej |Aei〉∗ = (Aji)
∗ (14)

So a linear operator is self-adjoint if its matrix elements in an o.n. basis satisfy Aij = (Aji)
∗.

• An anti-hermitian operator is one that satisfies A† = −A. A unitary operator is one whose
inverse is its adjoint, UU† = U†U = I . It is clear that the identity I is hermitian as well as
unitary. If A is anti-hermitian, then iA is hermitian since (iA)† = A†i† = −A(−i) = A.

3.3 Outer products of vectors and completeness relation

• Outer products of vectors: Consider the vector space Cn with standard basis |ei〉. Just as
we may multiply row and column n-vectors to get a scalar inner product, we may also form
their ‘outer’ product (column times a row), to get an n× n matrix. For n = 2 show that

|e1〉〈e1| = e1e
†
1 = ( 1 0

0 0 ) , |e2〉〈e2| = ( 0 0
0 1 ) , |e1〉〈e2| = ( 0 1

0 0 ) , |e2〉〈e1| = ( 0 0
1 0 ) .

(15)
More generally, check that |ei〉〈ej | is a matrix with a 1 in the ij-entry and 0’s elsewhere. From
this we see that a matrix whose entries are Aij in the ith row and jth column, can be expressed
as

A =
∑
ij

Aij |ei〉〈ej | (16)

Now let us use this expression to find how a matrix acts on a vector v = vk|ek〉. We get using
the associativity of multiplication of operators (freedom to place brackets)

Av =
∑
ij

Aij |ei〉〈ej |vk|ek〉 = Aijvk|ei〉〈ej |ek〉 = Aijvkδjk|ei〉 = Aikvk|ei〉. (17)

So the ith component of Av is
∑
k Aikvk.

• In particular, the identity operator I , may be expressed as

I =
∑
i

|ei〉〈ei| =
∑
ij

δij |ei〉〈ej |. (18)

The identity operator has the components δij in any basis since it takes every vector to itself.
This ‘resolution’ of the identity operator as a sum of outer products of a set of orthonormal
basis vectors is called the completeness relation. It is quite useful in many physical problems
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and calculations. E.g. the energy eigenstates of the Harmonic oscillator form a complete or-
thonormal set and satisfy the above completeness relation. Coherent states for the harmonic
oscillator also satisfy a completeness relation even though they are not orthogonal and are in
fact an over-complete set.
• In the Hilbert space of a spin half particle C2, we have the basis vectors | ↑〉 and | ↓〉 which
we will interpret as states where the z-component of spin Sz has the values ±~/2. Then Sz =
(~/2)(| ↑〉〈↑ | − | ↓〉〈↓ |). The raising and lowering operators are

S+ = ~| ↑〉〈↓ | and S− = ~| ↓〉〈↑ |. (19)

Justify the names of S± by analysing how they act on | ↑〉 and | ↓〉.

3.4 Projection matrix

• As before, let |ei〉 be an orthonormal basis. Define the operator Pei = |ei〉〈ei| via the outer
product of ei with itself. If |v〉 is any vector, notice that Pei |v〉 = |ei〉〈ei|v〉 = vi|ei〉 (no sum
on i) is the (orthogonal) projection of v along ei. We say that Pei is the projection matrix or
operator to the subspace spanned by ei. In general, given any nonzero vector |u〉,

Pu =
|u〉〈u|
〈u|u〉 (20)

is called the projection operator to the subspace spanned by u.
• Verify the following properties:

1. P †u = Pu is hermitian.

2. P 2
u = Pu.

3. trPu = 1
||u||2

∑
i〈ei|u〉〈u|ei〉 = 1

||u||2
∑
|ui|2 = 1. Alternatively, using trAB =

trBA, trPu = tr 〈u|u〉/〈u|u〉 = 1. The trace of a projection to a 1d subspace is equal
to one.

4. Pu is a positive semidefinite operator. This means 〈v|Pu|v〉 ≥ 0 for all |v〉. In fact, this
diagonal matrix element vanishes iff v is orthogonal to u.

•More generally, given a subspaceW ⊆ V we have the (orthogonal) projection to the subspace
W . If wi for 1 ≤ i ≤ k is an orthonormal basis for W , then

PW =

k∑
i=1

|wi〉〈wi| (21)

is the projection to W . We verify that P †W = PW , P 2
W = PW , trPW = k and that PW is

positive semidefinite.
• In general, a projection matrix is a hermitian matrix P with P 2 = P . The trace of a projection
is the dimension of the subspace to which it projects.
• In R3, the projection of a vector onto the x-y plane may be viewed as the shadow of the vector
if the sun is positioned infinitely far away on the z-axis (z = ±∞ depending on whether the
vector is above or below the x-y plane.).
• The completeness relation (18) expresses the identity as a sum of projections to the 1d sub-
spaces spanned by the vectors in an orthonormal basis.
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3.5 Expectation values

• Of particular importance is the concept of expectation value of an observable A in a state ψ,
which is defined as the normalized diagonal matrix element of A in the state ψ

〈A〉ψ =
〈ψ|Aψ〉
〈ψ|ψ〉 (22)

The expectation value of a hermitian operator in any state is a real number. For, by hermiticity,
and 〈u|v〉 = 〈v|u〉∗, we have

〈ψ|Aψ〉 = 〈Aψ|ψ〉 = 〈ψ|Aψ〉∗ (23)

In other words, the diagonal matrix element of A is equal to its own complex conjugate.
We are familiar with this: the diagonal entries of a hermitian matrix in an orthonormal basis
〈ei|A|ei〉 = Aii are real.
• It follows from the reality of expectation values of a hermitian operator that the eigenvalues
(to be introduced shortly) of a hermitian operator are also real. In fact, the eigenvalues are
simply the expectation values in the corresponding eigenstates.

3.6 From Poisson brackets to Commutators and the Schödinger representation

• Recall that the classical phase space variables, position and momentum satisfy canonical
Poisson brackets. For 1 degree of freedom, they are

{x, p} = 1, {x, x} = 0, {p, p} = 0. (24)

x and p are said to be canonically conjugate observables. For a particle in 3d space, we have
{xi, pj} = δij .
• The process of quantization involves replacing classical observable like position, momen-
tum, angular momentum and the Hamiltonian with corresponding hermitian operators on the
quantum Hilbert space. Let us call the quantum position and momentum operators x̂ and p̂.
• In the process of quantization, the Poisson bracket of classical Hamiltonian mechanics is
replaced with (a multiple of) the commutator of operators. Multiplication of matrices/operators
is in general not commutative AB 6= BA (in general). The amount by which they fail to
commute is called the commutator [A,B] = AB −BA. Any operator commutes with itself or
any power of itself [A,An] = An+1 −An+1 = 0.
•We will postulate the quantization rule

{f, g} = h −→ 1

i~
[f̂ , ĝ] = ĥ, (25)

where f̂ , ĝ, ĥ are the hermitian operators associated to the classical observables f, g, h.
• Let us explain the factor i~. Now, due to the differentiation with respect to x and p, {f, g}
has dimensions of the product of f and g divided by action (or angular momentum). On the
other hand, the commutator [f̂ , ĝ] has dimensions of the product of f and g. So we will need to
divide the commutator by a quantity with dimensions of angular momentum in passing to the
quantum theory. This quantity is the ‘reduced’ Planck’s constant ~. Furthermore, we check that
the commutator of hermitian operators A and B is antihermitian:

([A,B])† = (AB −BA)† = B†A† −A†B† = BA−AB = −[A,B]. (26)
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Thus, to get a hermitian operator, we divide by i.
• An important property of the commutator is the product or Leibniz rule, check that

[A,BC] = [A,B]C +B[A,C]. (27)

• To quantize x and p we seek hermitian operators x̂ and p̂ on the quantum state space that
satisfy the Heisenberg commutator relation [x̂, p̂] = i~I . Schrodinger found a solution to this
problem. Working in the position basis, our states are wave functions of position ψ(x). We will
represent x̂ by multiplication by x and p̂ by −i~ ∂

∂x
. In other words:

(x̂ψ)(x) = xψ(x) and (p̂ψ)(x) = −i~∂ψ
∂x

. (28)

• Let us check that x̂p̂− p̂x̂ = [x̂, p̂] = i~I by acting on a state ψ(x). We will mostly omit the
hats on quantum operators henceforth:

xpψ = −i~xψ′(x), while pxψ = −i~ ∂

∂x
(xψ) = −i~xψ′(x)−i~ψ(x) ⇒ [x, p]ψ = i~ψ.

(29)
• In three dimensions, we have three coordinate and momentum operators x, y, z and px =
−i~ ∂

∂x
, py = −i~ ∂

∂y
, pz = −i~ ∂

∂z
. It is easily seen that the momenta commute with each

other and the coordinates commute among themselves, more over [x, px] = i~ while [x, py] =
0 etc. These so-called Heisenberg canonical commutation relations may be summarised as
[xi, pj ] = i~ δij .
• We will soon show that the quantum mechanical position and momentum operators are her-
mitian.

3.7 Hermiticity of position and momentum operators

• Physically interesting examples of hermitian operators for a particle with one degree of free-
dom moving on a line include the position operator (x̂ψ)(x) = xψ(x), and momentum operator
(p̂ψ)(x) = −i~ψ′(x). Here, we check that x̂† = x̂ and that d̂ = ∂

∂x
is anti-hermitian. It will

follow that p̂ = −i~d̂ is hermitian. We must show 〈f |x̂g〉 = 〈x̂f |g〉 for any two states f, g.
This is seen as follows:

〈f |x̂g〉 =

∫
f∗(x)xg(x) dx =

∫
(xf(x))∗g(x) dx = 〈x̂f |g〉. (30)

Showing hermiticity of p̂ = −i~ ∂
∂x

requires integration by parts. Let us show that d̂ = ∂
∂x

is
anti-hermitian, from which it will follow that p̂ = −i~d̂ is hermitian. Let us denote complex
conjugate of f by f̄ here for convenience

〈f |d̂g〉 =

∫
f̄(x)g′(x)dx = −

∫
f̄ ′(x)g(x) dx+

[
f̄g
]∞
−∞ = −〈d̂f |g〉. (31)

Here we assumed f, g vanish at±∞, which is the case for square-integrable functions. Bound-
ary conditions play an important role in determining the hermiticity of momentum. If we have
a particle moving on a finite interval [a, b] (as in a square well), then

〈f |d̂g〉 =

∫ b

a

f̄(x)g′(x)dx = −
∫ b

a

f̄ ′(x)g(x) dx+
[
f̄g
]b
a

= −〈d̂f |g〉+
[
f̄g
]b
a
. (32)

For d̂ to be anti-hermitian, the boundary term must vanish. This happens, for instance, if the
functions vanish at the end points (f(a) = f(b) = 0, as in an infinite square well) or satisfy
‘periodic boundary conditions’ f(a) = f(b).
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3.8 Eigenvalue problem for hermitian operators

• The eigenvalue problem for a linear operator (hermitian or not) is the equationA|ψ〉 = λ|ψ〉.
A non-zero vector |ψ〉 6= 0 that satisfies this equation for some complex number λ is called an
eigenvector of A with eigenvalue λ. Taking the adjoint of the eigenvalue equation we also have

(A|ψ〉)† = 〈ψ|A† = λ∗〈ψ| (33)

So if |ψ〉 is an eigen-ket of A with eigenvalue λ, then 〈ψ| is an eigen-bra of A† with eigenvalue
λ∗. In particular, if A = A† is hermitian, then 〈ψ|A† = 〈ψ|A = λ∗〈ψ|. In other words, if |ψ〉
is an eigen-ket of A, then 〈ψ| is an eigen-bra of A with eigenvalue λ∗. We will soon show that
λ is real if A is hermitian (see also §3.5).
• Exercise: Show that the eigenvalues of a projection matrix P (P 2 = P ) are 1 (with degener-
acy trP ) and 0 (with degeneracy n− trP ).
• The eigenstate of the position operator x̂ with eigenvalue x′ is denoted |x′〉, i.e., x̂|x′〉 =
x′|x′〉. We will see that measurement of the position of a particle that is in state |x′〉 is guaran-
teed to give the value x′. The ‘position-space’ or ‘coordinate-space’ wave function of any state
|ψ〉 is defined as the inner product 〈x|ψ〉 = ψ(x). It follows that ψ∗(x) = 〈ψ|x〉.
• Similarly, the eigenvalue problem for momentum is p̂|k〉 = ~k|k〉. It is conventional to write
the momentum eigenvalue in terms of wave number as ~k. We will see that |k〉 is a state in
which a measurement of the particle’s momentum will give ~k. The momentum space wave
function of a particle in state |ψ〉 is defined as ψ̃(k) = 〈k|ψ〉. ψ̃ is pronounced ‘psi-tilde’.
• Here are some useful facts about hermitian matrices/operators:

1. The eigenvalues of a hermitian operator are real. This is because the eigenvalues of a her-
mitian operator are simply the (necessarily real) expectation values in the corresponding
eigenstates

A|ψ〉 = λ|ψ〉 ⇒ 〈ψ|A|ψ〉 = 〈ψ|λψ〉 = λ〈ψ|ψ〉 ⇒ λ =
〈ψ|A|ψ〉
〈ψ|ψ〉 . (34)

2. Eigenvectors |χ〉, |ψ〉 corresponding to distinct (necessarily real) eigenvalues µ 6= λ are
orthogonal. To see this, we calculate 〈χ|Aψ〉 in two ways using hermiticity and reality
of eigenvalues and subtract.

〈χ|Aψ〉 = λ〈χ|ψ〉 and 〈χ|Aψ〉 = 〈Aχ|ψ〉 = 〈ψ|Aχ〉∗ = µ∗〈ψ|χ〉∗ = µ〈χ|ψ〉.
(35)

Thus (λ − µ)〈χ|ψ〉 = 0. Since λ 6= µ we must have 〈χ|ψ〉 = 0, i.e., eigenvectors
corresponding to distinct eigenvalues are orthogonal.

3. It can be shown that a hermitian operator can be diagonalised by a unitary transforma-
tion U†HU = Λ where Λ is a diagonal matrix with eigenvalues along the diagonal.
Moreover, the eigenvectors of a hermitian operator can be chosen to form a complete
orthonormal basis forH

A|ψi〉 = λi|ψi〉, 〈ψi|ψj〉 = δij ,
∑
i

|ψi〉〈ψi| = I, . (36)

Furthermore, two hermitian operators which commute can be simultaneously diago-
nalised. In other words, there is a basis of common eigenvectors in which both are
diagonal. And if they do not commute, as in the case of [x, p] = i~I , they cannot be
simultaneously diagonalised. Operators that commute are said to be compatible, we will
see that they can be simultaneously measured.
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4. The eigenvalue problem for the momentum operator is p̂|k〉 = ~k|k〉. The position
space eigenfunction 〈x|k〉 of the momentum operator is a plane wave. p̂ψ(x) = ~kψ(x)
becomes −i~ψ′ = ~kψ or ψ = Aeikx. We will choose A = 1. In other words
〈x|k〉 = eikx and so 〈k|x〉 = e−ikx. Note that ψk(x) = eikx has an infinite norm.

5. The position-space or coordinate-space eigenfunctions of the position operator are delta-
functions. Let’s see why. The eigenvalue problem is

x̂ ψ(x) = xψ(x) = λψ(x) where λ is a constant. (37)

The only way this can be satisfied for all x is for ψ(x) to vanish at all x 6= λ. Now
if ψ(x) were to vanish at x = λ as well, then it would be the zero function and not
qualify as a non-trivial eigenvector. The value of ψ(x) at x = λ can either be finite or
ψ(λ) = ±∞. If |ψ(λ)| < ∞, then the state will have zero norm and cannot describe
a particle that can be found somewhere. So ψ must be infinite at x = λ. In fact, ψ(x)
is proportional to the Dirac delta function. It is normalized so that ψ(x) = δ(x − λ).
It is conventional to denote the position eigenvalue by x′ rather than λ. So δ(x − x′)
is an eigenfunction of the position operator with eigenvalue x′, it is a function of x that
is zero every where except at x′. Think of it as a limit of functions that are sharply
peaked at x = x′. Thus the coordinate space wave function of the eigenstate |x′〉 of x̂ is
〈x|x′〉 = δ(x − x′). Now if we have two position eigenstates |x′〉 and |x′′〉, then their
coordinate space wave functions are 〈x|x′〉 = δ(x−x′) and 〈x|x′′〉 = δ(x−x′′). Their
inner product is

〈x′′|x′〉 =

∫
δ(x− x′′)δ(x− x′) dx = δ(x′ − x′′). (38)

So position eigenstates are orthogonal and ‘delta-normalized’. They form a complete set
in the sense that they satisfy a completeness relation∫

dx |x〉〈x| = I. (39)

To see this, take the matrix elements of the LHS between coordinate basis states |x′〉 and
|x′′〉 ∫

dx 〈x′|x〉〈x|x′′〉 =

∫
dx δ(x− x′)δ(x− x′′) = δ(x′ − x′′). (40)

On the other hand, the matrix elements of the identity are also the same 〈x′|I|x′′〉 =
〈x′|x′′〉 = δ(x′−x′′). Since

∫
dx |x〉〈x| and I have the same matrix elements, they are

equal.
• Similarly, momentum eigenstates form a complete set∫

dk

2π
|k〉〈k| = I. (41)

Check this by evaluating the matrix elements between position basis states |x′〉 and |x′′〉.
On the rhs we get 〈x′|I|x′′〉 = δ(x′−x′′). On the lhs we get the same using the Fourier
representation of the delta function∫ ∞

−∞

dk

2π
〈x′|k〉〈k|x′′〉 =

∫ ∞
−∞

dk

2π
eikx

′
e−ikx

′′
= δ(x′ − x′′). (42)
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How do we get the last equality? If x′ = x′′ then we are integrating the function 1, and
the answer should be infinite, and indeed δ(0) =∞. On the other hand, when x′ 6= x′′,
then we have ∫

dk

2π
[cos(k(x′ − x′′)) + i sin(k(x′ − x′′))] = 0 (43)

Since the average value of both the sine and cosine functions is zero.
• Momentum eigenstates with distinct wave numbers are orthogonal (as we expect for
the eigenstates of a hermitian operator)

〈k′|k′′〉 =

∫
dx 〈k′|x〉〈x|k′′〉 =

∫
dx e−ik

′xeik
′′x = 2π δ(k′ − k′′). (44)

6. Among hermitian operators, the positive (semi-) definite operators are particularly inter-
esting physically. A hermitian operator is positive semi-definite if its diagonal matrix
element in every state is non-negative 〈ψ|A|ψ〉 ≥ 0, for all ψ ∈ H. Since eigenvalues
are simply the expectation values in eigenstates, we see that positive semi-definite oper-
ators have non-negative eigenvalues. IfA is any linear operator, then we check thatA†A
and AA† are both hermitian and positive semi-definite operators.

E.g. (AA†)† = A†
†
A† = AA†. (45)

To check positivity, we work out the expectation value in any (unit norm) state:

〈ψ|A†A|ψ〉 = 〈Aψ|Aψ〉 = ||Aψ||2 ≥ 0 and
〈ψ|AA†|ψ〉 = 〈A†ψ|A†ψ〉 = ||A†ψ||2 ≥ 0. (46)

An example is kinetic energy T = 1
2m
p2 = 1

2m
p†p = 1

2m
pp†, since p = p† is her-

mitian. So we may conclude that the energy eigenvalues of a free particle must all be
non-negative.

3.9 Measured value of observables in states and interpretation of expectation values

• Born’s measurement postulate. Measurement of an observable A in state |ψ〉 of unit norm
produces a real number that is one of the eigenvalues of A. For now, we assume that eigen-
values of A are nondegenerate and state Born’s probability postulate. Suppose we have several
identically prepared systems in the same unit norm state ψ and we measure the value of A in
each system and record the values. Then the frequency of occurrence of the measured value λ
is pλ = |〈ψλ|ψ〉|2 where |ψλ〉 is the unit norm eigenstate corresponding to the eigenvalue λ. If
the initial state and eigenvector had not been normalized, then

pλ =
|〈ψλ|ψ〉|2

||ψλ||2||ψ||2
. (47)

More generally, suppose λ is an n-fold degenerate eigenvalue of A (the λ-eigenspace Vλ of A
has dimension n). Moreover, suppose ψ(i)

λ for i = 1, · · · , n is an orthonormal basis for Vλ.
If the system is initially in the unit norm sate |ψ〉, then the probability of getting eigenvalue λ
upon measuring A is

pλ = |〈ψ(1)
λ |ψ〉|

2 + |〈ψ(2)
λ |ψ〉|

2 + · · ·+ |〈ψ(n)
λ |ψ〉|

2. (48)

• Expectation value. The expectation value of an observable A in a state ψ is the mean value
obtained when A is measured on many copies of the system prepared in the same state ψ. How
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do we see this? Each measurement gives a (possibly different) eigenvalue λ with probability
pλ. So the mean measured value is a sum over the eigenvalues of A (counted with multiplicity)∑

λ

pλλ =
∑
λ

λ|〈ψ|ψλ〉|2 =
∑
λ

λ〈ψ|ψλ〉〈ψ|ψλ〉∗ =
∑
λ

λ〈ψ|ψλ〉〈ψλ|ψ〉

=
∑
λ

〈ψA|ψλ〉〈ψλ|ψ〉 = 〈ψ|A|ψ〉. (49)

We used the eigenvalue equation and completeness of the normalized eigenvectors
∑
λ |ψλ〉〈ψλ| =

I .
• Physical interpretation of 〈x|k′〉 = eik

′x and 〈x|x′〉 = δ(x − x′) in the context of proba-
bility of results of measurements. Suppose a particle is in a position eigenstate |x′〉. Then its
coordinate space wave function is 〈x|x′〉 = δ(x− x′). Now suppose we make a measurement
of its position. Then the probability of getting the value x is P{position = x} ∝ |〈x|x′〉|2.
Notice that P{position = x} = 0 for x 6= x′. So if we measure the position of a particle
known to be in the position eigenstate |x′〉, then the only value of position that can result is x′

itself.
• Suppose a particle is in a position eigenstate |x′〉. Then its momentum space wave function
is 〈k|x′〉 = e−ikx

′
. Suppose we make a measurement of its momentum. Then the probability

of getting the value ~k is pk ∝ |〈k|x′〉|2 = |eikx|2 = 1. In other words, all momenta are
equally probable. This makes physical sense in light of the Heisenberg uncertainty principle.
If the particle is in a position eigenstate, then its position is known with perfect accuracy. So
we would expect its momentum to be maximally uncertain. And indeed, what we find is that
all possible momenta are equally likely, so we have no knowledge as to what the result of a
momentum measurement may give.
• Collapse postulate and projective measurements. After measuring an observable A and
getting the eigenvalue λ, the system ‘collapses’ from state |ψ〉 to eigenstate |ψλ〉, assumed
nondegenerate, corresponding to the eigenvalue λ (A|ψλ〉 = λ|ψλ〉). Such a measurement
is called a projective measurement. This is because the state after the measurement can be
expressed as Pλ|ψ〉 where Pλ = |ψλ〉〈ψλ|/〈ψλ|ψλ〉 is the projection operator to the state
|ψλ〉. Viewing a projective measurement this way also indicates the generalization to when
the eigenvalue λ is degenerate. In this case too, we postulate that the system collapses to the
state Pλ|ψ〉 where Pλ is the projection operator to the λ-eigenspace. For instance, if the λ-
eigenspace is two-dimensional with two orthonormal eigenvectors u and v corresponding to
the same eigenvalue λ, then Pλ = |u〉〈u| + |v〉〈v|. In general, if |ψ(j)

λ 〉 for j = 1, 2, · · · , n
furnishes an orthonormal basis for the λ-eigenspace, then Pλ =

∑
j |ψ

(j)
λ 〉〈ψ

(j)
λ |. The state

after a projective measurement is

Pλ|ψ〉 =

n∑
j=1

|ψ(j)
λ 〉〈ψ

(j)
λ |ψ〉. (50)

Moreover, the probability pλ of getting the eigenvalue λ upon measuring A in the unit norm
state |ψ〉 can be expressed as the expectation value of Pλ:

pλ =

n∑
j=1

|〈ψ(j)
λ |ψ〉|

2 =

n∑
j=1

〈ψ|ψ(j)
λ 〉〈ψ

(j)
λ |ψ〉 = 〈ψ|Pλ|ψ〉. (51)

• Reproducibility of measurements: If A is measured again, soon after a previous measure-
ment of A, then the same value λ will be obtained and the system will remain in the same
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eigenstate of A. If a system is in an eigenstate |ψ0〉 of the Hamiltonian, then we know in ad-
vance that measurement of energy will result only in the eigenvalue E0 and that the state will
not change after the measurement.
• Simultaneous measurability of compatible observables. If two observables (hermitian op-
eratorsA,B) commute, they have common eigenvectors and are simultaneously diagonalisable.
We say they are simultaneously measurable or compatible. What this means is that ifA has been
measured, and a value a obtained, then a measurement of B will not affect the eigenstate |ψa〉
of A to which the system had collapsed. This is because |ψa〉 is an eigenstate of B as well. An
immediate measurement of B will certainly result in the eigenvalue of B corresponding to the
eigenvector ψa. A subsequent measurement of A will again result in the value a. It is in this
sense that A and B can be simultaneously measured.
• Let us indicate why commuting observables have common eigenfunctions. Suppose A is
hermitian and has eigenvalues λi (assumed non-degenerate) with corresponding eigenfunctions
ψi, so Aψi = λiψi. Non-degeneracy means that each eigenspace is one dimensional. Now
suppose B commutes with A. Then consider B(Aψ), we evaluate it in two ways. On the one
hand, B(Aψi) = λiBψi. On the other, BAψi = ABψi. Thus A(Bψi) = λi(Bψi). In
other words, both ψi and Bψi are eigenfunctions of A with the same eigenvalue. Since the
eigenspaces of A are assumed one dimensional Bψi and ψi must be linearly dependent, i.e.
multiples of eachother: Bψi = µiψi. In other words we have shown that an eigenfunction of
A is also an eigenfunction of B! What happens if A has a degenerate eigenvalue?
• It is worth noting that measurement of an observable in a state ψ is a complicated process that
is still not well-understood, and is certainly not the multiplication of the operator A with the
state vector ψ (which would produce a vector rather than a real number).

3.10 Heisenberg uncertainty principle and inequality

• Given an observable A and a unit norm state |ψ〉, we have the variance of A in the state ψ (or
the square of the standard deviation or simply the square of the uncertainty of A)

(∆A)2 = 〈ψ|(A− 〈A〉)2|ψ〉 = 〈A2〉 − 〈A〉2 (52)

The uncertainty in A measures the spread/width of the distribution of possible measured values
of A in the state |ψ〉. It depends both on A and |ψ〉. If ψ is an eigenstate of A with eigenvalue
a, then the uncertainty of A is zero. We say that A takes a definite value a in an eigenstate. We
say that A has quantum fluctuations in the state ψ if 〈A2〉 6= 〈A〉2.
• Suppose ψ is a unit norm state, then the Heisenberg uncertainty inequality is ∆x∆p ≥ 1

2
~.

It says that if you prepare a large number of copies of a system in the same state ψ, and make
measurements of position on half of them and momentum on the other half, the product of
standard deviations in the measurements of position and momentum is bounded below by ~/2.
• An extreme case: if ψ is a position eigenstate |x0〉. In such a state, the uncertainty in x is
zero, a measurement of position always results in the value x0. However, the uncertainty in
momentum is infinite in a position eigenstate, all values of momentum are equally likely.
• The ground stateψ0 of the linear harmonic oscillator is a minimum uncertainty state. ∆x∆p =
~/2 in this state. Check this statement. The so-called coherent states furnish other examples
of minimum uncertainty states. These states show features that are quite close to those seen in
classical mechanics.
• To show this we define an uncertainty functional U in a unit norm state ψ for a pair of
observables A,B with [A,B] = iC. Later we will specialize to A = x,B = p, C = ~I .

U(ψ) = (∆A)2(∆B)2 = 〈ψ|(A− Ā)2|ψ〉〈ψ|(B − B̄)2|ψ〉 = 〈α|α〉〈β|β〉 (53)
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where |α〉 = (A− Ā)|ψ〉 ≡ δA|ψ〉 and |β〉 = (B− B̄)|ψ〉 = δB|ψ〉. By the Cauchy-Schwarz
inequality,

U ≥ |〈α|β〉|2 = |〈ψ| δA δB |ψ〉|2 (54)

We bring in the commutator and the anticommutator via

δAδB =
1

2
[δA, δB] +

1

2
{ δA, δB } =

1

2
iC +

1

2
{ δA, δB }. (55)

NowC is hermitian as is { δA, δB }. It follows that 1
2
〈iC〉 is purely imaginary and 1

2
〈{ δA, δB }〉

is real. So the absolute square of the sum is just the sum of the squares of the imaginary and
real parts:

U ≥ | i
2
〈C〉+

1

2
〈{ δA, δB }〉|2 =

1

4
〈C〉2ψ +

1

4
〈ψ|{δA, δB}|ψ〉2. (56)

The second term is ≥ 0. So we get

(∆A)2(∆B)2 = U ≥ 1

4
〈C〉2ψ. (57)

Specializing to A = x,B = p, C = ~I we get the Heisenberg uncertainty inequality ∆x∆p ≥
~/2.

3.11 Relation between wave function in position and momentum space

•We have seen that the position space wave function of a state |ψ〉 is defined as ψ(x) = 〈x|ψ〉.
Let us denote a momentum eigenstate with momentum eigenvalue p = ~k by |k〉, where k is the
wave number. Then the momentum space wave function of the same state |ψ〉 is ψ̃(k) = 〈k|ψ〉.
The point is that |ψ〉 is an abstract state vector. We can study it (‘represent it’) via its components
in any basis. In particular, we may look at its components 〈x|ψ〉 = ψ(x) in the basis of position
eigenstates or its components 〈k|ψ〉 = ψ̃(k) in the basis of momentum eigenstates. Let us see
how ψ(x) is related to ψ̃(k).
• Now inserting a complete set of momentum eigenstates and using 〈x|k〉 = eikx,

ψ(x) = 〈x|ψ〉 =

∫
dk

2π
〈x|k〉〈k|ψ〉 =

∫
dk

2π
eikxψ̃(k) (58)

So the position space wave function is the inverse-Fourier transform of the momentum space
wave function. Similarly, we have the Fourier transform

ψ̃(k) =

∫
dxe−ikxψ(x). (59)

• ψ(x) and ψ̃(k) are to be compared with the state of a classical mechanical system, which is
given by a simultaneous specification of coordinates and momenta. In the quantum theory, ψ
cannot depend on both the coordinates and momenta (in an arbitrary manner). This is related to
the uncertainty principle.
• The absolute square of the wave function |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) gives the probability
density for finding the particle at location x at time t. Similarly, |ψ̃(k, t)|2 dk

2π
is the probability

of finding the particle in momentum interval [k, k + dk] at time t.
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3.12 Density matrix: pure and mixed ensembles

• Suppose a system is in the state represented by the nonzero vector |ψ〉. Associated to |ψ〉,
we have the projection operator Pψ = |ψ〉〈ψ|/〈ψ|ψ〉 that projects to the 1d subspace spanned
by |ψ〉. Notice that Pψ is unchanged if we multiply |ψ〉 by a nonzero complex number. Since
such a scaling does not alter the physical state, Pψ is an efficient way of representing the state.
In this case, ρ = Pψ is called the (pure) density matrix specifying the state of the system. The
expectation value of any observable A is then expressible in terms of the density matrix. Using
trAB = trBA,

〈A〉 =
〈ψ|A|ψ〉
〈ψ|ψ〉 = tr (ρA). (60)

•We may think about a pure state via an ensemble consisting of several identical copies of the
system, all in the same state |ψ〉. Such an ensemble is called a pure ensemble. Then according
to Born, the expectation value 〈A〉ψ is the mean value obtained when A is measured in each
element of the ensemble.
• A pure ensemble density matrix has the following properties. (a) It is Hermitian ρ† = ρ, (b)
It is positive semidefinite ρ ≥ 0, (c) It has trace one tr ρ = 1 since this holds for a projection
to a 1d subspace and (d) it is a projection ρ2 = ρ.
• The viewpoint in terms of an ensemble allows us to generalize the concept of a pure state.
Consider an ensemble consisting of many copies of the system, each in a possibly different
(pure) state. Suppose the state ψi occurs with frequency pi ≥ 0 in the ensemble, with

∑
i pi =

1. We may represent this so-called mixed ensemble via a density matrix:

ρ =
∑
i

piPψi =
∑
i

pi
|ψi〉〈ψi|
〈ψi|ψi〉

. (61)

• Notice that ρ is hermitian, positive semidefinite and has tr ρ =
∑
i pi = 1. However, it is in

general not a projection. The expectation value of an observable in such a statistical mixture is
given by 〈A〉 = tr ρA.
• Inspired by this, we define a (mixed) density matrix ρ as a hermitian, positive semidefinite
operator on the quantum Hilbert space that has unit trace. If, in addition, it is a projection, then
it is a pure density matrix.
• An example of a mixed density matrix is the thermal density matrix. Suppose a system
with hermitian Hamiltonian has energy eigenvalues −∞ < E0 ≤ E1 ≤ E2 ≤ · · · with
corresponding normalized energy eigenvectors ψi and is in equilibrium at temperature T . If kb
denotes Boltzmann’s constant, then the thermal density matrix is defined as

ρ =
1

Z

∑
i

e−Ei/kbT |ψi〉〈ψi| where Z =
∑
i

e−βEi where β = 1/kbT. (62)

In the thermal ensemble of Boltzmann and Gibbs, the probabilities pi decrease exponentially
with energy.

4 Time evolution: Schrödinger equation

• When left to itself, the state of the system evolves according to the Schrödinger equation
i~ ∂
∂t
|ψ(t)〉 = H|ψ(t)〉. H is the hermitian hamiltonian. Given the initial state |ψ(0)〉, the SE

determines the state at subsequent times, just as Hamilton’s equations ẋ = ∂H
∂p
, ṗ = − ∂H

∂x
do

in classical mechanics.
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• In the position basis, the SE is

i~ ∂
∂t
〈x|ψ(t)〉 = 〈x|Hψ(t)〉 or i~∂ψ(x, t)

∂t
= (Hψ)(x, t) (63)

For a particle in a potential (Hψ)(x, t) = − ~2
2m

∂2ψ(x,t)

∂x2
+ V (x)ψ(x, t), and we get

i~∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x). (64)

The SE is a linear PDE, first order in time and second order in space derivatives of the unknown
ψ. Contrast this with Newton’s equation which in general is a system of non-linear ODEs for
xi(t).
•We often need to work with the adjoint of the Schrodinger equation, which is obtained using
H = H†

− i~ ∂
∂t
〈ψ(t)| = 〈ψ(t)|H. (65)

In the coordinate basis, the adjoint of the SE reads

−i~ ∂
∂t
〈ψ(t)|x〉 = 〈ψ(t)|H|x〉 = 〈Hψ|x〉 = 〈x|Hψ〉∗

⇒ −i~ ∂
∂t
ψ∗(x, t) = ((Hψ)(x))∗ (66)

or −i~ ∂
∂t
ψ∗(x, t) = − ~2

2m
∂2ψ∗(x)

∂x2
+ V (x)ψ∗(x) for a particle in a real potential V (x). So in

the coordinate basis, the adjoint of the SE is just its complex conjugate.

4.1 Separation of variables, stationary states

• The problem of time-evolution is to solve the Schrödinger equation i~ ∂|Ψ(t)〉
∂t

= Ĥ|Ψ(t)〉
given the initial state |Ψ(t = 0)〉. For a particle in a potential V (x), the SE is a linear partial
differential equation for the unknown function Ψ(x, t) = 〈x|Ψ(t)〉.

i~∂Ψ(x, t)

∂t
= (HΨ)(x, t) = − ~2

2m

∂2Ψ(x, t)

∂t
+ V (x)Ψ(x, t). (67)

To solve it we use the method of separation of variables, which is applicable when the Hamil-
tonian is not explicitly dependent on time (time independent potential). We look for separable
solutions in the form of a product Ψ(x, t) = ψ(x)T (t). Now, not every solution of the SE is
such a product. But due to the linearity of the equation, linear combinations of solutions are
again solutions. The idea is to find sufficiently many separable solutions so that every solu-
tion can be written as a linear combination of separable solutions. Putting the ‘ansatz’ (guess)
Ψ(x, t) = ψ(x)T (t) into the equation, we get

i~Ṫ (t)ψ(x) = T (t)(Hψ)(x). (68)

Dividing by Tψ we get

i~ Ṫ (t)

T (t)
=

(Hψ)(x)

ψ(x)
= E. (69)

LHS depends only on time while the RHS depends only on position, providedH is not explicitly
time-dependent. The only way these can be equal is for both to equal the same constant, say E,
so-named, since it turns out to have the physical meaning of energy eigenvalue. Now we have
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two separate equations. The one for T (t) has the solution T (t) = c exp(−iEt/~). The other
equation

(Hψ)(x) = Eψ(x) or 〈x|H|ψ〉 = E〈x|ψ〉 or H|ψ〉 = E|ψ〉 (70)

is simply the eigenvalue equation for the hamiltonian operator. It is also called the time-
independent Schrodinger eigenvalue equation. It typically has lots of solutions, namely all the
eigenstates |ψn〉 of the hamiltonian, with their corresponding energy eigenvalues En. As for
any hermitian operator, we can take these |ψn〉 to be orthonormal. Thus the separable solutions
of the Schrodinger equation are

Ψn(x, t) = cnψn(x)e−iEnt/~. (71)

where ψn are eigenstates of the hamiltonian. These separable solutions are called stationary
states since the probability density in these states P (x, t) = |Ψ(x, t)|2 = |cn|2|ψn(x)|2 are in-
dependent of time. Stationary states have the simplest possible time dependence of all solutions
of the Schrodinger equation, i.e., sinusoidal or harmonic time dependence.
• Now the general solution of the SE is got by taking a linear combination of stationary states

Ψ(x, t) =
∑
n

cnψn(x)e−iEnt/~. (72)

To find the solution of the initial value problem, we must choose the cn so that the initial state
is |Ψ(0)〉. In other words, we must have∑

n

cn|ψn〉 = |Ψ(0)〉 (73)

To find the cn we take the inner product with |ψm〉, and use orthogonality of energy eigenstates∑
n

cn〈ψm|ψn〉 =
∑
n

δmncn = cm = 〈ψm|Ψ(0)〉 ⇒ cm =

∫
ψ∗m(x)Ψ(x, 0) dx.

(74)
Thus we have solved the initial value problem for the Schrödinger equation.

4.2 Time evolution operator and its unitarity

• The time evolution operator U(t) is defined as the solution of the Schrodinger equation with
initial condition U(0) = I:

i~∂tU(t) = HU(t). (75)
We check that the solution is given by the matrix exponential

U(t) = e−iHt/~. (76)

The matrix exponential is defined via the exponential series eA =
∑∞
n=0

An

n!
. The time evolu-

tion operator is unitary:

U†(t)U(t) = eiHt/~E−iHt/~ = ei(H−H)t/~ = I. (77)

It is called the time evolution operator since it evolves any state forward by time t:

|Ψ(t)〉| = U(t)|Ψ(0)〉. (78)

We may check this using our solution of the Schrödinger equation by separation of variables.
In fact, using H|ψn〉 = En|ψn〉, we find

U(t)|Ψ(0)〉 = e−iHt/~
∑
n

cn|ψn〉 =
∑
n

cne
−iEnt/~|ψn〉 = |Ψ(t)〉. (79)
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4.3 Global probability conservation and conserved probability density and current

• The absolute square of the wave function |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) gives the probability
density for finding the particle at location x at time t. Suppose n copies of a system are prepared
in the same quantum mechanical state ψ(x). (For example, we could have a hydrogen atom
in its ground state in each of 100 different boxes) Then a measurement of the position of each
particle (at the same time) gives a (possibly) different result (this is an experimental fact). Born’s
statistical interpretation of the wave function is that, as n → ∞, the distribution of position
measurements approaches the probability density |ψ(x, t)2|.
• To qualify as a probability density, the total probability of finding the particle anywhere must
be one. In other words, we need ||ψ||2 =

∫
dx |ψ(x, t)|2 = 1. However, there could be a

problem. For consistency, the total probability of finding the particle somewhere must remain
equal to one at all times, total probability must be conserved. This is indeed the case, as is
checked using the Schrödinger equation and its adjoint

i~ ∂
∂t
〈ψ|ψ〉 = 〈ψ|Hψ〉 − 〈ψH|ψ〉 = 0. (80)

In other words, if the wave function is normalized to one initially (t = 0), then it continues to
have norm one in the future. This is called global conservation of probability.
•We may relate this probability conservation to nature of the time evolution operator. In fact,
using |Ψ(t)〉 = U(t)|Ψ(0) and its adjoint 〈Ψ(t)| = 〈Ψ(0)|U† we get

〈Ψ(t)|Ψ(t)〉 = 〈Ψ(0)|U(t)†U(t)|Ψ(0)〉 = 〈Ψ(0)|Ψ(0)〉 = 1 since U†U = I. (81)

Thus, the unitarity of the time evolution operator implies the conservation of probability.
• Interestingly, it is not merely the total probability that is conserved. Probability cannot jump
from one place to another, it flows continuously like a fluid. There is a local conservation of
probability just like for mass in a fluid. The rate of increase of mass of fluid in a box is equal
to the inward flux of fluid across the walls of the box (provided there isn’t a source/sink of
fluid inside the box). The probability density |ψ(x, t)|2 satisfies a continuity equation with an
associated probability current. Consider a particle in a potential

i~ ∂t(ψ∗ψ) = i~ (ψ∗tψ + ψ∗ψt) =

(
~2

2m
ψ∗′′ − V ψ∗

)
ψ + ψ∗

(
− ~2

2m
ψ′′ + V ψ

)
=

~2

2m

[
ψ∗′′ψ − ψ∗ψ′′

]
=

~2

2m
∂x
(
ψ∗′ψ − ψ∗ψ′

)
. (82)

Let P (x, t) = |ψ(x, t)|2 and define the probability current density

j(x, t) =
~

2mi

(
ψ∗ψ′ − ψ∗′ψ

)
, then ∂tP (x, t) + ∂xj(x, t) = 0. (83)

The last equation is called the law of local conservation of probability (in differential form) or
a continuity equation. To interpret this formula we consider how the probability for the particle
to be in an interval [x0, x1] changes with time. So integrate ∂tP + ∂xj = 0 over this interval
at a fixed time t to get the law of local conservation of probability in integral form:

∂t

∫ x1

x0

P (x) dx+

∫ x1

x0

∂j(x)

∂x
dx = 0 ⇒ ∂t

∫ x1

x0

P (x) dx = j(x0)− j(x1) (84)

by the fundamental theorem of calculus. This equation says the rate of increase of probability
in [x0, x1] equals the probability current flowing in at x0 minus that flowing out at x1.
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• All of this also works in three dimensions. The rate of increase of probability in a region
(volume) Ω must equal the inward flux of probability across the surface ∂Ω that borders Ω:

P (~r, t) = ψ∗(~r, t)ψ(~r, t), ~j =
~

2mi
[ψ∗ (∇ψ)− (∇ψ∗)ψ] =

~
m
=ψ∗∇ψ

∂tP (~r, t) + ∇ ·~j(x, t) = 0, i.e.
∂ρ

∂t
+
∂j1
∂x

+
∂j2
∂y

+
∂j3
∂z

= 0.

∂t

∫
Ω

P (~r, t)d3r +

∫
Ω

d3r∇ ·~j = 0 or ∂t

∫
P (~r, t)d3r = −

∫
∂Ω

~j · d~S. (85)

d~S is the outward pointing area element on the bounding surface ∂Ω. It says that the rate
of increase of probability in a region must equal the inward flux of probability current across
the surface of the region. We used the divergence theorem to write the volume integral of a
divergence as a surface integral.

4.4 Heisenberg equation of motion

• In the Schrödinger ‘picture’, states |ψs(t)〉 = U(t)|ψs(0)〉 evolve in time (via the unitary
time evolution operator U(t)) while observables As like the position operator x̂ do not depend
on time. In the Heisenberg picture, the states are the initial ones |ψh〉 = |ψs(0)〉, but the
observables evolve in time. Their evolution is governed by the Heisenberg equation of motion.
Let us define the Heisenberg operator Ah(t) = U†(t)AsU(t). Then

i~U̇ = HU and − i~U̇† = U†H. (86)

So

i~∂tAh = −U†HAsU + U†AsHU
⇒ i~∂tAh = U†AsUU

†HU − U†HUU†AsU = AhH −HAh = [Ah, H]. (87)

Thus, the Heisenberg equation of motion

i~∂Ah
∂t

= [Ah, H] (88)

is a quantum analogue of Hamilton’s equation of motion ∂A
∂t

= {A,H} if we replace a classical
observable A by Ah and the PB {·, ·} by [·, ·]/i~. The Hamiltonian is the same in both pictures
(assuming it is time independent in the Schrödinger picture). We note that the expectation value
of an observable in a normalized state may be computed in either picture

〈A〉ψ = 〈ψs(t)|As|ψs(t)〉 = 〈ψ(0)|U†AsU |ψ(0)〉 = 〈ψh|Ah|ψh〉. (89)

4.5 Ehrenfest’s theorem

• The expectation values 〈x〉, 〈p〉, 〈E〉 etc are functions of time (space has been integrated over).
The average position and momentum of an electron will depend on time in a way governed by
the Schrödinger equation. According to Ehrenfest’s theorem, these expectation values evolve
as do the corresponding classical variables, whose evolution is given by Newton’s/Hamilton’s
equations! E.g. d〈x〉

dt
= 〈p〉

m
, so the average position evolves in the same way as given by the

first of Hamilton’s equations. To see this and related results, we first derive a general equation
for the time evolution of the expectation value of an observable A in a unit-norm state that
evolves via the SE

i~ ∂
∂t
〈ψ|A|ψ〉 = −〈ψ|HA|ψ〉+ 〈ψ|AH|ψ〉 = 〈ψ|[A,H]|ψ〉. (90)
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• Putting A = H and using [H,H] = 0 shows that the average energy (expectation value of
hamiltonian) is constant ∂〈Ĥ〉

∂t
= 0. This is the analogue of the classical constancy of energy

along a trajectory.
• Taking A = p we find the time evolution of mean momentum for a particle subject to the
hamiltonian H = p2

2m
+ V . Show that

[p,H] = [p, V ] = −i~V ′ (91)

Thus we have
∂〈p〉
∂t

= 〈−V ′〉. (92)

Thus Newton’s second law (or the second of Hamilton’s equations) ṗ = −V ′(x) continues to
hold in quantum mechanics, but in the sense of expectation values. The average momentum
evolves as though it is a classical variable subject to an ‘average force’!

• If A = x, then [x,H] = [x, p
2

2m
] = i~p

m
. So

∂〈x〉
∂t

=

〈
p

m

〉
. (93)

This is the first of Hamilton’s equations ẋ = ∂H
∂p

= p
m

, but now in the sense of expectation
values.
• So if the electron is in the initial state ψ(x, t = 0), Schrödinger’s equation tells us how the
state evolves in time. We have used this to determine the motion of the average position of the
electron and found that it is related to the average momentum in the same way as the actual
position and momentum of a particle are related by Hamilton’s equation of classical mechanics.
To the extent that the expectation value of x provides an approximate position for a localized
electron wave packet, we see that the quantum mechanical motion of the wave-packet mimics
the classical motion of a particle. However, the wave packet typically spreads out in time, and
ceases to be well-described by merely its mean position. This reduces the utility of the Ehrenfest
result in determining where a quantum particle may be found at later times, based purely on its
classical motion.

5 Summary of postulates of quantum mechanics

• The states of a quantum system are vectors in a Hilbert space H. For a system of particles,
H is the space of square-integrable functions on the classical configuration space. Two state
vectors that differ by a multiplicative complex constant represent the same physical state. So
more precisely, the space of states of a quantum system are rays in a Hilbert space.
• Observables (such as the hamiltonian) are hermitian (more precisely self-adjoint) operators
onH.
• Time evolution of a state is given by Schrödinger’s equation.
• Measurement of an observable A in a state |ψ〉 (of norm one) produces a real number that
is one of the eigenvalues λ of A. After the measurement, the system collapses to the state
Pλ|ψ〉, where Pλ is the projection operator to the λ-eigenspace. Moreover, the probability of
getting eigenvalue λ is equal to the expectation value pλ = 〈ψ|Pλ|ψ〉. If the λ-eigenspace is
1-dimensional and spanned by the unit-norm eigenvector |ψλ〉, then pλ = |〈ψλ|ψ〉|2.
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