Problems on Quantum Mechanics (Module 2)

Science Academies' Refresher Course on Theoretical Physics
15 June - 1 July, 2023 at Bishop Moore College, Mavelikara, Kerala Govind S. Krishnaswami, Chennai Mathematical Institute

govind@cmi.ac.in, http://www.cmi.ac.in./~govind

Classical Mechanics

- How many degrees of freedom do the following systems have? (a) One point particle moving on a circle (b) Two point particles moving on a circle (c) Three point particles moving in a lecture hall (d) an irregularly shaped stone moving in the air above the playground.
- 2. Find Hamilton's equations for a particle in a double well potential with Hamiltonian

$$H = \frac{p^2}{2m} + g(x^2 - a^2)^2, \quad m, g, a > 0.$$
(1)

Check that they reduce to Newton's second order equation.

- 3. Check that the equations of motion $\dot{f}(x,p) = \{f(x,p), H\}$ reduce to Hamilton's equations for f = x and f = p for the above particle.
- 4. Find all static solutions to Hamilton's equations and classify them as stable/unstable to small perturbations.
- 5. Draw a phase portrait for the above particle in a double well potential.

Quantum Mechanics

- 6. Consider the Pauli matrices in the standard basis. Now $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$. Find σ_2^{\dagger} . Show that σ_2 is hermitian and unitary.
- 7. What is σ_2^2 ? What is the characteristic equation for σ_2 ?
- 8. Find a simple formula (in terms of trigonometric functions) for $e^{i\theta\sigma_2/2}$ by summing the exponential series.
- 9. What are the eigenvalues of σ_2 ? Find the corresponding eigenvectors v_+ and v_- .
- 10. Show that v_+ and v_- satisfy the completeness relation $v_+v_+^{\dagger} + v_-v_-^{\dagger} = |v_+\rangle\langle v_+| + |v_-\rangle\langle v_-| = I_{2\times 2}$.
- 11. Show that the eigenvalue λ of an operator A may be interpreted as the expectation value of A in the corresponding eigenstate.
- 12. Show that the commutator of two hermitian operators is anti-hermitian.
- 13. Suppose a is any operator on a Hilbert space and let $H_1 = a^{\dagger}a$ and $H_2 = aa^{\dagger}$. Check that H_1 and H_2 are hermitian. Show that expectation values of H_1 and H_2 in all (non-zero) states are non-negative. We say that aa^{\dagger} and $a^{\dagger}a$ are positive (more precisely non-negative) operators. Hint: recall the definition of the norm of a vector.
- 14. Argue that the expectation value of kinetic energy $T = p^2/2m$ is nonnegative in any state. Also argue that the expectation value of energy $T + \frac{1}{2}m\omega^2 x^2$ of a simple harmonic oscillator is positive in any state.
- 15. Consider two finite dimensional matrices A, B. What is tr [A, B]?

- 16. Consider the Heisenberg commutation relations $[x, p] = i\hbar I$. Comment on the result of calculating the trace of either side.
- 17. Recall that $\int_{-\infty}^{\infty} e^{iky} dy = 2\pi\delta(k)$. Evaluate the integral $\int_{-\infty}^{\infty} y e^{iky} dy$.
- 18. Find the matrix element of the position operator between momentum eigenstates $\langle k|x|k'\rangle$. Hint: $\langle x|k\rangle = e^{ikx}$ and use the completeness relation.
- 19. Find the matrix element of the momentum operator p between position eigenstates $\langle x|p|y\rangle$.
- 20. Given two observables (hermitian operators) A, B with [A, B] = iC one may show the uncertainty inequality $(\Delta A)^2_{\psi} (\Delta B)^2_{\psi} \ge \frac{1}{4} \langle C \rangle^2_{\psi}$ for any (unit norm) state ψ . Say how $(\Delta A)_{\psi}$ is defined. Here $\langle C \rangle_{\psi}$ is the expectation value of C in the state ψ . Consider the angular momentum observables that satisfy $[L_i, L_j] = i\hbar\epsilon_{ijk}L_k$. Apply the uncertainty inequality to $A = L_x$ and $B = L_y$ and comment on the result. Is there a state where the product of uncertainties can vanish? Contrast this with the case A = x, B = p.
- 21. Consider the Schrödinger equation for a particle in a 1d real potential V(x):

$$i\hbar\frac{\partial\psi(x,t)}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V(x)\psi(x).$$
(2)

Find the equation satisfied by the complex conjugate wave function.

- 22. Derive a local conservation law for probability in 1D: $\frac{\partial P}{\partial t} + \frac{\partial j}{\partial x} = 0$ where $P = |\psi(x,t)|^2$. What is the probability current j(x,t)?
- 23. Show that $\int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$.
- 24. Show that the Gaussian wave packet $\psi(x) = Ae^{-\frac{x^2}{4a^2}}$ has unit norm if we take $A = \frac{1}{\sqrt{a}(2\pi)^{1/4}}$. What is the mean position and mean momentum of a particle in this state?
- 25. Consider a quantum mechanical particle moving in a potential V(x) in one dimension. Its state evolves according to the Schrödinger equation. Use the Schrödinger equation to calculate the time evolution of the mean momentum of the particle, $\frac{d\langle p \rangle}{dt}$ and express the answer in terms of the expectation values of other familiar quantities. Recall that $\langle 4 \rangle$

$$\langle p \rangle = \int dx \ \psi^*(x) \left(-i\hbar \frac{\partial}{\partial x} \right) \psi(x).$$
 (3)

- 26. Suppose the wave function of a particle in one dimension is bounded and decays like $\psi(x) \sim \frac{1}{|x|^{\alpha}}$ as $|x| \to \pm \infty$ for some power $\alpha > 0$. How small can the power α be and still ensure that the wave function has a finite norm? $\langle 3 \rangle$
- 27. Evaluate the one-dimensional gaussian integral I_1 in closed form.

$$I_1 = \int_{-\infty}^{\infty} dx \ e^{-x^2} \tag{4}$$

Hint: Consider the Gaussian integral I_2 , and evaluate it by transforming to polar coordinates on the x-y plane. How is I_2 related to I_1 ? $\langle 3 \rangle$

$$I_2 = \iint dx \, dy \, e^{-x^2 - y^2} \tag{5}$$

28. Suppose $\tilde{f}(k)$ is the Fourier transform of f(x),

$$\tilde{f}(k) = \int_{-\infty}^{\infty} dx \ e^{-ikx} f(x) \tag{6}$$

Find the Fourier transform $\tilde{g}(k)$ of the function g(x) = xf(x). In other words, express $\tilde{g}(k)$ in terms of $\tilde{f}(k)$. $\langle 2.5 \rangle$

- 29. Multiplication by x in position space is represented by what operation in k-space? $\langle 1 \rangle$
- 30. Let u, v be vectors and A an operator on \mathcal{H} . Simplify (a) $\langle iAv|u\rangle$, (b) $\langle u|iAv\rangle$ and (c) $\langle iAv|iu\rangle$ for the standard L^2 inner product. In other words, pull out the *i*'s properly! $\langle 2 \rangle$
- 31. Based on the reality of average experimental measurements of observables, we defined a hermitian operator A as one with real expectation values in every state ψ , i.e., $(\langle \psi | A \psi \rangle \in \mathbb{R})$. Say why this is the same as $\langle 2 \rangle$

$$\langle \psi | A\psi \rangle = \langle A\psi | \psi \rangle. \tag{7}$$

32. A more conventional definition of hermiticity is that the matrix elements of A satisfy

$$\langle u|Av\rangle = \langle Au|v\rangle \tag{8}$$

for any pair of states u, v. Say why this is the same as $A_{uv} = (A_{vu})^*$. $\langle 2 \rangle$

- 33. Now suppose A satisfies (7). We wish to show that it also satisfies (8). To show this, we put $\psi = u + v$ and $\psi = u + iv$ in (7) and add the two resulting equations. Show that this reduces to $A_{uv} = (A_{vu})^*$. Thus the reality of expectation values in all states implies that A is hermitian in the conventional sense. The converse is much simpler. $\langle 5 \rangle$
- 34. Consider a particle in a (real) potential V(x). Suppose $\psi(x)$ is a solution of the timeindependent Schrödinger equation with (real) energy eigenvalue E. Find another wave function that has the same eigenvalue E. When are the two eigenfunctions the same? $\langle 2 \rangle$
- 35. Use the result of the previous problem to show that for any energy eigenvalue E, one can always find a corresponding real eigenfunction of the hamiltonian $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$. This feature is because H is not just hermitian but also real-symmetric. $\langle 3 \rangle$
- 36. If P, Q are hermitian, what can you say about the commutator [P, Q]? Can [P, Q] be an observable? $\langle 2 \rangle$
- 37. It is possible to show (using Cauchy-Schwarz) that for position and momentum x and p,

$$(\Delta x)^2 (\Delta p)^2 \ge -\frac{1}{4} \langle [x, p] \rangle_{\psi}^2 \tag{9}$$

where $(\Delta x)^2 = \langle x^2 \rangle_{\psi} - \langle x \rangle_{\psi}^2$ is the variance of x in the state ψ and similarly for Δp . Show that this reduces to the Heisenberg uncertainty principle. $\langle 2 \rangle$

38. Consider the momentum operator $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ of a particle that is constrained to move in the interval [-1, 1]. Give a convenient choice of boundary condition for $\psi(\pm 1)$ that ensures that \hat{p} is hermitian. Give the physical meaning of the boundary condition that you propose. $\langle 5 \rangle$

- 39. Consider a free particle that moves in the interval $0 \le x \le L$. Unlike the square well problem, here we will impose *periodic boundary conditions*: all states must satisfy $\psi(0) = \psi(L)$ and $\psi'(0) = \psi'(L)^1$.
 - (a) Does $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ have any eigenfunctions satisfying periodic boundary conditions? If so find the orthonormal eigenfunctions and corresponding eigenvalues. $\langle 5 \rangle$
 - (b) Do you think one could make measurements of \hat{p} with arbitrary precision (in principle)? If such a measurement is made, what are the possible values of momentum that one might obtain? What is the state of the particle after one such measurement? $\langle 3 \rangle$
 - (c) For the above particle with hamiltonian $\hat{H} = \frac{p^2}{2m}$, find the normalized energy eigenfunctions and eigenvalues. Work with exponentials rather than trigonometric functions here. $\langle 5 \rangle$
 - (d) Can \hat{H} and \hat{p} be simultaneously measured with arbitrary accuracy? Why? $\langle 1 \rangle$
 - (e) What is the ground state wave function and energy? Plot the absolute square of the ground state wave function in position space. Where along the circle (or the interval [0, L]) is the particle most likely to be found in the ground state? $\langle 3 \rangle$
 - (f) How many linearly independent eigenfunctions are there at each energy level? $\langle 2 \rangle$
 - (g) The potential here is zero, which is real. So find real energy eigenfunctions (in the position basis) at each energy level. $\langle 3 \rangle$
 - (h) The potential here is zero, which is an even function of x about the point x = L/2. Find the energy eigenfunctions of definite parity (even or odd about x = L/2) at each energy level. Is there both an even and an odd state at each energy level? $\langle 3 \rangle$
- 40. Free particle gaussian wave packet and harmonic oscillator.
 - (a) Recall that the gaussian wave packet

$$\psi(x,t=0) = Ae^{ik_0x}e^{-\frac{x^2}{4a^2}}, \quad A^2 = \frac{1}{a\sqrt{2\pi}}.$$
 (10)

has mean momentum $\langle p \rangle = \hbar k_0$ at t = 0. Write down $\tilde{\psi}(k, t = 0)$ and then obtain $\tilde{\psi}(k,t)$ in the energy/momentum basis. $\langle 3 \rangle$

- (b) Find $\langle p \rangle$ at t > 0. $\langle p \rangle$ is most easily calculated in the momentum basis. $\langle 4 \rangle$
- (c) Calculate $\langle \hat{x} \rangle$ at time t in the above gaussian wave packet. Since $\tilde{\psi}(k,t)$ is known, it is good to work in the momentum basis. So you need to know how \hat{x} acts in k-space. This was worked out in problem set 6: $\hat{x} = i \frac{\partial}{\partial k}$. Hint: In working out the integrals, exploit the fact that integrals of odd functions on even intervals vanish. $\langle 9 \rangle$
- (d) Do the obtained mean values satisfy Ehrenfest's principle $m \frac{\partial \langle x \rangle}{\partial t} = \langle p \rangle$ at all times? $\langle 2 \rangle$

¹A physical realization is a particle moving on a circle: x is the coordinate along the circumference (or the polar angle ϕ), so the coordinates x = 0 and x = L represent the same physical point (the angles $\phi = 0, 2\pi$). In this physical realization, the momentum we refer to is really the component of angular momentum L_{ϕ} where ϕ is the polar angle in the plane of the circle.

- (e) Find the probability for a particle in the ground state $\frac{\sqrt{\beta}}{\pi^{1/4}}e^{-\beta^2x^2/2}$ of a harmonic oscillator potential $\frac{1}{2}m\omega^2x^2$, to be found outside its classically allowed region. Express this probability as an integral over dimensionless variables. Does it depend on m or ω ? Here $\beta = \sqrt{\frac{m\omega}{\hbar}}$. $\langle 5 \rangle$
- (f) Find the numerical value of this probability. You may use $\int_1^\infty d\xi \; e^{-\xi^2} \approx 0.14.$ $\langle 2 \rangle$