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Classical Mechanics

1. How many degrees of freedom do the following systems have? (a) One point particle moving on a
circle (b) Two point particles moving on a circle (c) Three point particles moving in a lecture hall
(d) an irregularly shaped stone moving in the air above the playground.

2. Find Hamilton’s equations for a particle in a double well potential with Hamiltonian

H =
p2

2m
+ g(x2 − a2)2, m, g, a > 0. (1)

Check that they reduce to Newton’s second order equation.

3. Check that the equations of motion ḟ(x, p) = {f(x, p), H} reduce to Hamilton’s equations for
f = x and f = p for the above particle.

4. Find all static solutions to Hamilton’s equations and classify them as stable/unstable to small
perturbations.

5. Draw a phase portrait for the above particle in a double well potential.

Quantum Mechanics

6. Consider the Pauli matrices in the standard basis. Now σ2 =

(
0 −i
i 0

)
. Find σ†2 . Show

that σ2 is hermitian and unitary.

7. What is σ22 ? What is the characteristic equation for σ2?

8. Find a simple formula (in terms of trigonometric functions) for eiθσ2/2 by summing the
exponential series.

9. What are the eigenvalues of σ2? Find the corresponding eigenvectors v+ and v− .

10. Show that v+ and v− satisfy the completeness relation v+v
†
+ + v−v

†
− = |v+〉〈v+| +

|v−〉〈v−| = I2×2 .

11. Show that the eigenvalue λ of an operator A may be interpreted as the expectation value
of A in the corresponding eigenstate.

12. Show that the commutator of two hermitian operators is anti-hermitian.

13. Suppose a is any operator on a Hilbert space and let H1 = a†a and H2 = aa† . Check
that H1 and H2 are hermitian. Show that expectation values of H1 and H2 in all (non-
zero) states are non-negative. We say that aa† and a†a are positive (more precisely
non-negative) operators. Hint: recall the definition of the norm of a vector.

14. Argue that the expectation value of kinetic energy T = p2/2m is nonnegative in any
state. Also argue that the expectation value of energy T + 1

2mω
2x2 of a simple harmonic

oscillator is positive in any state.

15. Consider two finite dimensional matrices A,B . What is tr [A,B]?
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16. Consider the Heisenberg commutation relations [x, p] = i~I . Comment on the result of
calculating the trace of either side.

17. Recall that
∫∞
−∞ e

iky dy = 2πδ(k). Evaluate the integral
∫∞
−∞ y e

iky dy .

18. Find the matrix element of the position operator between momentum eigenstates 〈k|x|k′〉 .
Hint: 〈x|k〉 = eikx and use the completeness relation.

19. Find the matrix element of the momentum operator p between position eigenstates 〈x|p|y〉 .

20. Given two observables (hermitian operators) A,B with [A,B] = iC one may show the
uncertainty inequality (∆A)2ψ(∆B)2ψ ≥

1
4〈C〉

2
ψ for any (unit norm) state ψ . Say how

(∆A)ψ is defined. Here 〈C〉ψ is the expectation value of C in the state ψ . Consider the
angular momentum observables that satisfy [Li, Lj ] = i~εijkLk . Apply the uncertainty
inequality to A = Lx and B = Ly and comment on the result. Is there a state where the
product of uncertainties can vanish? Contrast this with the case A = x,B = p .

21. Consider the Schrödinger equation for a particle in a 1d real potential V (x):

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x). (2)

Find the equation satisfied by the complex conjugate wave function.

22. Derive a local conservation law for probability in 1D: ∂P
∂t + ∂j

∂x = 0 where P = |ψ(x, t)|2 .
What is the probability current j(x, t)?

23. Show that
∫∞
−∞ e

−y2dy =
√
π .

24. Show that the Gaussian wave packet ψ(x) = Ae−
x2

4a2 has unit norm if we take A =
1√

a(2π)1/4
. What is the mean position and mean momentum of a particle in this state?

25. Consider a quantum mechanical particle moving in a potential V (x) in one dimension.
Its state evolves according to the Schrodinger equation. Use the Schrödinger equation to
calculate the time evolution of the mean momentum of the particle, d〈p〉

dt and express the
answer in terms of the expectation values of other familiar quantities. Recall that 〈4〉

〈p〉 =

∫
dx ψ∗(x)

(
−i~ ∂

∂x

)
ψ(x). (3)

26. Suppose the wave function of a particle in one dimension is bounded and decays like
ψ(x) ∼ 1

|x|α as |x| → ±∞ for some power α > 0. How small can the power α be and still

ensure that the wave function has a finite norm? 〈3〉

27. Evaluate the one-dimensional gaussian integral I1 in closed form.

I1 =

∫ ∞
−∞

dx e−x
2

(4)

Hint: Consider the Gaussian integral I2 , and evaluate it by transforming to polar coordi-
nates on the x-y plane. How is I2 related to I1? 〈3〉

I2 =

∫∫
dx dy e−x

2−y2 (5)
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28. Suppose f̃(k) is the Fourier transform of f(x),

f̃(k) =

∫ ∞
−∞

dx e−ikxf(x) (6)

Find the Fourier transform g̃(k) of the function g(x) = xf(x). In other words, express
g̃(k) in terms of f̃(k). 〈2.5〉

29. Multiplication by x in position space is represented by what operation in k -space? 〈1〉

30. Let u, v be vectors and A an operator on H . Simplify (a) 〈iAv|u〉 , (b) 〈u|iAv〉 and (c)
〈iAv|iu〉 for the standard L2 inner product. In other words, pull out the i ’s properly! 〈2〉

31. Based on the reality of average experimental measurements of observables, we defined a
hermitian operator A as one with real expectation values in every state ψ , i.e., (〈ψ|Aψ〉 ∈
R). Say why this is the same as 〈2〉

〈ψ|Aψ〉 = 〈Aψ|ψ〉. (7)

32. A more conventional definition of hermiticity is that the matrix elements of A satisfy

〈u|Av〉 = 〈Au|v〉 (8)

for any pair of states u, v . Say why this is the same as Auv = (Avu)∗ . 〈2〉

33. Now suppose A satisfies (7). We wish to show that it also satisfies (8). To show this, we
put ψ = u+ v and ψ = u+ iv in (7) and add the two resulting equations. Show that this
reduces to Auv = (Avu)∗ . Thus the reality of expectation values in all states implies that
A is hermitian in the conventional sense. The converse is much simpler. 〈5〉

34. Consider a particle in a (real) potential V (x). Suppose ψ(x) is a solution of the time-
independent Schrödinger equation with (real) energy eigenvalue E . Find another wave
function that has the same eigenvalue E . When are the two eigenfunctions the same? 〈2〉

35. Use the result of the previous problem to show that for any energy eigenvalue E , one can

always find a corresponding real eigenfunction of the hamiltonian Ĥ = p̂2

2m + V (x̂). This
feature is because H is not just hermitian but also real-symmetric. 〈3〉

36. If P,Q are hermitian, what can you say about the commutator [P,Q]? Can [P,Q] be an
observable? 〈2〉

37. It is possible to show (using Cauchy-Schwarz) that for position and momentum x and p ,

(∆x)2 (∆p)2 ≥ −1

4
〈[x, p]〉2ψ (9)

where (∆x)2 = 〈x2〉ψ − 〈x〉2ψ is the variance of x in the state ψ and similarly for ∆p .
Show that this reduces to the Heisenberg uncertainty principle. 〈2〉

38. Consider the momentum operator p̂ = −i~ ∂
∂x of a particle that is constrained to move

in the interval [−1, 1]. Give a convenient choice of boundary condition for ψ(±1) that
ensures that p̂ is hermitian. Give the physical meaning of the boundary condition that
you propose. 〈5〉
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39. Consider a free particle that moves in the interval 0 ≤ x ≤ L . Unlike the square well
problem, here we will impose periodic boundary conditions: all states must satisfy ψ(0) =
ψ(L) and ψ′(0) = ψ′(L)1.

(a) Does p̂ = −i~ ∂
∂x have any eigenfunctions satisfying periodic boundary conditions? If

so find the orthonormal eigenfunctions and corresponding eigenvalues. 〈5〉
(b) Do you think one could make measurements of p̂ with arbitrary precision (in princi-

ple)? If such a measurement is made, what are the possible values of momentum that
one might obtain? What is the state of the particle after one such measurement? 〈3〉

(c) For the above particle with hamiltonian Ĥ = p2

2m , find the normalized energy eigen-
functions and eigenvalues. Work with exponentials rather than trigonometric func-
tions here. 〈5〉

(d) Can Ĥ and p̂ be simultaneously measured with arbitrary accuracy? Why? 〈1〉
(e) What is the ground state wave function and energy? Plot the absolute square of the

ground state wave function in position space. Where along the circle (or the interval
[0, L]) is the particle most likely to be found in the ground state? 〈3〉

(f) How many linearly independent eigenfunctions are there at each energy level? 〈2〉
(g) The potential here is zero, which is real. So find real energy eigenfunctions (in the

position basis) at each energy level. 〈3〉
(h) The potential here is zero, which is an even function of x about the point x = L/2.

Find the energy eigenfunctions of definite parity (even or odd about x = L/2) at
each energy level. Is there both an even and an odd state at each energy level? 〈3〉

40. Free particle gaussian wave packet and harmonic oscillator.

(a) Recall that the gaussian wave packet

ψ(x, t = 0) = Aeik0xe−
x2

4a2 , A2 =
1

a
√

2π
. (10)

has mean momentum 〈p〉 = ~k0 at t = 0. Write down ψ̃(k, t = 0) and then obtain
ψ̃(k, t) in the energy/momentum basis. 〈3〉

(b) Find 〈p〉 at t > 0. 〈p〉 is most easily calculated in the momentum basis. 〈4〉
(c) Calculate 〈x̂〉 at time t in the above gaussian wave packet. Since ψ̃(k, t) is known, it

is good to work in the momentum basis. So you need to know how x̂ acts in k -space.
This was worked out in problem set 6: x̂ = i ∂∂k . Hint: In working out the integrals,
exploit the fact that integrals of odd functions on even intervals vanish. 〈9〉

(d) Do the obtained mean values satisfy Ehrenfest’s principle m∂〈x〉
∂t = 〈p〉 at all times?

〈2〉
1A physical realization is a particle moving on a circle: x is the coordinate along the circumference (or the

polar angle φ), so the coordinates x = 0 and x = L represent the same physical point (the angles φ = 0, 2π ). In
this physical realization, the momentum we refer to is really the component of angular momentum Lφ where φ
is the polar angle in the plane of the circle.
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(e) Find the probability for a particle in the ground state
√
β

π1/4 e
−β2x2/2 of a harmonic os-

cillator potential 1
2mω

2x2 , to be found outside its classically allowed region. Express
this probability as an integral over dimensionless variables. Does it depend on m or
ω? Here β =

√
mω
~ . 〈5〉

(f) Find the numerical value of this probability. You may use
∫∞
1 dξ e−ξ

2 ≈ 0.14. 〈2〉
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