Problems on Quantum Mechanics (Module 2)
Science Academies' Refresher Course on Theoretical Physics
15 June - 1 July, 2023 at Bishop Moore College, Mavelikara, Kerala
Govind S. Krishnaswami, Chennai Mathematical Institute
govind@cmi.ac.in, http://www.cmi.ac.in./~govind

Classical Mechanics

1. How many degrees of freedom do the following systems have? (a) One point particle moving on a circle (b) Two point particles moving on a circle (c) Three point particles moving in a lecture hall (d) an irregularly shaped stone moving in the air above the playground.
2. Find Hamilton's equations for a particle in a double well potential with Hamiltonian

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+g\left(x^{2}-a^{2}\right)^{2}, \quad m, g, a>0 . \tag{1}
\end{equation*}
$$

Check that they reduce to Newton's second order equation.
3. Check that the equations of motion $\dot{f}(x, p)=\{f(x, p), H\}$ reduce to Hamilton's equations for $f=x$ and $f=p$ for the above particle.
4. Find all static solutions to Hamilton's equations and classify them as stable/unstable to small perturbations.
5. Draw a phase portrait for the above particle in a double well potential.

Quantum Mechanics
6. Consider the Pauli matrices in the standard basis. Now $\sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$. Find σ_{2}^{\dagger}. Show that σ_{2} is hermitian and unitary.
7. What is σ_{2}^{2} ? What is the characteristic equation for σ_{2} ?
8. Find a simple formula (in terms of trigonometric functions) for $e^{i \theta \sigma_{2} / 2}$ by summing the exponential series.
9. What are the eigenvalues of σ_{2} ? Find the corresponding eigenvectors v_{+}and v_{-}.
10. Show that v_{+}and v_{-}satisfy the completeness relation $v_{+} v_{+}^{\dagger}+v_{-} v_{-}^{\dagger}=\left|v_{+}\right\rangle\left\langle v_{+}\right|+$ $\left|v_{-}\right\rangle\left\langle v_{-}\right|=I_{2 \times 2}$.
11. Show that the eigenvalue λ of an operator A may be interpreted as the expectation value of A in the corresponding eigenstate.
12. Show that the commutator of two hermitian operators is anti-hermitian.
13. Suppose a is any operator on a Hilbert space and let $H_{1}=a^{\dagger} a$ and $H_{2}=a a^{\dagger}$. Check that H_{1} and H_{2} are hermitian. Show that expectation values of H_{1} and H_{2} in all (nonzero) states are non-negative. We say that $a a^{\dagger}$ and $a^{\dagger} a$ are positive (more precisely non-negative) operators. Hint: recall the definition of the norm of a vector.
14. Argue that the expectation value of kinetic energy $T=p^{2} / 2 m$ is nonnegative in any state. Also argue that the expectation value of energy $T+\frac{1}{2} m \omega^{2} x^{2}$ of a simple harmonic oscillator is positive in any state.
15. Consider two finite dimensional matrices A, B. What is $\operatorname{tr}[A, B]$?
16. Consider the Heisenberg commutation relations $[x, p]=i \hbar I$. Comment on the result of calculating the trace of either side.
17. Recall that $\int_{-\infty}^{\infty} e^{i k y} d y=2 \pi \delta(k)$. Evaluate the integral $\int_{-\infty}^{\infty} y e^{i k y} d y$.
18. Find the matrix element of the position operator between momentum eigenstates $\langle k| x\left|k^{\prime}\right\rangle$. Hint: $\langle x \mid k\rangle=e^{i k x}$ and use the completeness relation.
19. Find the matrix element of the momentum operator p between position eigenstates $\langle x| p|y\rangle$.
20. Given two observables (hermitian operators) A, B with $[A, B]=i C$ one may show the uncertainty inequality $(\Delta A)_{\psi}^{2}(\Delta B)_{\psi}^{2} \geq \frac{1}{4}\langle C\rangle_{\psi}^{2}$ for any (unit norm) state ψ. Say how $(\Delta A)_{\psi}$ is defined. Here $\langle C\rangle_{\psi}$ is the expectation value of C in the state ψ. Consider the angular momentum observables that satisfy $\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}$. Apply the uncertainty inequality to $A=L_{x}$ and $B=L_{y}$ and comment on the result. Is there a state where the product of uncertainties can vanish? Contrast this with the case $A=x, B=p$.
21. Consider the Schrödinger equation for a particle in a 1 d real potential $V(x)$:

$$
\begin{equation*}
i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi(x) . \tag{2}
\end{equation*}
$$

Find the equation satisfied by the complex conjugate wave function.
22. Derive a local conservation law for probability in 1D: $\frac{\partial P}{\partial t}+\frac{\partial j}{\partial x}=0$ where $P=|\psi(x, t)|^{2}$. What is the probability current $j(x, t)$?
23. Show that $\int_{-\infty}^{\infty} e^{-y^{2}} d y=\sqrt{\pi}$.
24. Show that the Gaussian wave packet $\psi(x)=A e^{-\frac{x^{2}}{4 a^{2}}}$ has unit norm if we take $A=$ $\frac{1}{\sqrt{a}(2 \pi)^{1 / 4}}$. What is the mean position and mean momentum of a particle in this state?
25. Consider a quantum mechanical particle moving in a potential $V(x)$ in one dimension. Its state evolves according to the Schrodinger equation. Use the Schrödinger equation to calculate the time evolution of the mean momentum of the particle, $\frac{d\langle p\rangle}{d t}$ and express the answer in terms of the expectation values of other familiar quantities. Recall that $\langle 4\rangle$

$$
\begin{equation*}
\langle p\rangle=\int d x \psi^{*}(x)\left(-i \hbar \frac{\partial}{\partial x}\right) \psi(x) . \tag{3}
\end{equation*}
$$

26. Suppose the wave function of a particle in one dimension is bounded and decays like $\psi(x) \sim \frac{1}{|x|^{\alpha}}$ as $|x| \rightarrow \pm \infty$ for some power $\alpha>0$. How small can the power α be and still ensure that the wave function has a finite norm? $\langle 3\rangle$
27. Evaluate the one-dimensional gaussian integral I_{1} in closed form.

$$
\begin{equation*}
I_{1}=\int_{-\infty}^{\infty} d x e^{-x^{2}} \tag{4}
\end{equation*}
$$

Hint: Consider the Gaussian integral I_{2}, and evaluate it by transforming to polar coordinates on the $x-y$ plane. How is I_{2} related to I_{1} ? $\langle 3\rangle$

$$
\begin{equation*}
I_{2}=\iint d x d y e^{-x^{2}-y^{2}} \tag{5}
\end{equation*}
$$

28. Suppose $\tilde{f}(k)$ is the Fourier transform of $f(x)$,

$$
\begin{equation*}
\tilde{f}(k)=\int_{-\infty}^{\infty} d x e^{-i k x} f(x) \tag{6}
\end{equation*}
$$

Find the Fourier transform $\tilde{g}(k)$ of the function $g(x)=x f(x)$. In other words, express $\tilde{g}(k)$ in terms of $\tilde{f}(k) .\langle 2.5\rangle$
29. Multiplication by x in position space is represented by what operation in k-space? $\langle 1\rangle$
30. Let u, v be vectors and A an operator on \mathcal{H}. Simplify (a) $\langle i A v \mid u\rangle$, (b) $\langle u \mid i A v\rangle$ and (c) $\langle i A v \mid i u\rangle$ for the standard L^{2} inner product. In other words, pull out the i 's properly! $\langle 2\rangle$
31. Based on the reality of average experimental measurements of observables, we defined a hermitian operator A as one with real expectation values in every state ψ, i.e., $(\langle\psi \mid A \psi\rangle \in$ $\mathbb{R})$. Say why this is the same as $\langle 2\rangle$

$$
\begin{equation*}
\langle\psi \mid A \psi\rangle=\langle A \psi \mid \psi\rangle . \tag{7}
\end{equation*}
$$

32. A more conventional definition of hermiticity is that the matrix elements of A satisfy

$$
\begin{equation*}
\langle u \mid A v\rangle=\langle A u \mid v\rangle \tag{8}
\end{equation*}
$$

for any pair of states u, v. Say why this is the same as $A_{u v}=\left(A_{v u}\right)^{*} .\langle 2\rangle$
33. Now suppose A satisfies (7). We wish to show that it also satisfies (8). To show this, we put $\psi=u+v$ and $\psi=u+i v$ in (7) and add the two resulting equations. Show that this reduces to $A_{u v}=\left(A_{v u}\right)^{*}$. Thus the reality of expectation values in all states implies that A is hermitian in the conventional sense. The converse is much simpler. $\langle 5\rangle$
34. Consider a particle in a (real) potential $V(x)$. Suppose $\psi(x)$ is a solution of the timeindependent Schrödinger equation with (real) energy eigenvalue E. Find another wave function that has the same eigenvalue E. When are the two eigenfunctions the same? $\langle 2\rangle$
35. Use the result of the previous problem to show that for any energy eigenvalue E, one can always find a corresponding real eigenfunction of the hamiltonian $\hat{H}=\frac{\hat{\hat{p}}^{2}}{2 m}+V(\hat{x})$. This feature is because H is not just hermitian but also real-symmetric. $\langle 3\rangle$
36. If P, Q are hermitian, what can you say about the commutator $[P, Q]$? Can $[P, Q]$ be an observable? $\langle 2\rangle$
37. It is possible to show (using Cauchy-Schwarz) that for position and momentum x and p,

$$
\begin{equation*}
(\Delta x)^{2}(\Delta p)^{2} \geq-\frac{1}{4}\langle[x, p]\rangle_{\psi}^{2} \tag{9}
\end{equation*}
$$

where $(\Delta x)^{2}=\left\langle x^{2}\right\rangle_{\psi}-\langle x\rangle_{\psi}^{2}$ is the variance of x in the state ψ and similarly for Δp. Show that this reduces to the Heisenberg uncertainty principle. $\langle 2\rangle$
38. Consider the momentum operator $\hat{p}=-i \hbar \frac{\partial}{\partial x}$ of a particle that is constrained to move in the interval $[-1,1]$. Give a convenient choice of boundary condition for $\psi(\pm 1)$ that ensures that \hat{p} is hermitian. Give the physical meaning of the boundary condition that you propose. $\langle 5\rangle$
39. Consider a free particle that moves in the interval $0 \leq x \leq L$. Unlike the square well problem, here we will impose periodic boundary conditions: all states must satisfy $\psi(0)=$ $\psi(L)$ and $\psi^{\prime}(0)=\psi^{\prime}(L){ }^{\text {¹ }}$.
(a) Does $\hat{p}=-i \hbar \frac{\partial}{\partial x}$ have any eigenfunctions satisfying periodic boundary conditions? If so find the orthonormal eigenfunctions and corresponding eigenvalues. $\langle 5\rangle$
(b) Do you think one could make measurements of \hat{p} with arbitrary precision (in principle)? If such a measurement is made, what are the possible values of momentum that one might obtain? What is the state of the particle after one such measurement? $\langle 3\rangle$
(c) For the above particle with hamiltonian $\hat{H}=\frac{p^{2}}{2 m}$, find the normalized energy eigenfunctions and eigenvalues. Work with exponentials rather than trigonometric functions here. $\langle 5\rangle$
(d) Can \hat{H} and \hat{p} be simultaneously measured with arbitrary accuracy? Why? 〈1〉
(e) What is the ground state wave function and energy? Plot the absolute square of the ground state wave function in position space. Where along the circle (or the interval $[0, L])$ is the particle most likely to be found in the ground state? $\langle 3\rangle$
(f) How many linearly independent eigenfunctions are there at each energy level? $\langle 2\rangle$
(g) The potential here is zero, which is real. So find real energy eigenfunctions (in the position basis) at each energy level. $\langle 3\rangle$
(h) The potential here is zero, which is an even function of x about the point $x=L / 2$. Find the energy eigenfunctions of definite parity (even or odd about $x=L / 2$) at each energy level. Is there both an even and an odd state at each energy level? $\langle 3\rangle$
40. Free particle gaussian wave packet and harmonic oscillator.
(a) Recall that the gaussian wave packet

$$
\begin{equation*}
\psi(x, t=0)=A e^{i k_{0} x} e^{-\frac{x^{2}}{4 a^{2}}}, \quad A^{2}=\frac{1}{a \sqrt{2 \pi}} \tag{10}
\end{equation*}
$$

has mean momentum $\langle p\rangle=\hbar k_{0}$ at $t=0$. Write down $\tilde{\psi}(k, t=0)$ and then obtain $\tilde{\psi}(k, t)$ in the energy/momentum basis. $\langle 3\rangle$
(b) Find $\langle p\rangle$ at $t>0 .\langle p\rangle$ is most easily calculated in the momentum basis. $\langle 4\rangle$
(c) Calculate $\langle\hat{x}\rangle$ at time t in the above gaussian wave packet. Since $\tilde{\psi}(k, t)$ is known, it is good to work in the momentum basis. So you need to know how \hat{x} acts in k-space. This was worked out in problem set 6: $\hat{x}=i \frac{\partial}{\partial k}$. Hint: In working out the integrals, exploit the fact that integrals of odd functions on even intervals vanish. $\langle 9\rangle$
(d) Do the obtained mean values satisfy Ehrenfest's principle $m \frac{\partial\langle x\rangle}{\partial t}=\langle p\rangle$ at all times? $\langle 2\rangle$

[^0](e) Find the probability for a particle in the ground state $\frac{\sqrt{\beta}}{\pi^{1 / 4}} e^{-\beta^{2} x^{2} / 2}$ of a harmonic oscillator potential $\frac{1}{2} m \omega^{2} x^{2}$, to be found outside its classically allowed region. Express this probability as an integral over dimensionless variables. Does it depend on m or ω ? Here $\beta=\sqrt{\frac{m \omega}{\hbar}} .\langle 5\rangle$
(f) Find the numerical value of this probability. You may use $\int_{1}^{\infty} d \xi e^{-\xi^{2}} \approx 0.14 .\langle 2\rangle$

[^0]: ${ }^{1}$ A physical realization is a particle moving on a circle: x is the coordinate along the circumference (or the polar angle ϕ), so the coordinates $x=0$ and $x=L$ represent the same physical point (the angles $\phi=0,2 \pi$). In this physical realization, the momentum we refer to is really the component of angular momentum L_{ϕ} where ϕ is the polar angle in the plane of the circle.

