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• Consider a particle free to move in one dimension on the
real line. No forces act on the particle and so the potential is
V = 0. The hamiltonian is the kinetic energy H = p2/2m.
The time-independent Schrödinger equation for the wave
function ψ(x) is

− ~2

2m
ψ′′(x) = Eψ(x) or

ψ′′(x) = −2mE

~2
ψ(x) = −k2ψ(x). (1)

Here k =
√

2mE/~2 ≥ 0 is the positive square root.
• This equation is a eigenvalue problem for the Hamilto-
nian operator − ~2

2m
d2

dx2
and the eigenvalue E is the energy

corresponding to the eigenfunction ψ .
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• ψ(x) is called the probability amplitude and according to
Born’s interpretation, |ψ(x)|2dx is the probability for the
particle to be within dx of the location x.
• There are two linearly independent solutions eikx and
e−ikx for any k > 0. So we have two linearly indepen-
dent energy eigenstates for each energy eigenvalue E =
~2k2/2m > 0. We say that the degeneracy of these energy
levels is two.
• The energy eigenvalue E must be ≥ 0. If E < 0 the
solutions to −(~2/2m)ψ′′ = Eψ are real exponentials e±κx

or coshκx and sinhκx where κ =
√
−2mE/~2.

• In these states, the particle has an ever-growing ampli-
tude of being found at larger and larger values of |x|. This
is physically unacceptable to describe one or even a stream
of particles.
• The ground state is the limiting case E = 0 where k = 0.
The ground state is nondegenerate and corresponds to the
constant eigenfunction ψ(x) = 1.
• The linear solution ψ(x) = Ax+B with A 6= 0 for E =
0 is disallowed as the probability density grows without
bound as x→ ±∞.
• However, even in the energy eigenstates Ae±ikx, the position-
space probability distribution (|Ae±ikx|2 = |A|2) is con-
stant and spread out uniformly over all of x-space. None
of these eigenfunctions (nor any linear combination aeikx+
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be−ikx) is square integrable:∫ ∞
−∞
|Aeikx|2dx =

∫ ∞
−∞
|A|2dx =∞. (2)

The energy eigenstates do not represent localized particles.
• The time dependence of any state is determined by the
time-dependent Schrödinger equation

i~
∂ψ

∂t
= Hψ. (3)

If ψ is an energy eigenstate with Hψ = Eψ then

∂tψ = −(iE/~)ψ so ψ(x, t) = ψ(x, 0)e−iEt/~. (4)

• Thus, the time-dependence of any free particle energy
eigenstate with energy E = ~2k2/2m = ~ω is

(Aeikx + Be−ikx)e−iEt/~ = Aei(kx−ωt) + Be−i(kx+ωt). (5)

This is a linear combination of two traveling waves, a right-
moving one and a left-moving one. Let us see why.

Right-moving wave of permanent form

u(x,0)

u(x,t1)

u(x,t2)

t=0

t = t1>0

t = t2>t1

x0

x0+ct1

x0+ct2

f(x)

f(x-ct1)

f(x-ct2)

u(x,t)= f(x-ct)

x

speed c > 0
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• In general, f (x − ct) is a right-moving wave for c > 0
and a left moving one for c < 0. Each preserves its shape
as it moves.
• The time-dependence Aei(kx−ωt) + Be−i(kx+ωt) can also
be written as

ei(k
′x−ωt)(Aθ(k′ ≥ 0) + Bθ(k′ ≤ 0)) (6)

where θ is the Heaviside step function: θ(k′ ≥ 0) is 1 for
k′ > 0, zero for k′ < 0 and half for k′ = 0. We introduced
a new wave number k′ which can take both positive and
negative values. k′ = k > 0 for right-moving waves and
k′ = −k < 0 for left-moving waves.
• To summarize, the energy eigenstates are the plane waves
eik
′x for all k′ ∈ R. The eigenstates labeled by k′ and

−k′ are degenerate in energy. To keep notation simple,
henceforth we will use k in place of k′ and allow it to be
both positive and negative.
• The energy eigenstates are called plane waves since the
wave function ei(kx−ωt) is constant on the y-z plane which
is perpendicular to the direction of propagation. The direc-
tion of propagation is kx̂, rightward or leftward depending
on the sign of k . The wave fronts are planes orthogonal to
the wave vector kx̂.
• The energy eigenstates are also eigenstates of momentum
p̂ = −i~ ∂

∂x with eigenvalue ~k:

− i~∂xeikx = ~keikx. (7)
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States with momentum eigenvalue ~k > 0 move to the
right and those with momentum ~k < 0 move to the left.
• The Hamiltonian Ĥ and momentum p̂ have common
eigenstates as they commute

[H, p] = [p2/2m, p] = 0. (8)

They are simultaneously diagonalizable. Both are diagonal
in the plane wave basis eikx where k ranges over all real
numbers.
• Let us now restate our results using Dirac notation. |k〉
is a momentum eigenstate with eigenvalue ~k . It is also
an energy eigenstate with eigenvalue ~2k2/2m. The corre-
sponding position-space wave function is

ψk(x) = 〈x|k〉 = eikx. (9)

Recall that 〈k|x〉 is the complex conjugate

〈k|x〉 = 〈x|k〉∗ = e−ikx. (10)

• The time-dependence of an energy-momentum eigen-
state is given by

|k, t〉 = e−iEt/~|k, 0〉 = e−iωt|k〉. (11)

• Energy eigenstates are also called stationary states. This
is because the expectation value of any observable A in an
energy eigenstate ψk(x)e−iωt is independent of time:

〈k, t|A|k, t〉 = 〈k|eiωtAe−iωt|k〉 = 〈k|A|k〉. (12)
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• We have seen that energy/momentum eigenstates |k〉 are
not localized in position.

|ψk(x)|2 = |〈x|k〉|2 = |eikx|2 = 1. (13)

So a system in a momentum eigenstate is equally likely to
be at all locations!
• This is consistent with Heisenberg’s uncertainty princi-
ple. In a momentum eigenstate, the momentum is known
precisely ∆p = 0. Therefore, ∆x must be infinite in order
not to violate the inequality ∆x∆p ≥ ~/2.
• Energy eigenstates |k〉 do not represent particles. |k〉 do
not have finite norm either:

〈k|k〉 =

∫ ∞
−∞
|eikx|2dx =∞. (14)

However, they are orthogonal. To show this, we use the
completeness relation∫

|x〉〈x|dx = I (15)

to evaluate the inner product

〈k′|k〉 =

∫
〈k′|x〉〈x|k〉 dx =

∫
e−ik

′xeikxdx

=

∫
ei(k−k

′)xdx = 2πδ(k − k′). (16)

• So strictly speaking, energy eigenfunctions eikx do not
have a probability interpretation.
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• Though the total probability to be between ±∞ is infi-
nite, we can still speak of relative probabilities. For exam-
ple, in the state Aeikx with k > 0, the relative probability
that a particle coming in from −∞ scatters out to +∞ is
|A|2
|A|2 = 1 while the relative probability for it to go back to
−∞ is 0

|A|2 = 0.

• Such non-normalizable wave functions with oscillatory
e±ikx behavior as |x| → ∞ are called scattering states.
They correspond to particle trajectories that escape to in-
finity in classical mechanics.
• On the other hand, bound states are represented by nor-
malizable wave functions that decay as |x| → ±∞. Bound
states correspond to classical particle trajectories that do
not escape to infinity. All the eigenstates of the free parti-
cle hamiltonian are scattering states.
• We may also draw an analogy with a fluid by computing
the probability current density

j(x, t) =
~

2mi
(ψ∗ψ′ − ψ∗′ψ) (17)

for the stationary state ψ(x, t) = Aei(kx−ω(k)t). We get

j(x, t) = |A|2~k
m

= |A|2v (18)

where v = p/m is the corresponding classical velocity and

P (x, t) = |ψ(x, t)|2 = |A|2 (19)
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is the ‘probability’ density. This is similar to ρv for the
mass current density in a fluid flow or the electric current
density.
• So energy eigenstates can be loosely interpreted as an
always-present constant stream of free particles (|A|2dx
particles in the interval dx). For k > 0, they enter from
x = −∞ and exit at x =∞.
• Now we would like to describe the evolution of an initial
state that represents a particle, i.e., a localized wave packet
ψ(x) with finite norm. It cannot be an energy eigenstate,
but may be expressed as a linear combination of energy
eigenstates (same as momentum eigenstates) which evolve
via e−iωt

ψ(x, t) =

∫ ∞
−∞

ψ̃(k)ei(kx−
~k2
2m t)

dk

2π
. (20)

• A particularly useful wave packet is the gaussian one cor-
responding to the initial state

ψ(x) = Ae
− x2

4a2 , A =
1√

a(2π)1/4
gives

||ψ|| = 1 and |ψ(x)|2 =
1

a
√

2π
e−x

2/2a2. (21)

Here a is a constant with dimensions of length. The gaus-
sian is an even function of x.
• The expectation value of x in this state is

〈x〉ψ =
〈ψ|x|ψ〉
〈ψ|ψ〉

=

∫∞
−∞ψ

∗(x)xψ(x)dx

〈ψ|ψ〉
= 0, (22)
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since x|ψ(x)|2 is an odd function. So this packet is local-
ized around x = 0.
• Similarly, ψ(x) = Ae−(x−x0)

2/4a2 is localized around 〈x〉 =
x0.
• The width of the packet is ∆x =

√
〈x2〉 = a.

• This is a state of zero mean momentum 〈p〉ψ as the in-
tegrand ψ∗(x)(−i~∂x)ψ(x) in calculating the expectation
value of momentum is odd.
• To find the time evolution of this Gaussian wave packet,
we write it in the energy-momentum basis, which involves
evaluating the Fourier transform:

ψ̃(k) = 〈k|ψ〉 =

∫
dx〈k|x〉〈x|ψ〉 or

ψ̃(k) =

∫
dx ψ(x)e−ikx =

∫
A e

−
(
x2

4a2
+ikx

)
dx

= 2aA
√
πe−a

2k2 = 2
√
a
(π

2

)1/4
e−a

2k2. (23)

The integral is done by completing the square, the change
of variable

y =
x

2a
+ ika and using

∫ ∞
−∞

e−y
2
dy =

√
π. (24)

The Fourier transform of the gaussian is again a gaussian.
• The width in momentum space is ∆p =

√
〈p2〉 = ~

2a . We
see that the gaussian wave function minimizes the uncer-
tainty product ∆x∆p = a ~

2a = ~
2 .
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• Time evolution is simple in the energy basis

ψ(x, t) =

∫
[dk]ψ̃(k)e−iEt/~eikx

= 2aA
√
π

∫
[dk]e−[k2(a2+ i~t

2m)−ikx]. (25)

This is again a Gaussian integral done by completing the

square l = k
√
a2 + i~t

2m −
1
2

ikx

k
√
a2+ i~t

2m

. We get

ψ(x, t) =
1

(2π)1/4
√
a + i~t

2ma

exp

{
− x2

4
(
a2 + i~t

2m

)} (26)

The probability density at time t is

|ψ(x, t)|2 =
1√
2π

1√
a2 + ~2t2

4m2a2

exp

 −x2

2
(
a2 + ~2t2

4m2a2

)


=
1

a(t)
√

2π
e−x

2/2a(t)2. (27)

Here a(t) ≡
√
a2 + ~2t2

4m2a2
.

• We see that a gaussian wave packet remains a gaussian
wave packet under free particle Schrödinger time-evolution.
However, the width of the Gaussian

√
〈x2〉 = a(t) grows

with time. It remains centered at 〈x〉 = 0.
• This is an indication of the dispersive behavior of de
Broglie matter waves, the wave packet spreads out as its

10



component plane waves travel at different phase speeds
c(k) = ω/k = E/~k = ~k/2m. Higher wave number
plane waves travel faster.
• The propagation of light in vacuum is nondispersive since
all wave numbers (colors) of light travel at the same speed
(the speed of light in vacuum, clight). The dispersion re-
lation is ω = clightk). By contrast, in a dispersive opti-
cal medium, where the angular frequency ω is a nonlin-
ear function of wave number k , plane waves with different
wave numbers travel at distinct speeds. This leads to the
broadening of a pulse of light and the separation of various
component colors of white light propagating through such
a medium.
• Note that the group speed ∂ω

∂k evaluated at the peak k = 0,
gives the speed at which the wave packet as a whole moves.
Here it is zero, the gaussian wave packet does not move.

Figure 1: Dispersive broadening of a free particle Gaussian wave packet in 1d quantum mechanics. The probability
density |ψ(x, t)|2 = e−x2/2a(t)2/

√
2πa(t) where a(t) = (a2 + ~2t2/4a2m2)

1
2 is plotted over the x -t plane in units

where the initial width a = 1 and the particle mass and Planck’s constant m = ~ = 1 . In these units τ = 2 .
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• How fast does the wave packet disperse? We can write
the width as

a(t) = a

√
1 +

~2t2
4m2a4

= a

√
1 +

t2

τ 2
, τ =

2ma2

~
. (28)

τ has dimensions of time and gives the characteristic broad-
ening time. For t � τ there is not much broadening. For
example, if we make a measurement of position with accu-
racy a, the wave function ‘collapses’ roughly to a packet
of width a.
• A subsequent measurement of position (after time t) will
yield roughly the same position as long as t � τ . If
we wait a long time t � τ to make the next measure-
ment, the wave packet broadens significantly: by a factor
of
√

1 + t2/τ 2. After such a time, we are no longer guar-
anteed to get roughly the same position.
• For example, suppose we know the position of the cen-
ter of a tennis ball of mass 60g to within an accuracy of
a ∼ 1mm. If we model the center of the tennis ball as a
wave packet with a width equal to the above accuracy, then
τ = 1.8× 1026s. So it takes a very long time for the quan-
tum mechanical broadening of the tennis ball wave packet
to become significant. In other words, we will get the same
position even if we wait several centuries between succes-
sive measurements of the position of a tennis ball (that was
initially at rest and was acted upon by no forces).
• By contrast, τ is substantially shorter for an electron
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whose location is initially known to a precision compara-
ble to the size of an atom. This is because the mass of an
electron (9.1× 10−31 kg) is so much smaller than that of a
tennis ball.
• Interestingly, the uncertainty product ∆x∆p remains equal
to ~/2 at all times, since all that changes is the width a(t),
and ∆x∆p = ~/2 was independent of the width a.
• The expectation value of energy of the gaussian wave
packet at t = 0 is

〈H〉t=0 =
〈p2〉
2m

=
(∆p)2

2m
=

~2

8ma2
. (29)

As we would expect from Ehrenfest’s theorem on the evo-
lution of expectation values, 〈H〉 is constant in time. This
can be explicitly checked most easily in momentum space,
where ψ̃(k, t) = 2aA

√
πe−k

2(a2+ i~t
2m)

〈H〉t =

∫
[dk] |ψ̃(k, t)|2 ~

2k2

2m

=
~2a2A2

m

∫
dk k2e−2a

2k2 =
~2

8ma2
. (30)

• This is a general feature, the expectation value of energy
in any state is constant under Schrödinger time evolution,
provided the hamiltonian is hermitian and does not depend
explicitly on time. To see this we note that i~ψ̇ = Hψ and
−i~ψ̇∗ = (Hψ)∗, so that

i~∂t
∫
ψ∗Hψ = i~

∫ (
ψ̇∗Hψ + ψ∗Hψ̇

)
dx
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=

∫
(−(Hψ)∗Hψ + ψ∗HHψ) dx

= −〈Hψ|Hψ〉 + 〈ψ|HHψ〉 = 0 (31)

since H† = H is hermitian.
• So far, our wave packet represented a particle that was
on average at rest. To get a gaussian wave packet with non-
zero mean momentum 〈p〉 = ~k0, we merely have to center
the gaussian at k0 in momentum space

ψ̃(k) = 2aA
√
πe−a

2(k−k0)2 (32)

so that 〈~k̂〉 = ~k0. This corresponds to the wave packet

ψ(x) =

∫
[dk]eikx2Aa

√
πe−a

2(k−k0)2

= eik0x
∫

[dl]eilx2aA
√
πe−a

2l2

= Aeik0xe−x
2/4a2. (33)

Check directly that 〈p〉 = ~k0 by observing that ψ∗ψ′ =
iψ∗k0ψ0e

ik0x + ψ∗eik0xψ′0, where ψ = ψ0e
ik0x. The second

term does not contribute to 〈p̂〉 as it is odd and the first
gives 〈p〉 = ~k0.
• The gaussian wave packet with non-zero mean momen-
tum also has minimal uncertainty product ∆x∆p = ~/2.
∆x = a is unaffected by the phase eik0x. 〈p〉 = ~k0.
〈p2〉 = ~2k20 + ~2

4a2
is most easily evaluated in k-space. Thus

〈p2〉 − 〈p〉2 = ~2
4a2

is independent of k0. So ∆p = ~/2a and
∆x∆p = ~/2.
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