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1 Abstract

We relate the formulation of classical mechanics in the Hamilton-Poisson and
Hamilton-Jacobi approaches to that of quantum mechanics in the Heisenberg and
Schrodinger approaches. The quantum-classical correspondence is illustrated using
Ehrenfest’s theorem, Bohr-Sommerfeld quantization conditions, the WKB approxi-
mation and semiclassical expansion. Finally, we use an example to motivate a trace
formula connecting the quantum energy spectrum to a sum over classical periodic
orbits.

2 From Hamiltonian mechanics to Heisenberg and Schrödinger’s QM

Quantum mechanics was developed in the first half of the 20th century to under-
stand the properties of (especially microscopic) systems like atoms, molecules, light
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from stars, radiation from black bodies, behavior of solids at low temperatures, etc.
Electrons, light, atoms, etc., displayed both wave-like and particle-like behavior de-
pending on how they were observed. Quantum mechanics involves a new parameter,
Planck’s constant h, whose value is 6.6×10−34 Joule · sec. The smallness of h relative
to quantities with the same dimensions encountered in many macroscopic phenom-
ena explains why quantum effects are often suppressed. Quantization is a theoretical
framework to pass from a classical description of a system to a quantum description.
Quantization does not necessarily imply discrete physical quantities, although the dis-
crete line spectra of light from hot gases and stars and the packet-like behavior of light
photons gave the subject the name ‘quantum’ theory.

2.1 From PBs to Commutators and Hamilton to Heisenberg equations

• In classical mechanics we describe the dynamics of a system in terms of ‘phase
space’ variables like the position and momentum of a particle. Classical dynamical
variables or observables like position, momentum, angular momentum and energy are
functions of the (generalized) positions and momenta, which furnish coordinates on
the state space (phase space).
• Poisson brackets plays a key role in the formulation of classical Hamiltonian me-
chanics and in the passage to the quantum theory. For instance, they help in writing
the equations of motion and in identifying conserved quantities. Recall the Poisson
bracket between two classical observables that depend on the generalized positions
and momenta, f(x, p) and g(x, p):

{f, g} =
∑n

i=1

(
∂f

∂xi
∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
. (1)

• The classical phase space variables, position and momentum satisfy canonical1 Pois-
son brackets. For 1 degree of freedom, they are

{x, p} = 1, {x, x} = 0, {p, p} = 0. (2)

x and p are said to be canonically conjugate observables. For a particle in 3d space,
we have {xi, pj} = δij .
• The process of quantization involves replacing classical observables like position,
momentum, angular momentum and the Hamiltonian with corresponding hermitian
(more precisely self-adjoint) operators on the quantum Hilbert space. Let us call the
quantum position and momentum operators x̂ and p̂.
• In the process of quantization, the Poisson bracket of classical Hamiltonian mechan-
ics is replaced with (a multiple of) the commutator of operators. Multiplication of ma-
trices/operators is in general not commutative AB 6= BA (in general). The amount
by which they fail to commute is called the commutator [A,B] = AB − BA. Any
operator commutes with itself or any power of itself [A,An] = An+1 −An+1 = 0.

1The word canonical refers to something that is standard. Here the Cartesian position and momenta are
the standard coordinates on phase space. The word canon comes from a Greek word for a rod/reed used for
measuring lengths. Its use in mechanics dates back to the work of Jacobi and Gauss.

2



•We will postulate the quantization rule

{A,B} = C −→ 1

i~
[Â, B̂] = Ĉ, (3)

where Â, B̂, Ĉ are the hermitian operators associated to the classical observables
A,B,C.
• In particular, upon quantization, the canonical PB relations {xi, pj} = δij are re-
placed with Heisenberg’s canonical commutation relations [x̂i, p̂j ] = i~δij .
• Let us explain the factor i~. Now, due to the differentiation with respect to x and p,
{A,B} has dimensions of the product of A and B divided by action (or angular mo-
mentum). On the other hand, the commutator [Â, B̂] has dimensions of the product of
A and B. So we will need to divide the commutator by a quantity with dimensions of
angular momentum in passing to the quantum theory. Up to a factor of i, this quantity
is the ‘reduced’ Planck’s constant ~. Furthermore, we check that the commutator of
hermitian operators A and B is antihermitian:

([A,B])† = (AB −BA)† = B†A† −A†B† = BA−AB = −[A,B]. (4)

Thus, to get a hermitian operator, we divide by i.
• An important property of the commutator is the product or Leibniz rule, check that

[A,BC] = [A,B]C +B[A,C]. (5)

• Recall that Hamilton’s canonical equations of motion for positions and momenta:
ẋj = ∂H

∂pj
and ṗj = − ∂H

∂xj may be written in terms of Poisson brackets

ẋj = {xj , H} and ṗj = {pj , H}. (6)

In fact, we may use these to deduce that the equation of motion for any observable
f = f(x, p) may be expressed in terms of PBs:

df

dt
=

∑n

i=1

(
∂f

∂xi(t)

dxi

dt
+

∂f

∂pi(t)

dpi
dt

)
=

∑n

i=1

(
∂f

∂xi(t)

∂H

∂pi(t)
− ∂f

∂pi(t)

∂H

∂xi(t)

)
= {f,H}. (7)

• The quantum version of Hamilton’s equations are got by replacing classical observ-
ables by quantum operators and the PB by the commutator divided by i~:

df̂

dt
=

1

i~
[f̂ , Ĥ]. (8)

This is the Heisenberg equation of motion for the observable f̂ . We say that the
Hamiltonian Ĥ generates infinitesimal time evolution via the commutator.
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2.2 Schrodinger representation and Schrodinger equation

• Schrödinger proposed an alternative approach to quantum mechanical evolution by
focusing on states rather than observables.

Schrodinger representation. To quantize x and p we seek hermitian operators x̂ and
p̂ on the quantum state space that satisfy the Heisenberg commutator relation [x̂, p̂] =
i~I . Schrödinger found a solution to this problem. Working in the position basis, our
states are wave functions of position ψ(x). We will represent x̂ by multiplication by
x and p̂ by −i~ ∂

∂x . In other words:

(x̂ψ)(x) = xψ(x) and (p̂ψ)(x) = −i~∂ψ
∂x

. (9)

• Let us check that x̂p̂− p̂x̂ = [x̂, p̂] = i~I by acting on a state ψ(x). We will mostly
omit the hats on quantum operators henceforth:

xpψ = −i~xψ′(x), while pxψ = −i~ ∂

∂x
(xψ) = −i~xψ′(x)−i~ψ(x) ⇒ [x, p]ψ = i~ψ.

(10)
• In three dimensions, we have three coordinate and momentum operators x, y, z and
px = −i~ ∂

∂x , py = −i~ ∂
∂y , pz = −i~ ∂

∂z . It is easily seen that the momenta commute
with each other and the coordinates commute among themselves, more over [x, px] =
i~ while [x, py] = 0, etc. Thus, the Schrodinger representation gives us a way of
representing positions and momenta in the quantum theory as operators satisfying
Heisenberg’s canonical commutation relations: [xi, pj ] = i~ δij .
• It may be shown that x̂ and p̂ are hermitian.

Time evolution: Schrödinger’s equation. When left to itself, the state of the system
evolves according to the Schrödinger equation (SE) i~ ∂

∂t |ψ(t)〉 = H|ψ(t)〉. H is the
hermitian hamiltonian. Given the initial state |ψ(0)〉, the SE determines the state at
subsequent times, just as Hamilton’s equations ẋ = ∂H

∂p , ṗ = −∂H∂x do in classical
mechanics.
• In the position basis, the SE is

i~
∂

∂t
〈x|ψ(t)〉 = 〈x|Hψ(t)〉 or i~

∂ψ(x, t)

∂t
= (Hψ)(x, t) (11)

For a particle in a potential (Hψ)(x, t) = − ~2

2m
∂2ψ(x,t)
∂x2 + V (x)ψ(x, t), and we get

i~
∂ψ(x, t)

∂t
= − ~2

2m

∂2ψ

∂x2
+ V (x)ψ(x). (12)

The SE is a linear PDE, first order in time and second order in space derivatives of the
unknown ψ. Contrast this with Newton’s or Hamilton’s equations which in general
are a system of nonlinear ODEs for the classical state.
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Time evolution operator. The Schrödinger equation i~∂tψ = Hψ tells us how a
state evolves infinitesimally in time. This time evolution can be shown to be unitary:
it preserves the inner product between any pair of states 〈φ(t)|ψ(t)〉 = 〈φ(0)|ψ(0)〉
and in particular the squared norm of a state. For a Hamiltonian that is not explicitly
time dependent, the state at time t may be expressed in terms of the state at t = 0 in a
simple way via a matrix eponential:

|ψ(t)〉 = e−iHt/~|ψ(0)〉. (13)

The operator U(t) = e−iHt/~ is unitary U†U = UU† = I and is called the time-
evolution operator.

2.3 Hamilton-Jacobi equation as a semiclassical limit of Schrödinger’s equation

The Schrödinger equation for time evolution of the quantum wave function of a
nonrelativistic particle of mass m in a potential V is

i~
∂Ψ

∂t
= HΨ = − ~2

2m
∇2Ψ + VΨ. (14)

For a free particle (V = 0), the stationary state wave function corresponding to energy
E and momentum p is Ψ(r, t) ∝ ei(p·r−Et)/~. For fixed E and p, we see that Ψ has
an essential singularity at ~ = 0. Thus, the wave function itself does not have a good
(classical) limit as ~→ 0. On the other hand, the quantity S defined by Ψ = eiS/~ is
better placed to have a finite ~→ 0 limit. In fact, we have

∂tΨ =
iΨ

~
∂tS, ∇Ψ =

i

~
Ψ∇S and ∇2Ψ =

[
− 1

~2
|∇S|2 +

i

~
∇2S

]
Ψ,

(15)
so the Schrödinger equation becomes, upon cancelling eiS/~ 6= 0,

− ∂S

∂t
=

1

2m
|∇S|2 + V − i~

2m
∇2S. (16)

No approximation has been made, although we assumed that Ψ is expressible2 as
eiS/~ for some S. Now, assuming S has a finite limit as ~ → 0, we ignore the last
term in the limit ~→ 0 and notice that we get the Hamilton-Jacobi evolution equation
of classical mechanics:

∂S

∂t
+
|∇S|2

2m
+ V = 0 or

∂S

∂t
+H(r,∇S) = 0. (17)

Thus, we may view the Schrödinger equation as a ‘quantization’ of the classical HJ
equation. We also say that the HJ equation arises in the semiclassical limit of the
Schrödinger equation. We will say more about the HJ equation and the interpretation
of S as a generator of canonical transformations in §5.2.

2S would have to diverge at points where Ψ vanishes.

5



2.4 Heisenberg equation from Schrödinger equation

• Here, we will show that the Schrödinger equation for states implies the Heisenberg
equation for observables. This will establish the compatibility of the Heisenberg and
Schrödinger approaches to quantum mechanics.
• In the Schrödinger ‘picture’, states |ψs(t)〉 = U(t)|ψs(0)〉 evolve in time (via the
unitary time evolution operator U(t)) while observables As like the position operator
x̂ do not depend on time. In the Heisenberg picture, the states are the initial ones
|ψh〉 = |ψs(0)〉, but the observables evolve in time. Their evolution is governed by
the Heisenberg equation of motion. Let us define the Heisenberg operator Ah(t) =
U†(t)AsU(t). Then

i~U̇ = HU and − i~U̇† = U†H. (18)

So

i~∂tAh = −U†HAsU + U†AsHU
⇒ i~∂tAh = U†AsUU

†HU − U†HUU†AsU = AhH −HAh = [Ah, H].(19)

Thus, the Heisenberg equation of motion

i~
∂Ah
∂t

= [Ah, H] (20)

follows from the Schrödinger equation for states and vice versa.
•As noted earlier, the Heisenberg equation of motion is a quantum analogue of Hamil-
ton’s equation of motion ∂A

∂t = {A,H} if we replace a classical observable A by Ah
and the PB {·, ·} by [·, ·]/i~. The Hamiltonian is the same in both pictures (assuming
it is time independent in the Schrödinger picture). We note that the expectation value
of an observable in a normalized state may be computed in either picture

〈A〉ψ = 〈ψs(t)|As|ψs(t)〉 = 〈ψ(0)|U†AsU |ψ(0)〉 = 〈ψh|Ah|ψh〉. (21)

2.5 Brief comparison of classical and quantum mechanical formalisms

We will compare features of the Hamiltonian formalism of classical mechanics
(CM) with the corresponding notions of quantum mechanics (QM). Like CM, QM too
has concepts of states and observables as well as time evolution. A key difference is
that on account of the linear superposition principle (necessitated by observations of
interference and diffraction of electron and atom ‘matter waves’) the quantum state
space is a linear vector space unlike the classical phase space which is a manifold
without any linear structure.

1. In CM, the space of (pure) states is the phase space, the space of positions and
momenta. It is often the cotangent bundle3 of the configuration space Q. In

3 Velocity vectors at a point ofQ span the tangent space toQ at that point. The vector space dual to the
tangent space is the cotangent space and is spanned by momentum covectors. The union of all the cotangent
spaces over each point of the configuration space is called the cotangent bundle.
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QM, it is a vector space, the quantum mechanical Hilbert space4 H. Vectors in
this space (up to scalar multiplication) are the possible states of the system, so
linear combinations of states are also allowed states. H can typically be taken
to be the space of square-integrable complex-valued functions on the classical
configuration space: L2(Q,C). In the so-called position representation or basis,
the states of a single particle moving in Q = R3 are complex ‘wave functions’
ψ(r) with |ψ(r)|2dr interpreted as the probability to find the particle in the
infinitesimal volume dr around r. The squared-norm

∫
|ψ|2dr must equal one,

since this is the total probability to find the particle somewhere. This is why
we insist on square-integrable functions on the classical configuration space,
L2(R3,C) in this case. It turns out that we need to allow for complex vectors
to accommodate the sort of wave phenomena observed in the quantum realm,
which is somewhat different from that in classical sound or electromagnetic
waves. Moreover, time evolution in QM is such that even if the initial state is
real, it will in general become complex at the next instant. Probabilities, being
proportional to the absolute square, remain real. Evidently, we use an infinite-
dimensional vector space to model the translational states of motion of a particle
(the need for an infinite-dimensional space will be clarified below). On the other
hand, to model the spin states of a particle, a finite-dimensional complex vector
space suffices: C2 for spin- 1

2 , C3 for spin 1 and so forth.

2. In CM, observables f, g, . . . are smooth real-valued functions on phase space.
In QM, observables (A,B, . . .) are self-adjoint (Hermitian operators whose do-
main coincides with that of their Hermitian adjoints) linear operators on the
quantum Hilbert space. Once a basis is chosen, we may represent quantum
observables as (finite or infinite) matrices. Self-adjointness is the analog of
real-valuedness of classical observables, both of which ensure that results of
measurements are real numbers. While each value of a classical dynamical
variable f is a possible result of its measurement, the eigenvalues of A are the
possible results when a quantum observable A is measured.

3. Classical observables form a commutative algebra under pointwise5 multiplica-
tion. Thus αf +βg and (fg)(ξ) = (gf)(ξ) = f(ξ)g(ξ) are observables for any
α, β ∈ R if f and g are. Linear operators on a quantum Hilbert space do not
commute (AB 6= BA for square matrices) in general: they form a noncommu-
tative but associative [(AB)C = A(BC)] algebra. What is more, the product
of two Hermitian operators fails to be Hermitian if they do not commute. Nev-
ertheless, it is possible to combine two observables to get a third in a different
manner, as we discuss below.

4. The Poisson bracket of observables f and g in CM is another observable {f, g}.
4 A Hilbert space is a complex vector space H with Hermitian positive-definite inner product 〈φ, ψ〉.

This means 〈φ, ψ〉 = 〈ψ, φ〉∗, 〈ψ,ψ〉 ≥ 0 (with equality only if ψ = 0), linearity in ψ and consequently
antilinearity in φ: 〈aφ, bψ〉 = a∗b〈φ, ψ〉 and 〈φ1 +φ2, ψ1 +ψ2〉 = 〈φ1, ψ1〉+ 〈φ1, ψ2〉+ 〈φ2, ψ1〉+
〈φ2, ψ2〉 for all vectors ψ, φ, . . . and complex numbers a, b.

5Pointwise means f and g are multiplied at the same point ξ to get the value of fg at ξ.
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In QM, the role of the Poisson bracket is played by the commutator of operators
(up to a factor of i~). The commutator is defined as [A,B] = AB − BA
and one checks that 1

i~ [A,B] is Hermitian if A and B are. For e.g., the role
of the canonical PB relation {x, p} = 1 for a particle in CM is played by the
Heisenberg canonical commutation relation 1

i~ [x̂, p̂] = I where x̂ and p̂ are
the position and momentum operators and I the identity operator. From this,
we may deduce why we need an infinite-dimensional vector space to model the
quantum states of a particle. For finite-dimensional (n×n) matrices, the trace of
the commutator tr [A,B] vanishes since trAB = trBA =

∑
1≤i,j≤nAijBji.

On the other hand, tr I = n. So if [x̂, p̂] = i~I must hold, x̂ and p̂ cannot be
finite-dimensional matrices. On the other hand, the trace of the commutator of a
pair or infinite matrices can diverge, just like the trace of an infinite-dimensional
identity matrix.

5. Classical time evolution of any observable f is governed by Hamilton’s equation
ḟ = {f,H}. In the quantum theory, an observable A evolves according to the
Heisenberg equation of motion i~∂tÂ = [Â, Ĥ]. Henceforth, we will often
omit the hats on quantum observables.

6. A unitary transformation is a linear transformation U satisfying U†U = UU† =
I . Unitary transformations, which act on states and observables via |ψ〉 →
|ψ′〉 = U |ψ〉 andA→ A′ = UAU†, are quantum analogs of canonical transfor-
mations. Both preserve the structure of the formalism and the equations of mo-
tion. CTs preserve the basic PB relations while unitary transformations preserve
the Heisenberg canonical commutation relations, since [A′, B′] = U [A,B]U†

and in particular [x′, p′] = U [x, p]U† = U(i~I)U† = i~I . For the same rea-
son, unitary transformations leave the Heisenberg equations of motion invari-
ant. Unitary transformations also preserve inner products (and consequently,
the squared-norm 〈ψ|ψ〉) of a state:

〈φ′|ψ′〉 = 〈Uφ|Uψ〉 = 〈φ|U†Uψ〉 = 〈φ|ψ〉. (22)

Now, the norm of a state may be interpreted as the total probability of finding the
system in some configuration. This makes unitary transformations appropriate
for physical changes/processes in which probability is conserved.

7. In CM, time evolution is a 1-parameter family of canonical transformations (??)
on phase space. In QM, time evolution (which conserves probabilities) is rep-
resented by a 1-parameter family of unitary transformations on the quantum
Hilbert space: U(t, 0) = e−iHt/~ acts on the initial state |ψ(0)〉 to produce the
state |ψ(t)〉.

3 Ehrenfest’s theorem

• The expectation values 〈x〉, 〈p〉, 〈E〉 etc are functions of time (space has been inte-
grated over). The average position and momentum of an electron will depend on time
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in a way governed by the Schrödinger equation. According to Ehrenfest’s theorem,
these expectation values evolve as do the corresponding classical variables, whose
evolution is given by Newton’s/Hamilton’s equations! E.g. d〈x〉dt = 〈p〉

m , so the average
position evolves in the same way as given by the first of Hamilton’s equations. To see
this and related results, we first derive a general equation for the time evolution of the
expectation value of an observable A in a unit-norm state that evolves via the SE

i~
∂

∂t
〈ψ|A|ψ〉 = −〈ψ|HA|ψ〉+ 〈ψ|AH|ψ〉 = 〈ψ|[A,H]|ψ〉. (23)

• Putting A = H and using [H,H] = 0 shows that the average energy (expectation
value of hamiltonian) is constant ∂〈Ĥ〉

∂t = 0. This is the analogue of the classical
constancy of energy along a trajectory.
• Taking A = p we find the time evolution of mean momentum for a particle subject
to the hamiltonian H = p2

2m + V . Show that

[p,H] = [p, V ] = −i~V ′ (24)

Thus we have
∂〈p〉
∂t

= 〈−V ′〉. (25)

Thus Newton’s second law (or the second of Hamilton’s equations) ṗ = −V ′(x)
continues to hold in quantum mechanics, but in the sense of expectation values. The
average momentum evolves as though it is a classical variable subject to an ‘average
force’!
• If A = x, then [x,H] = [x, p

2

2m ] = i~p
m . So

∂〈x〉
∂t

=

〈
p

m

〉
. (26)

This is the first of Hamilton’s equations ẋ = ∂H
∂p = p

m , but now in the sense of
expectation values.
• So if the electron is in the initial state ψ(x, t = 0), Schrödinger’s equation tells us
how the state evolves in time. We have used this to determine the time derivatives of
the average position and average momentum of the electron and found that they are
related to the average momentum and average force in the same way as the evolution
of the actual position and momentum of a particle are related by Hamilton’s equation
of classical mechanics to the momentum and force. To the extent that the expectation
value of x provides an approximate position for a localized electron wave packet,
we see that the quantum mechanical motion of the wave-packet mimics the classical
motion of a particle. However, the wave packet typically spreads out in time, and
ceases to be well-described by merely its mean position. This reduces the utility of
the Ehrenfest result in determining where a quantum particle may be found at later
times, based on its classical motion.

9



• If we model a quantum particle by a wave packet, then in general the wave packet
will broaden out due to the dispersive nature of Schrödinger time evolution. However,
in the classical limit, there is no dispersive broadening and the wave packet follows the
classical trajectory. In particular, if the wave packet had zero width initially, then the
wave packet will always have zero width. This feature can be exploited to distinguish
identical particles in the classical limit using their trajectories.

4 Bohr-Sommerfeld quantization rule for classically integrable systems

Integrable system and angle-action variables. A classically integrable system is
one that admits a canonical transformation from original phase space variables qj , pj
to canonically conjugate angle-action variables θj , Ij with the property that the Hamil-
tonian depends only on the actions H(q, p) = K(I). It follows that all the angle
variables are cyclic coordinates so that the actions are conserved quantities. Hamil-
ton’s equations θ̇j = ∂K

∂Ij
= ωj(I) then imply that the angle variables evolve linearly

in time. If we restrict to bounded motion, then the angle variables are in fact angu-
lar variables and can be taken to be defined modulo 2π, i.e., (θ, I) and (θ + 2π, I)
represent the same physical state.

Quantization: Action and adiabatic invariants. Experimental measurements of emis-
sion and absorption frequencies of light from gases indicated the presence of discrete
or line spectra. Understanding this ‘quantization’ of variables that were classically
allowed to take a continuous range of values was one of the early challenges in the de-
velopment of the quantum theory (well before the formulation of Heisenberg’s matrix
mechanics or Schrödinger’s wave equation). Consider the simple harmonic oscilla-
tor with Hamiltonian H = p2/2m + 1

2mω
2x2. The action variable is defined as

I = 1
2π

∮
pdq where the integral is around a closed orbit. The formula E = Iω for

the energy of the orbit is a classical precursor of the quantum mechanical formula
for its energy levels E = ~(n + 1

2 )ω where h = 2π~ is Planck’s unit of action and
n = 0, 1, 2, . . .. Indeed, Ehrenfest proposed that it is the action variables of classical
systems that may take discrete values (especially for bound states) in the quantum the-
ory. A quantity that takes discrete values in the quantum theory (such as the number of
nodes of a bound state wave function), cannot change under small slow perturbations6

or continuous time evolution. He asserted that classical quantities that were ‘ripe’ for
quantization should not only be conserved under Hamiltonian time evolution, but also
be unchanged under some slow (i.e., adiabatic) perturbations of the system. It was
found that the action variable (1/2π)

∮
pdq is an adiabatic invariant of the classical

system. If the spring constant is increased slowly, the energy of oscillations increases
as does their frequency, but the action ratio I = E/ω remains unchanged. These ideas
are implemented in the semiclassical Bohr-Sommerfeld quantization rule

∮
pdq = nh

for large integers n� 1.

Singlevaluedness of wave function and Bohr-Sommerfeld quantization condition.
To see where this quantization condition comes from, we restrict to a system with

6For instance, if we increase the length l of a 1d infinite potential well slowly, the energy of the nth

stationary state En ∝ n2/l2 changes, but the number of nodes of the wave function does not.

10



one degree of freedom for which angle-action variables θ, I are available. Suppose
the original Hamiltonian H(q, p) has been expressed in terms of the action variable
H = H(I) where I = 1

2π

∮
pdq. To pass to the quantum theory, we replace the

time-independent HJ equation H(I) = E by the time-independent Schrödinger equa-
tion H(I)ψ = Eψ for the wave function ψ(θ). In the Schrödinger equation, I is
‘represented’ by the differential operator −i~ ∂

∂θ leading to the eigenvalue problem

H

(
−i~ ∂

∂θ

)
ψ(θ) = Eψ(θ). (27)

Here H(I) = ωI for the harmonic oscillator, but could be a nonlinear function of I
for other systems which admit angle-action variables, such as the simple pendulum.
Plane waves ψ(θ) = eiPθ/~ are solutions provided H(P ) = E. Since classically,
H(I) = E, we take P = I . What is more, if θ is an angle variable defined modulo
2π, then requiring the wave function to be singlevalued,

ψ(0) = ψ(2π) ⇒ e2πI/~ = 1. (28)

This leads to the Bohr-Sommerfeld quantization condition

In =
1

2π

∮
pdq = n~, where n is an integer. (29)

Thus, the quantum mechanical energy levels in the Bohr-Sommerfeld semiclassical
treatment are given by En = H(In) = H(n~).

Harmonic oscillator. For the harmonic oscillator, H(I) = ωI leading to the Bohr-
Sommerfeld spectrum En = n~ω, which approaches the exact spectrum ~ω(n + 1

2 )
when n is a large integer. Classically I ≥ 0, so we restrict to n ≥ 0.

Kepler problem and Hydrogen atom. The Kepler (or Hydrogen atom) problem for
the reduced mass m has three degrees of freedom. However, the angular momentum
L is conserved and the motion is on the ecliptic plane (taken to be the x-y plane)
orthogonal to L (taken along z). So z = 0 and pz = 0 at all times and we may
focus on the motion on the x-y plane. In plane polar coordinates, the Hamiltonian is
H = p2

r/2m+ Veff where Veff(r) = l2/2mr2 − α/r. Here the strength of the central
force is α = GMm or e2/4πε0 in the Kepler and hydrogen atom contexts. The
azimuthal coordinate φ is cyclic and its conjugate momentum Lz = l is conserved.
So (φ, l) form an angle-action pair. Although r is not an angle variable, the action
variable for the radial degree of freedom is

I =
1

π

∫ r+

r−

√
2m (E − l2/2mr2 + α/r) dr, (30)

where 0 < r− < r+ are the radial turning points for bound (E < 0) trajectories,
determined by E = Veff(r±). Upon evaluating the integral7, one gets I = −l +

7The two terms obtained upon evaluating the integral may be partly understood using dimensional anal-
ysis. We must have I = c1l + c2α/

√
−E/m since there are only two independent combinations of

11



α/
√
−2E/m, leading to the expression for the Hamiltonian H(l, I) = −mα2/2(I+

l)2. If we impose the Bohr-Sommerfeld semiclassical quantization condition, then
both I and l must be integer multiples of ~. Denoting (l+ I)2 = n2~2 for a ‘principal
quantum number’ n, we recover the bound state spectrum En = −me4/2(4πε0~n)2

of the Hydrogen atom upon taking α = e2/4πε0. Max Born used angle-action vari-
ables to find the spectrum of the Hydrogen atom.

EBK quantization. The EBK (Einstein-Brillouin-Keller) quantization condition is
a refinement of the Bohr-Sommerfeld quantization condition for integrable systems
which can be described in terms of n action variables I1, · · · , In in involution. Here
the effects of turning points (where the potential is not slowly varying) are taken into
account to arrive at the EBK quantization condition

Ij =
1

2π

∮
pjdq

j = ~
(
nj +

µj
4

+
bj
2

)
for i = j, · · · , n. (31)

Here, nj is a nonnegative integer while µj and bj are so-called Maslov indices associ-
ated to the periodic orbit parametrized by θj . The integer µj is the number of classical
turning points, where one imposes Dirichlet boundary conditions on the wave func-
tion. The integer bj is the number of reflections with a hard wall, where one imposes
Neumann BCs on the wave function. For example, the 1d SHO has only one degree
of freedom two turning points (µ = 2) and no hard wall reflections, so b = 0. Thus
the EBK quantization condition gives

In =
En
ω

= ~(n+
1

2
) or En = ~ω(n+

1

2
). (32)

In this instance, the EBK spectrum matches the exact quantum energy spectrum.

5 Semiclassical expansion and JWKB approximation

5.1 Semi-classical regime and slowly varying potentials

• Named after Jeffreys, Wentzel, Kramers and Brillouin. We wish to approximately
solve the time-independent Schrödinger equation for stationary states that are nearly
classical.

− ~2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x). (33)

To do this, we wish to exploit the knowledge of some solution of the classical (Hamil-
ton/Newton) equations of motion. In stationary perturbation theory, the zeroth order is
a solution of the unperturbed problem. In the semi-classical approximation, the zeroth
order is typically a classical solution (in an appropriate form). Classically, the particle
is confined to the region x where E ≥ V (x). So we focus on this region and postpone
phenomena like tunneling through barriers, which are classically forbidden.

l, α, E,m that have dimensions of action (l and α/
√
−E/m where E < 0). The dimensionless coef-

ficients c1, c2 are found by evaluating the integral, a priori they could be functions of the dimensionless
combination

√
−2E/m/αl.
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Stationary states with semiclassical behavior. Let us recall which (stationary) states
behave more classically than others. If the potential is a constant (as in an infinite
square-well of length L in which V = 0), ψ(x) = Aeikx + Be−ikx where k =√

2m(E−V )

~ and the boundary conditions imply that the stationary states are ψn(x) =√
2
L sin nπx

L . Classically, a particle with non-zero speed spends on average equal
times in all subintervals of [0, L] of equal length, as it bounces back and forth against
the walls. This uniform distribution is approximated by the probability distribution
|ψ(x)|2 of highly excited states. So the classical limit here is the limit of high energies
(En � V ). This is also the limit of large wave number kn = nπ

L compared to 1
L . This

is also the limit where the de Broglie wave length λdB = h√
2m(E−V )

= 2π
kn

= 2L
n is

small compared to L.
• Notice that L here is the length scale over which the potential changes significantly.
More generally, if V = V (x) we say we are in the semi-classical regime if the de
Broglie wave length is small compared to the length scale over which the potential
varies significantly.
• This is the case, for example for a highly excited state of a particle in an SHO
potential. As long as we stay away from the classical turning points, the wave function
oscillates rapidly and its wavelength is small. Near the turning points, λdB diverges
and the quantum effects have to be treated more carefully.

Semiclassical regime and concept of a slowly varying potential. If the potential
is varying slowly with x, we may still surmise that the wave function is of the form
Ae±ipx/~ but that p = h/λ is no longer the constant ~k, but varies slowly with x.
In other words, this suggests the ansatz ψ ∼ eiS(x)/~ where for a constant potential,
S(x) = px = ±x

√
2m(E − V ). Before we work out the consequences of this ansatz,

let us say more on what we mean by the semi-classical regime and what it means for
the potential to be slowly varying.
• If V = V (x), we require that the wavelength is small compared to the length scale
over which the potential changes by an amount of the order of the kinetic energy of
the particle8. Indeed, suppose the potential changes by p2/2m over a length L, then9

p2

2m
≈ δV ≈

∣∣∣∣dVdx
∣∣∣∣L ⇒ L ≈ p2

2m

∣∣∣∣dVdx
∣∣∣∣−1

(34)

8We need to decide what we mean by potential ‘changes appreciably’. The change in the potential has
dimensions of energy and the KE of the particle is a reasonable scale of energy to compare with. Indeed,
near the turning points of the SHO, the KE is small, so the length scale over which the potential changes
by an amount of the order of the KE is quite small. On the other hand, far away from the turning points the
KE is large (for a highly excited state), and the length scale over which the potential changes appreciably
compared to the KE is large. So by this definition, the SHO potential is slowly-varying away from the
turning points for a highly excited state, and not slowly-varying near the turning points. The corresponding
statement about the smallness/largeness of λdB is a consequence since λ = h/

√
2m(E − V (x)) is

determined by E and V (x).
9In approximating δV by its first derivative, we assume that L is not so large that this approximation

breaks down.
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Now

λ� L ⇒ 2mλ

p2

∣∣∣∣dVdx
∣∣∣∣� 1 or

∣∣∣∣2mhp3

dV

dx

∣∣∣∣� 1 or
∣∣∣∣dVdx

∣∣∣∣� √2m

h
|E − V (x)|

3
2

(35)
This is our condition for semi-classical behavior. It is a condition on the potential, that
also involves the energy and depends on x. It is easier to satisfy this condition for a
fixed potential and x, if we make E bigger: excited states behave more classically. It
is easier to satisfy (for fixed E) where dV/dx is ‘small’. The criterion involves x, so
even for fixed V (x) and E there may be some locations where the behavior is semi-
classical (E � V (x)), and other locations where it is not semi-classical (E ≈ V (x)).
Also, the ‘smaller’ ~ is, the easier it is to satisfy this condition so in a sense ~ → 0 is
the classical limit.

de Broglie wavelength and semiclassical condition. Let us re-derive this condition
by thinking in terms of the de Broglie wavelength. For a non-constant V (x), the de
Broglie wavelength changes with x. The concept of a wavelength is useful if there are
many oscillations with roughly the same wavelength. This is the case if the change
in wavelength (over a length of one wavelength) is small compared to the wavelength
itself. The change in wavelength over a distance δx is

δλ =
dλ

dx
δx. (36)

So putting δx = λ, the change in wavelength over a wavelength is δλ = dλ
dxλ. Thus

we require
∣∣ δλ
λ

∣∣ =
∣∣dλ
dx

∣∣� 1. We can express this as a condition on the potential using
λ = h/

√
2m(E − V (x)). ∣∣∣∣δλλ

∣∣∣∣ =

∣∣∣∣mhp3

dV

dx

∣∣∣∣� 1 (37)

This is the same condition for semi-classicality as obtained earlier. So we can either
say the potential is slowly varying or the de Broglie wavelength is slowly varying.

5.2 Variation of constants for slowly varying potential: HJ equation

Semiclassical energy eigenfunction from Hamilton-Jacobi equation. We motivated
the ansatz ψ = AeiS(x)/~ in seeking a solution of the time-independent Schrödinger
equation in the semi-classical regime. Without further assumptions, this ansatz (for
complex S and real A), does not involve any approximation, it is merely a change
of dependent variable from ψ(x) to S(x), in terms of which the eigenvalue problem
becomes

− ~2

2m
ψ′′ = (E − V )ψ ⇒ − i~

2m
S′′ +

1

2m
(S′)2 + V (x) = E. (38)
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Now we exploit the slowly varying nature of V (x) to assume that S′(x) is slowly
varying10 so that we may ignore S′′(x) and approximate the SE by

1

2m

(
∂S

∂x

)2

+ V = E (39)

Notice that this approximation could also be obtained by letting ~ → 0 (assuming
S(x) has a finite limit as ~→ 0), more on this later. Moreover, the resulting equation
is the time-independent Hamilton-Jacobi equation of classical mechanics

H(x,
∂S

∂x
) = E where H(x, p) =

p2

2m
+ V (x) and p =

∂S

∂x
. (40)

The time-independent HJ equation is an equation for a generating function S(x)
(called Hamilton’s characteristic function) for a possible canonical transformation
from ‘old’ coordinates x, p to new coordinatesX,P . For n degrees of freedom, such a
CT exists provided a complete solution of the HJ equation can be found, depending on
n constants of integration which can be taken as the new momenta P so that we may
write S = S(x, P ). If the time-dependent generating function (Hamilton’s principal
function) is defined as S(x, P, t) = S(x, P )− Et, then the new Hamiltonian

K(X,P ) = H(x, p) +
∂S
∂t

(41)

vanishes identically and S is said to satisfy the time-dependent HJ equation ∂tS +
H(x, ∂xS) = 0. Note that the Hamiltonian appearing in the Schrödinger equation is
the old HamiltonianH , notK. Moreover, even thoughK = 0, this does not mean that
the quantum mechanical energy levels are all zero, K is not a unitary transform of H ,
they do not have the same spectra. It is just that in the new coordinates (X = ∂S

∂P and
P ), the classical dynamics is as simple as it could be sinceX and P are both constants
of motion: Ẋ = ∂K

∂P = 0 and Ṗ = −∂K∂X = 0. All the complications of the original
Hamiltonian have been dumped in the transformation from old coordinates (x and p)
to new coordinates (X and P ).
• In our 1d context, we write the HJ equation in the form S′(x)2 = p(x)2 and integrate
to get

S(x)− S(x0) = ±
∫ x

x0

p(x′) dx′ where p(x) =
√

2m(E − V (x)). (42)

Thus, our approximation for the wave function in the semi-classical regime is the
exponential of ((i/~)×) Hamilton’s characteristic function11

ψ(x) = Ae
i
~
∫ x
x0
p(x′) dx′

+Be
− i

~
∫ x
x0
p(x′) dx′

. (43)

10For a constant potential S′(x) = ~k is a constant, so now we imagine that this earstwhile ‘constant’
varies with x.

11By absorbing a phase and its conjugate into A and B, the limit of integration x0 may be set equal to
the left turning point of the classical trajectory.
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•We will improve on this approximation shortly. But even this crude approximation
leads to some interesting consequences such as a simple case of the Bohr-Sommerfeld
quantization condition.

Bohr-Sommerfeld semiclassical quantization. Suppose a particle moves in the 1
dimensional potential V (x) which becomes infinite for x < 0 and x > L but is
arbitrary for 0 ≤ x ≤ L. Then the approximate wave function satisfying the boundary
condition ψ(0) = 0 is

ψ(x) ≈ A sin

(
S(x)

~

)
where S(x) =

∫ x

0

p(x′) dx′. (44)

The boundary condition ψ(L) = 0 then becomes S(L) = nπ~ which is the Bohr
quantization condition ∮

p(x′) dx′ = 2

∫ L

0

p(x′) dx′ = nh. (45)

Use this condition to find a semi-classical approximation to the square-well energy
levels.

First subleading correction: slowly varyung amplitude. Let us continue with the
theme of making constants vary. A simple way of improving on this approximation is
to suppose that both the amplitude and phase are slowly varying functions. Let us put
ψ(x) = A(x)eiS(x)/~ in the Schrödinger eigenvalue problem, and suppose that both
A(x) and S(x) are real. We get

− ~2

2m

(
A′′ +

i

~
(2A′S′ +AS′′)− AS′2

~2

)
+ V (x)A(x) = EA(x). (46)

The real part gives us

− ~2

2m

(
A′′ − AS′2

~2

)
= (E − V (x))A(x) (47)

which reduces to the time-independent HJ equation, if we ignore the second derivative
of A(x). The solution is S = ±

∫ x
p(x′) dx′ as before. The imaginary part gives us

the condition 2A′S′ + AS′′ = 0 which means (A2S′)′ = 0 or A(x) = ± C√
S′

=

± C√
p(x)

for some real constant C. The approximate wavefunction is

ψ(x) ≈ C1√
p(x)

e
i
~
∫ x p(x′) dx′ + C2√

p(x)
e−

i
~
∫ x p(x′) dx′ (48)

where p(x) =
√

2m (E − V (x)). This is already a better approximation. The con-
tributing amplitudes are inversely proportional to

√
p(x). So aside from interference

effects, the particle is less likely to be found in a place where its classical momentum
is large, as we observed for a particle near the equilibrium point in an SHO potential.
• It is possible to improve on this approximation by developing a systematic semi-
classical expansion that incorporates effects of more rapid variation in the potential.
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5.3 Examples and features of the semi-classical limit ~→ 0

• To get the Hamilton-Jacobi equation of classical mechanics from the Schrödinger
equation, we let ~ → 0 after making the ansatz ψ = AeiS/~. So we should expect
classical behaviour to emerge in the limit ~→ 0.

Gaussian wave packet as ~ → 0. To reinforce this idea, let us look at the gaussian
wave packet for a free particle in this limit. The probability density of a gaussian wave
packet is

P (x, t) = |ψ(x, t)|2 =
1√

2πa(t)
e
− (x− potm )

2

2a(t)2 where a(t) = a

√
1 +

t2

τ2
(49)

and τ = 2ma2

~ is the characteristic time scale over which the wave packet broadens.
The mean momentum of this wave packet is 〈p〉 = po = ~ko and the mean position
is 〈x〉 = pot

m . We take the limit ~ → 0 holding po fixed (i.e., the limit of large wave
number ko = po

~ → ∞). As ~ → 0, τ → ∞ and the wave packet does not broaden
out. The dispersive effects of wave mechanics die out as ~→ 0 and the object behaves
like a classical particle of fixed size a. To model a classical point-like particle, we
could further let a → 0 and get the probability density P (x, t) = δ (x− pot/m) as
expected of a free point-like particle moving at velocity po/m.

Classical limit as a short time limit. The limit ~ → 0 is a very convenient way of
approaching the classical limit. ~ is a dimensional constant, so what we mean by
~ → 0 is that certain physical quantities with dimensions of action are very large
compared to ~. In the above example of a free particle gaussian wave packet, the
relevant quantity with dimensions of action is 2ma2

t . So the classical limit is the one
where we consider times tmuch shorter than the time-scale τ for quantum mechanical
dispersive broadening of the wave packet.

Exited states of an oscillator. For highly excited states of the harmonic oscillator,
the quantity En

ω = ~(n+ 1
2 ) with dimensions of action is large compared to ~. These

states behave semi-classically in many respects.

Semiclassical limit of a rigid body. E.g. L2 eigenstates of a rigid body with very
large angular momentum quantum number l� 1 behave semi-classically, the magni-
tude of their total angular momentum

√
~2l(l + l) is the quantity with dimensions of

action, that is large compared to ~.
• Spin is somewhat different from angular momentum. A given rigid body or
atom can be in states of very different angular momentum quantum number l. So
letting ~ → 0 and simultaneously l → ∞ while holding the classical quantity |~L| =√
~2l(l + 1) fixed is a classical limit. On the other hand, an electron is always a spin

s = 1
2 particle, so for an electron, the eigenvalue of S2 is always 3~2/4 which is not

large compared to ~2. So it does not make direct sense to let the spin quantum number
s of an electron take any value other than 1

2 , leave alone let it go to infinity.
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Essential singularity as ~ → 0. The limit ~ → 0 is not a simple one for stationary
state wave functions.
• Free particle. The wave function of a free particle ψ(x) = Aeipx/~ does not
have a good classical limit ~ → 0, holding the classically meaningful quantities x, p
fixed. Indeed, the wave function has an essential singularity as ~ → 0. However,
−i~ logψ does have a good limit as ~ → 0, it tends to Hamilton’s characteristic
function W = px for a trajectory between positions 0 and x.
• Harmonic oscillator. In the case of the SHO, the stationary states are

ψn(x) =
(mω
π~

)1/4 1√
2nn!

Hn

(√
mω

~
x

)
e−

mωx2

2~ (50)

Here too ψ(x) has an essential singularity at ~ = 0, but ~ logψ(x) has a finite limit
−mωx

2

2 as ~→ 0.
• The infinite square well stationary states ψn(x) =

√
2/l sin(nπx/l) do not in-

volve ~. So if the width of the well l and quantum number n are held fixed, these
wave functions have a finite limit as ~ → 0. However, the states that behave like a
classical particle bouncing between hard walls are the ones for which n→∞. In this
limit, we may interpret the rapidly oscillating |ψn(x)|2 as approximating the uniform
distribution. A classical particle is equally likely to be found anywhere in the well:
the distribution of times spent is uniform.

5.4 Semi-classical expansion in powers of ~

Expanding S in powers of ~. For a general potential, the above examples suggest it
isn’t a good idea to look for an expansion of ψ(x) in powers of ~ around a ‘classical
wave function’, since such a thing does not even exist for a free particle. It is better
to make the ansatz ψ = AeiS(x)/~ and try to expand S(x) in powers of ~. Thus we
will seek a solution of the time-independent SE in the form ψ = AeiS(x,~)/~ where
S(x, ~) is a (possibly complex) function of x depending on ~ and A is a constant12.
Then

ψ′(x) =
iS′

~
ψ(x), ψ′′(x) =

(
iS′′

~
− S′2

~2

)
ψ(x) (51)

and the SE becomes

− ~2

2m

(
iS′′

~
− S′2

~2

)
+ V (x) = E (52)

Now we suppose S(x) is expanded in a series in ~

S(x) = S0(x) + ~S1(x) + ~2S2(x) + . . . (53)

In effect, we are assuming that S(x) has a finite limit as ~ → 0. This is true for the
free particle as well as for the highly excited states of many problems we have solved
(SHO, square well, delta potential). In fact it is true even for low lying states of many
of the problems we have solved (like the SHO above).

12We were in effect beginning to do this when we previously made the ansatz ψ(x) = A(x)eiS(x)/~ =

e
i
~ (S(x)−i~ logA(x)).
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Caution: Not all states behave semiclassically. However, it is not always the case
that S(x, ~) has a finite limit as ~ → 0. Not all states are semi-classical. This is
especially true for low lying states such as the ground state of the δ potential well or
the hydrogen atom, where

ψ0(x) =

√
mg

~
e−mg|x|/~

2

and ψ100(x) =
1√
πa3

e
− me2r

4πεo~2 where a =
4πεo~2

me2
.

(54)
For both these ground states, ~ logψ does not have a finite limit as ~ → 0, though
~2 logψ has a finite limit. In both these cases, we anticipate that the above semi-
classical approximation may not be accurate.
• On the other hand, the semi-classical expansion will be seen to be a good approxi-
mation in situations where our criterion for the semi-classical regime (slowly varying
potential or de Broglie wavelength) is satisfied. In those situations, we may use so-
lutions of the classical HJ equation to obtain a first approximation to semi-classical
wave functions.

Caution: Semiclassical expansion may not converge. Note that we are not claim-
ing that the expansion of S(x, ~) in powers of ~ is convergent. This is true for the
free particle where S(x) = px. But for other potentials, the expansion S(x, ~) =
So + S1~ + S2~2 + · · · may not converge. Nevertheless, it does provide an excellent
asymptotic approximation in the semi-classical regime in many cases.

Eikonal approximations. Equating coefficients of like powers of ~, we get a se-
quence of differential equations for Sn. At order ~0 we recover the time-independent
HJ equation, which is the nonlinear differential equation

S′0(x)2

2m
+ V (x) = E (55)

with solution S0(x) = ±
∫ x
x0

√
2m(E − V (x′)) dx′ = ±

∫ x
x0
p(x′) dx′. This is

called the Eikonal approximation or the semiclassical WKB approximation. S0 is
called the Eikonal or Hamilton’s characteristic function.

First subleading approximation. At order ~ we get a linear equation for S1, into
which we substitute the known S′0 = p(x):

S′1(x)S′0(x) =
i

2
S′′0 ⇒ S′1(x) =

i

2

S′′0
S′0

=
i

2
(logS′0)′ =

i

2
(log p(x))′

⇒ S1 =
i

2
log p(x) + const. (56)

Upon including this subleading correction, we get

ψ(x) ≈ A1√
p(x)

e
i
~
∫ x
x0
p(x′) dx′

+
A2√
p(x)

e
− i

~
∫ x
x0
p(x′) dx′

. (57)

This matches our earlier result (48). However, the present method is more systematic
and allows us to find further quantum corrections around the classical limit. What
is more, this method can also be applied to regions which the classical trajectory is
forbidden from exploring (e.g., tunneling through a barrier).
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Condition for validity of the Eikonal approximation. Let us find a condition for
the validity of the eikonal approximation. Recall that we found upon substituting
S = S0 + ~S1 + · · · and ψ = eiS/~ in the Schrodinger eigenvalue problem

(S′o)
2 + ~(2S′oS

′
1 − iS′′o ) +O(~2) = 2m(E − V (x)). (58)

Now for the Eikonal approximation to be good, the order of magnitude of the terms of
order ~0 must be large compared to that of the terms of order ~. |(So)′2| can be taken
as the order of magnitude of the constant terms in ~ and |i~S′′o | the order of magnitude
of the terms of linear in ~. So the condition is

|(So)′2| � |~S′′o | or
∣∣∣∣~S′′oS′2o

∣∣∣∣� 1 (59)

This is the same as our earlier criterion for the semi-classical regime, that the potential
or de Broglie wavelength be slowly varying

∣∣dλ
dx

∣∣� 1:

λ(x) =
h

p(x)
=

h

S′0
⇒

∣∣∣∣dλdx
∣∣∣∣ =

∣∣∣∣hS′′0S′20

∣∣∣∣� 1 (60)

5.5 Estimation of Tunneling amplitude

• Previously, we tried to use solutions of the classical Hamilton-Jacobi equation to
approximately infer the quantum mechanical wave function. This program was ap-
plicable in the classically allowed region E > V (x). On the other hand, the wave
function can be non-zero even in classically forbidden regions (E < V (x)) as in the
case of tunneling through a barrier. In such classically forbidden regions, we may
still obtain a semiclassical approximation to the wavefunction using the expansion
in powers of ~ developed in the last section. Even if E < V , the condition for the
semi-classical regime |dλdx | � 1 or

∣∣dV
dx

∣∣ � √
2m
h |E − V (x)|

3
2 can still be satisfied,

especially if E � V or if dVdx is small.
• For simplicity let us consider scattering against a barrier in one dimension that ex-
tends between x = −L and L, such as a rectangular barrier with an undulating top
V (x) > 0 for |x| ≤ L and V (x) = 0 for |x| > L. Classically if the energyE > Vmax,
the particle ‘rolls over’ the barrier, but is reflected otherwise. Quantum mechanically,
even if E < Vmax there can be a non-zero transmission probability due to tunnel-
ing. We wish to get a semi-classical estimate for the transmission coefficient in cases
where it is small. (After all, it is zero classically.)
• Let us consider scattering from the left with incident energy E = ~2k2/2m <
Vmax. Suppose the repulsive potential is such that there are just two classical turning
points (xL = −L on the left of the barrier and xR = L on the right) between which
V (x) > E, as is the case for a rectangular barrier.
• In the classically allowed regions to the left (ψ(x) = Aeikx + Be−ikx) and right
(ψ(x) = Feikx) of the barrier, the WKB approximation gives the exact free particle
wave functions since the potential is a constant. The transmission coefficient we wish
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to find is |F/A|2. Instead of trying to solve the SE in the classically disallowed region,
we use the WKB approximation

ψ(x) ≈ C ′√
p(x)

e
i
~
∫ x
xL

p(x′)dx′
+

D′√
p(x)

e
− i

~
∫ x
xL

p(x′)dx′ (61)

Here p(x) =
√
E − V (x) is purely imaginary and we may absorb some phases into

C ′ and D′ and write

ψ(x) ≈ C√
|p(x)|

e
− 1

~
∫ x
xL

√
2m(V (x)−E)dx′

+
D√
|p(x)|

e
1
~
∫ x
xL

√
2m(V (x)−E)dx′

. (62)

• Since we assumed the tunneling probability is small, the barrier must be high (com-
pared to E) or wide (compared to the de Broglie wavelength of the incident wave). In
this case, the coefficient D of the exponentially growing wavefunction must be very
small and we ignore it (D → 0 as the barrier width L → ∞). This can be motivated
by imposing continuity of ψ(x) and its first derivative at the classical turning points
xL, xR. The attenuation of the wavefunction is approximately

|F |
|A|
≈ e−

1
~
∫ xR
xL

√
2m(V (x′)−E)dx′ ≡ e−γ (63)

So the WKB estimate for the transmission probability is

T ≈ e−2γ = e
− 2

~
∫ xR
xL

√
2m(V (x′)−E)dx′ (64)

We see that as ~ → 0, T → 0 exponentially fast and classically the particle is not
transmitted.
• Tunneling was used by Gamow and others to explain the decay of a nucleus to a
daughter nucleus by emission of an α(nnpp) particle. The strong nuclear forces create
something like an attractive finite spherical potential well inside the nucleus for the
alpha particle. Outside the nucleus, the alpha particle is repelled by the electrostatic
force with the positively charged daughter nucleus. But in order to escape, the alpha
particle has to tunnel through a potential barrier.

6 Trace formula for particle on a circle: spectrum and periodic orbits

6.1 Classical free particle on a circle S1

Consider a point particle of massm that is free to move on a circle of radius r with
θ as its angular coordinate. The Lagrangian is L = 1

2mr
2θ̇2. The angular momentum

conjugate to θ is pθ = mr2θ̇ while the Hamiltonian is H = p2
θ/2mr

2. The classical
equation of motion is mr2θ̈ = 0 with the solution θ(t) = θ(0) + ωt where ω = θ̇
is the constant angular velocity. Consider a periodic trajectory that goes once round
the circle counterclockwise (ω > 0). Its time period is T = 2π/ω. The action of this
once winding periodic orbit is

S1 =

∫ T

0

L dt =
1

2
mr2ω2T = πmr2ω =

2π2mr2

T
. (65)
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Other periodic trajectories wind round the circle n times, where n is an integer. Nega-
tive n pertain to clockwise orbits. The energy of a trajectory with angular velocity ω is
1
2mr

2ω2, so fixed energy corresponds to fixed ω. On the other hand, we may consider
trajectories of a fixed duration T in time.

6.2 Stationary states of quantum free particle on S1

In the quantum theory, we will suppose that the wave function ψ(θ) is a 2π peri-
odic function of θ. This is consistent13 with the requirement that the probability den-
sities at the physically identical points θ = 0, 2π be the same: |ψ(0)|2 = |ψ(2π)|2. In
the Schrödinger picture, we represent θ by a multiplication operator while the conju-
gate angular momentum us represented by pθ = −i~∂θ. The Hamiltonian becomes

H =
p2
θ

2mr2
= − ~2

2mr2

∂2

∂θ2
. (66)

Where convenient, we will work in units where r = 1 and ~2/2m = 1. The
Schrödinger eigenvalue problem for an energy eigenstate with energy E is

Hψ = Eψ or − ∂2

∂θ2
ψ(θ) = Eψ(θ). (67)

For the ansatz ψ(θ) = Aeilθ we find ψ′′(θ) = −Al2eilθ so that E = l2. Imposing 2π
periodicity ψ(0) = ψ(2π) we get the condition e2πil = 1 which implies that l must
be an integer, say l = n. Thus the energy spectrum and energy eigenfunctions are

En =
n2~2

2mr2
and ψn(θ) = Aeinθ for n = 0,±1,±2, · · · . (68)

We may pick A = 1/
√

2π to ensure that the eigenfunctions are orthonormal

〈ψm|ψn〉 =

∫ 2π

0

|A|2ei(n−m)θdθ = δmn. (69)

6.3 Euclidean time evolution and heat operator

The time evolution operator is given by U(t) = e−iHt/~. We will be interested
in the Euclidean time evolution operator, which is also called the heat operator. Let
us continue t to a negative imaginary time so that β = it/~ is a positive real number
viewed as the inverse temperature β = (kbT )−1. Then we define the heat operator as

hβ = U(−i~β) = e−βH . (70)

The name heat operator is given because if we view β as time, then hβ is the funda-
mental solution of the heat equation on the circle. In fact,

∂

∂β
hβ = −He−βH ⇒ ∂hβ

∂β
=
∂2hβ
∂θ2

, (71)

13Mere general ‘quasiperiodic’ boundary conditions ψ(2π) = eiφψ(0) are possible for a nontrivial
phase eiφ, but will not be considered here.
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where we have viewed hβ in the position (angle) basis in the second equation; more
on this shortly. It is called the fundamental solution since it tends to the identity as
time goes to zero:

lim
β→0+

hβ = I. (72)

6.4 Partition function

The partition function is defined as the trace of the heat operator:

Z(β) = tr e−βH . (73)

Evaluating the trace in the basis of energy eigenfunctions, we get

Z(β) =
∑
n∈Z
〈ψn|e−βH |ψn〉 =

∞∑
n=−∞

e−βn
2

. (74)

Let us examine the convergence of this series. Now β > 0 so 0 ≤ e−β < 1. If we
denote z = e−β , then

Z(β) = 1 + 2(z + z4 + z9 + · · · ). (75)

By comparing with the geometric series, we see that this series converges absolutely
for |z| < 1. So the above series for Z(β) converges for all β > 0.

There is another expression for the partition function which is obtained by evalu-
ating the trace of the heat operator in the position basis. For this we need the matrix
elements of the heat operator between position eigenstates, this is the so-called heat
kernel.

6.5 Heat kernel on the circle

The matrix elements of the heat operator in the position basis |θ〉 is called the heat
kernel:

hβ(θ, θ′) = 〈θ|hβ |θ′〉. (76)

As a consequence of (71) and (72), it satisfies the heat equation on the circle

∂

∂β
hβ(θ, θ′) =

∂2

∂θ2
hβ(θ, θ′) (77)

with initial condition corresponding to the kernel of the identity operator:

lim
β→0+

hβ(θ, θ′) = δ(θ − θ′,mod 2π). (78)

Since θ, θ′ are defined modulo 2π, on the RHS we have the delta function on the
circle, which is nonzero only when θ − θ′ is a multiple of 2π. If we think of θ, θ′ as
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real numbers, then we may write the delta function on the circle as a sum of Dirac
delta functions (‘Dirac comb’) on the real line supported at integer multiples of 2π:

lim
β→0+

hβ(θ, θ′) =

∞∑
n=∞

δ(θ − θ′ + 2nπ). (79)

The heat kernel on the circle may be expressed in terms of the heat kernel Kβ(x, x′)
on the real line:

hβ(θ, θ′) =

∞∑
n=−∞

Kβ(θ, θ′ + 2nπ). (80)

6.6 Heat kernel on R

The heat kernel on the real line gives the matrix elements of the heat operator
between position eigenstates Kβ(x, x′) = 〈x|e−βH |x′〉 where H = − ∂2

∂x2 is the free
particle Hamiltonian in units where ~2/2m = 1. The heat kernel may also be viewed
as the free particle propagator (position representation of the time evolution operator)
in imaginary time and is the solution of the heat equation

∂βKβ(x, x′) =
∂2

∂x2
Kβ(x, x′) with IC Kβ→0(x, x′) = δ(x− x′). (81)

It is a Gaussian

Kβ(x, x′) =
1√
4πβ

exp

(
− (x− x′)2

4β

)
. (82)

To obtain this formula, we first use translation invariance to observe that Kβ(x, x′) ≡
Kβ(x− x′) can only depend on the separation. Expressing it in Fourier space

Kβ(y) =

∫ ∞
−∞

dk

2π
eikyK̃β(k), (83)

the heat equation (81) becomes an ODE for each Fourier mode:

∂βK̃β(k) = −k2K̃β(k). (84)

Thus, the heat kernel in Fourier space is a Gaussian:

K̃β(k) = Ne−k
2β , (85)

where N is a normalization constant to be fixed by requiring that Kβ(y) → δ(y)
as β → 0+. The heat kernel in position space is obtained by inverting the Fourier
transform. We evaluate the Gaussian integral by completing a square:

Kβ(y) = N

∫ ∞
−∞

dk

2π
e−β(k2−iky/β) = N

∫ ∞
−∞

dk

2π
e−β[(k−iy/2β)2+y2/4β2]

= Ne−y
2/4β

∫ ∞
−∞

dk′

2π
e−βk

′2
=

N√
4πβ

e−y
2/4β . (86)
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We used
∫
e−βk

′2
dk′ =

√
π/β. Thus, the heat kernel is a Gaussian in position space

as well. Moreover, we find
∫∞
−∞Kβ(y)dy = N for any β > 0. Recall that the Dirac

delta distribution is a limit of normalized Gaussians as the width tends to zero. So
taking N = 1 ensures that Kβ(y)→ δ(y) as β → 0. Thus, we have established (82).

6.7 Partition function from heat kernel on S1

We now use the heat kernel on R to obtain a formula for the heat kernel on the
circle:

hβ(θ, θ′) =

∞∑
n=−∞

Kβ(θ, θ′ + 2nπ) =
1√
4πβ

∞∑
n=−∞

e(θ−θ′−2nπ)2/4β . (87)

The partition function is got by taking a trace of hβ , i.e., put θ = θ′ and integrate over
the circle:

Z(β) =

∫ 2π

0

hβ(θ, θ)dθ =
1√
4πβ

∫ 2π

0

∑
n

e−4n2π2/4βdθ =
2π√
4πβ

∞∑
n=−∞

e−n
2π2/β .

(88)
Notice that for any β > 0, 0 < e−π

2/β < 1. Thus, by comparison with the geometric
series, this series converges absolutely for any such β.

Thus, we have found two formulae for the circle partition function by evaluating
the trace in the energy and position bases. Equating (74) and (88) we get a ‘trace
formula’ relating two infinite sums for the partition function:

Z(β) = tr e−βH =

∞∑
n=−∞

e−n
2β =

2π√
4πβ

∞∑
n=−∞

e−n
2π2/β . (89)

Notice the reciprocal manner in which β appears in the exponent on the left and right
sides.

6.8 Relation to Poisson summation formula

The trace formula (89) is a special case of the Poisson summation formula, which
states that

∞∑
n=−∞

f(n) =

∞∑
n=−∞

f̃(2πn), (90)

where f̃(k) =
∫
e−ikxf(x) dx is the Fourier transform of f(x). Indeed, if we take

f(x) = e−βx
2

then f̃(k) =
√
π/βe−k

2/4β (91)

then we recover the trace formula.
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6.9 High temperature - low temperature relation

Consider again the trace formula giving two expressions for Z(β):

Z(β) =
∑
n

e−n
2β =

√
π/β

∑
n

e−n
2π2/β . (92)

Although valid for all β > 0, it is convenient to view the LHS as a large β (low
temperature) expansion while the RHS can be viewed as a small β (high temperature)
expansion. Using this language, we find the following remarkable relation between
the partition function at high and low temperatures:

Z(π2/β) =
√
β/πZ(β). (93)

Such identities also appear in the theory of the Jacobi theta functions.

6.10 Interpretation in terms of periodic orbits

The RHS of the trace formula (89)

Z(β) = tr e−βH =
2π√
4πβ

∞∑
n=−∞

e−π
2n2/β (94)

may be interpreted in terms of classical quantities associated to a free particle on a
circle.
• The prefactor 2π in the numerator may be regarded as the volume of the classical
configuration space: in the case at hand it is the unit circle with circumference 2π

• The sum may be viewed as a sum over classical periodic trajectories. The trace on
the LHS implies a sum over a basis of quantum states where the initial and final states
are the same. The classical analogue of this is a sum over periodic classical orbits.
There is one primitive periodic orbit, say the one where the free particle goes round
the circle once counter clockwise. This primitive orbit may be retraced n times for
any integer n leading to a closed classical trajectory that winds n times around the
circle. Negative n corresponds to orbits that wind clockwise. Since β = it/~ is fixed,
we will suppose that the time duration of these trajectories is fixed (t = T ), so that the
angular frequency of the orbit that winds n times is ωn = 2πn/T . Orbits with larger
|n| have larger energy.
• The quantity in the exponent may be interpreted in terms of the classical action. In
fact, the classical action of an orbit that winds n times in a time T is

Sn =

∫ T

0

1

2
mr2θ̇2dt =

1

2
mr2ω2

nT =
2mr2π2n2

T
. (95)

Putting T = −i~β, we get

iSn
~

= −2mr2π2n2

~2β
= −π

2n2

β
, (96)
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where in the last step we have specialized to units where r = 1 and ~2/2m = 1
as before. Thus, the summand on the RHS of (94) may be interpreted as eiSn/~,
the familiar probability amplitude/weight assigned to a classical trajectory in the path
integral approach to quantum mechanics.
• The prefactor 1/

√
4πβ = e−

1
2 log 4πβ in (94) may be viewed as a subleading correc-

tion for small β. It is familiar from the first subleading correction to the wavefuction
we found in the semiclassical expansion (48). Thus, we may write:

Z(β) = Vol(configuration space)
∑

periodic orbit
winding n times

eiSn/~−
1
2 log(4πβ). (97)

As noted, we consider here periodic orbits that wind n times around the circle in a
fixed time T and then replace T by −i~β.
• We have thus interpreted the partition function (or trace of the heat kernel or time
evolution operator) for a free particle moving on a circle as a sum over classical pe-
riodic orbits. In this case, the partition sum could be evaluated exactly both in the
energy and position bases. For more general systems, we are usually unable to eval-
uate the partition sum exactly. However, an analogue of the sum over periodic orbits
may still provide an approximate formula for the quantum mechanical trace. An im-
portant example of such a formula is the semiclassical trace formula for the density of
states developed by M C Gutzwiller in the 1970s.
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