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1 Roll-call of some approximation methods in quantum mechanics

For most interesting quantum mechanical systems (such as a many-electron atom) we do not
know how to solve the time-dependent Schrodinger equation or the Schrödinger eigenvalue prob-
lem for stationary states and energy levels. There are exceptional ‘exactly-solved’ systems such
as the free particle, square well, 1 dimensional Dirac delta, harmonic oscillator and sech2 po-
tentials, rigid body with an axis of symmetry, hydrogen atom, charged particle on a plane in an
orthogonal constant magnetic field, spin in a magnetic field, Matthews-Lakshmanan oscillator
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etc. For other systems (E.g. Helium atom, anharmonic oscillator, Hydrogen atom in an electric
or magnetic field, atom exposed to EM radiation, relativistic and spin-orbit effects in Hydrogen,
anisotropic molecule, many electron atoms, molecules etc.) we rely on various approximation
methods. Sometimes, even ‘exactly-solvable’ systems are treated using approximation methods
since they may be simpler and adequate! Some approximation methods are listed below:

• Variational approximations from the (Rayleigh-Ritz) variational principle

• Time-independent perturbation theory for Schrödinger eigenvalue problem

• Time-dependent perturbation theory and Fermi’s golden rule

• Semiclassical approximation and the WKB method.

• Bohr-Sommerfeld approximation for excited states

• Partial wave approximation in potential scattering.

• Born’s series and approximation in scattering theory

• Adiabatic approximation and geometric phase

• Hartree-Fock and Thomas-Fermi approximations for many electron atoms.

• Mean field and Density functional approximations in many-body quantum theory.

• Numerical approximation methods.

In these lectures, we will discuss only the rudiments of variational, perturbative, semi-
classical and Born’s approximations.

2 Variational Principle and Approximations

• Suppose we have a particle moving in a potential V with Hamiltonian H = T + V where
T = −(~2/2m)∇2 . Assuming the spectrum of energies is bounded below, to begin with, we want
to find the ground state, the eigenstate of H with lowest energy eigenvalue. Interestingly, there is
an alternate characterization of the ground state among all normalizable states (not just among
all eigenstates). It is the one which minimizes the expectation value 〈H〉ψ = 〈ψ|H|ψ〉/〈ψ|ψ〉
among all normalizable states. More generally, the energy eigenstates are precisely the extrema
of 〈H〉ψ . This is the statement of the Rayleigh-Ritz (RR) variational principle.

• Let us see why the RR variational principle is equivalent to the Schrodinger eigenvalue prob-
lem. To extremize the expectation value 〈H〉ψ among all normalizable states is the same as
extremizing 〈ψ|H|ψ〉 among all unit norm states. We have the classic problem of extremizing
a function (F = 〈ψ|H|ψ〉) subject to a constraint. Here the constraint is C = 〈ψ|ψ〉 − 1 = 0.
The method of Lagrange multipliers says that to extremize F subject to the constraint C is
the same as extremizing F − λC where λ is a number called the Lagrange multiplier. λ is
not known in advance, there are typically several allowed values of λ corresponding to several
extrema of F subject to the constraint C . The physical meaning of λ in the RR principle will
be clarified shortly.

• The condition for extrema is ∇F = λ∇C . Geometrically this says that ∇F must point
along/opposite to ∇C . Since ∇C points normal to the constraint ‘surface’ this would ensure
∇F is also normal to the constraint surface. In other words F , would be stationary on the
constraint surface.
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• Applying the method of Lagrange multipliers to the RR variational principle, we must ex-
tremize

〈ψ|H|ψ〉 − λ(〈ψ|ψ〉 − 1) or

∫
ψ∗Hψ d3r − λ

(∫
ψ∗ψd3r − 1

)
. (1)

Taking the variational derivative with respect to ψ∗ we get Hψ−λψ = 0. We recognise this as
the time-independent Schrodinger eigenvalue problem, with λ the energy eigenvalue. We should
expect there to be several extrema corresponding to the various energy levels of the system.

2.1 Ground state variational principle for simple harmonic oscillator (SHO)

• Let us consider the 1D SHO with H = − ~2
2m

∂2

∂x2
+ 1

2mω
2x2 . We wish to apply the variational

principle to the problem of finding the g.s. energy and wavefunction of the SHO. For those not
familiar with variational derivatives, we give another way of obtaining the above RR ground
state variational principle.

• We first notice that the kinetic energy expectation value may be rewritten in a manifestly
positive form after an integration by parts assuming ψ(x)→ 0 as |x| → ∞

〈T 〉 = − ~2

2m||ψ||2

∫
ψ∗ψ′′dx =

~2

2m||ψ||2

∫
ψ′(x)∗ψ′(x) dx =

~2

2m||ψ||2

∫
|ψ′(x)|2 dx ≥ 0. (2)

V (x) = 1
2mω

2x2 is also non-negative, so the expectation value of energy in any state is ≥ 0

E(ψ) =
1

〈ψ|ψ〉

[∫ (
~2

2m
|ψ′(x)|2 +

1

2
mω2x2|ψ(x)|2

)
dx

]
≥ 0. (3)

The energy eigenvalues are just expectation values of the Hamiltonian in the eigenstates. So it
follows that the energy levels En (assumed discrete for convenience, it can be shown that the
SHO spectrum is indeed discrete) must also be positive. So let us order them as 0 ≤ E0 < E1 <
E2 < · · · .
• Given any unit-norm state ψ we can expand it in the orthonormal energy eigenstates |ψ〉 =∑
n cn|ψn〉 and write

〈H〉ψ =
∑
|cn|2En, where

∑
n

|cn|2 = 1. (4)

To minimize 〈H〉 , we must select |c0|2 = 1 and |cn>0|2 = 01. In other words, the state with the
least energy eigenvalue (g.s.) is the one which minimizes 〈H〉ψ !

E0 = min
||ψ||=1

〈ψ|H|ψ〉 (5)

1Though it may seem reasonable, we have not proved that the choice |cn|2 = δn,0 minimizes 〈H〉 . This is
a problem in linear programming. Let sn = |cn|2 , then 〈H〉 =

∑
n snEn with

∑
sn = 1. So 〈H〉 is a linear

function of the variables sn with non-negative coefficients, subject to the constraints 0 ≤ sn ≤ 1 and
∑
n sn = 1.

From linear programming, the minimum of 〈H〉 must occur at a boundary point of the region of allowed values
of sn . By repeated use of this fact one can show that 〈H〉 is minimal when s0 = 1 and sn≥1 = 0. For example,
if there are only two energy levels, 〈H〉 = s0E0 + (1− s0)E1 is a linear function and is clearly minimal at s0 = 1.

More generally, ∂〈H〉
∂sn

= En ≥ 0 with the slopes growing with n . So to minimize 〈H〉 we must choose the sn as
small as possible subject to the constraints and this is the above boundary point.
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2.2 Variational approximation for SHO ground state

Suppose we want to find the g.s. approximately. It is usually too hard to minimize 〈H〉ψ over
all square integrable ψ(x). By minimizing it over a restricted class of wave functions, we will
get an upper bound for the ground state energy and the best approximation to the g.s. wave
function from that restricted class.

• Let us get a variational estimate for the gs energy and wave function of the harmonic oscillator
by taking a unit norm gaussian variational ansatz/guess (use I =

∫
e−αx

2
=
√
π/α)

ψa(x) = Ae−x
2/4a2 , A =

1
√
a(2π)1/4

, a > 0 (6)

A gaussian is reasonable since we are looking for bound states and we expect the probability of
finding the particle far from the point of equilibrium to be very small. The width of the gaussian
is our variational parameter. We want to find the width ‘a ’ for which 〈H〉 is minimal. If a
is large, the potential energy will be large and if a is small, the derivative of ψ will induce a
large kinetic energy. So we expect an optimal intermediate value of a for which the energy is
minimal.

• Notice that our variational ansatz for the g.s. has no nodes (zeros at finite values of x). This
is also a feature of the g.s. of a particle in a square well. If a wave function has many nodes, it
must oscillate and have a large kinetic energy and would not minimize the energy.

• V (x) is real, so the eigenstates can be taken real, that’s why we picked a real ψa(x)

• V (x) ∝ x2 is an even function. So the energy eigenstates must be either even or odd. An odd
function would have a node, thus increasing the energy. So our ansatz was chosen as an even
function of x .

• Now 〈p2〉 = ~2
4a2

and 〈x2〉 = a2 (show this using
∫
x2e−αx

2
dx = 1

2

√
π/α3 ). Up to numerical

factors these formulae follow from dimensional analysis. Thus we get

E(a) = 〈H〉 =
〈p2〉
2m

+
1

2
mω2〈x2〉 =

~2

8ma2
+

1

2
mω2a2. (7)

The minimum of E(a) occurs when

∂E(a)

∂a
= mω2a− ~2

4ma3
= 0 ⇒ a2 =

~
2mω

. (8)

So among the gaussian wave functions, the one with least energy is

ψo(x) =
(mω
π~

)1/4
e−

mω
2~ x

2
=

√
κ

π1/4
e−

1
2
κ2x2 , κ =

√
mω

~
, A =

√
κ

π1/4
(9)

Putting this a in 〈H〉 , our variational estimate (upper bound) for the ground state energy is
E0 = 1

2~ω . It turns out that this estimate is exact, and the true ground state wave function
is as above! So one cannot reduce the energy by choosing some other functional form for our
variational ansatz. For e.g. a Lorentzian ψa(x) = A

x2+a2
leads to a larger estimate for the ground

state energy.

• We introduced κ =
√

mω
~ which is a constant with dimensions of inverse length. κ controls

the rate of decay of the position space probability distribution. The larger κ is, the less probable
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it is to find the particle far from the point of equilibrium x = 0. κ2 =
√
mk
~ is large if the force

constant k or mass is large, both of which prevent the particle from going far from x = 0. This
is true both quantum mechanically as well as classically, so this observation has nothing to do
with the size of ~ .

2.3 Variational approximation for g.s. of anharmonic oscillator

Consider the anharmonic oscillator H = p2

2m + 1
2mω

2x2 + gx4 . We wish to get a variational
upper bound for the g.s. energy using the normalized trial wave function (α is a variational
parameter.)

ψ(x) = Ae−αx
2/2, A =

(α
π

)1/4
, α > 0, g > 0,m > 0, ω > 0. (10)

1. Find the expectation value 〈H〉 in the trial state. Show that you get

〈H〉 =
~2α

4m
+
mω2

4α
+

3g

4α2
. (11)

Use I =
∫
e−αx

2
=
√
π/α ,

∫
x2e−αx

2
dx = 1

2

√
π/α3 and

∫
x4e−αx

2
dx = (3/4)

√
π/α5

2. Show that the optimal value of α is determined by the condition

f(α) =
~2

m
α3 −mω2α− 6g = 0 (12)

Argue that there is precisely one positive root α∗ of this cubic equation.

Plot f . f(±∞) = ±∞ , f(0) < 0 and f ′(0) < 0. f ′ vanishes at two points symmetrically
located on either side of the vertical axis. So f must have precisely one positive zero. Can
also arrive at this using Descartes rule of signs, there is only one change in sign of the
non-zero coefficients arranged in standard form. There may be either two non-real roots
or two more real roots which must be negative.

3. For the numerical values ~ = 1,m = 1, ω = 1, g = 1
10 find the variational estimate EV0

for g.s. energy. You may use the fact that the positive zero of α3 − α− 6g = 0 occurs at
α∗ = 1.2212 when g = 1/10. You should find EV0 = 0.56

4. Recall that the g.s. energy to first order in perturbation theory around the SHO is

EP0 =
1

2
~ω +

3g~2

4m2ω2
+ · · · (13)

For the same numerical values find the g.s. energy EP0 by 1st order perturbation theory.
Answer: EP0 = 1

2 + 3
40 = 23

40 = 0.575.

3 Perturbation theory for stationary states of time-independent Hamiltonians

In some cases, the Hamiltonian of interest can be written as H = H0 + gH1 where H0 is
‘exactly solved’ and gH1 is a ‘perturbation’. In some situations, it may be possible to treat
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the perturbation as small and develop an expansion in powers of g for the energy levels and
eigenstates of H by using those of H0 as a zeroth-order approximation. This approach is
applied for example in studying the effect of an anharmonic restoring force on a particle in an
SHO potential: here gH1 = gx4 . The hydrogen atom in a constant magnetic field gH1 = g~L · ~B
is another example. Relativistic corrections to the hydrogen atom Hamiltonian including the
spin-orbit coupling gH1 = g~L · ~S can also be treated as a perturbation. An anisotropic rigid
body can be treated as a perturbation to a rigid body with an axis of symmetry. The ground
state energy of the Helium atom can be estimated by treating the inter-electron repulsion as a
perturbation.

• There is another branch of perturbation theory that deals with time-dependent perturbations.
This is relevant, for instance, if an atom is exposed to an oscillating electromagnetic field.

• In effect the method produces an expansion for the energy levels and stationary states of
H = H0 + gH1 :

En = E(0)
n + E(1)

n g + E(2)
n g2 + . . . and ψn = ψ(0)

n + ψ(1)
n g + ψ(2)

n g2 + . . . (14)

where H0ψ
(0)
n = E

(0)
n ψ

(0)
n is the energy spectrum of the unperturbed Hamiltonian H0 .

3.1 Perturbation theory in a simple two state system

Perhaps the simplest instructive example of a perturbative expansion is for an electron spin in
a magnetic field ~B = (Bx, By, Bz). Here the Hamiltonian H = −µ ·B is

H =
g|e|~
4m

~σ · ~B =
g|e|~
4m

(
Bz Bx − iBy

Bx + iBy −Bz

)
. (15)

Here we can treat the magnetic interaction due to the field in the x− y plane as a perturbation
to the spin in the vertical magnetic field and split the Hamiltonian as H0 + H1 where (the
so-called g -factor according to Dirac’s theory of the electron is g ≈ 2)

H0 =
g|e|~Bz

4m

(
1 0
0 −1

)
and H1 =

g|e|~
4m

(
0 Bx − iBy

Bx + iBy 0

)
. (16)

In this case we may read off the energies and stationary states of H0 and treat H1 as a per-
turbation. We will develop a systematic method to calculate corrections to the energies and
wavefunctions in the next section. But this problem is so simple that we can solve it explic-
itly. To avoid writing all the physical constants, let us consider the toy hermitian Hamiltonian
H = H0 + gH1 where

H0 =

(
a 0
0 d

)
and gH1 = g

(
0 b
b∗ 0

)
. (17)

Here a, d are real and b is a complex number. g is called a coupling constant and can be
regarded as measuring the size of the perturbation.

• The eigenvalues of H0 are a and d with eigenvectors

(
1
0

)
and

(
0
1

)
respectively.

• The characteristic equation det(H − EI) = 0 allows us to calculate the two energy levels

E2 − (a+ d)E + ad− g2|b|2 = 0 ⇒ E± =
1

2

(
a+ d±

√
(a+ d)2 − 4(ad− g2|b|2)

)
. (18)
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Find the corresponding eigenvectors! So far we have made no approximation.

• To understand the nature of a perturbative expansion, let us expand E± around the eigen-
values of the unperturbed Hamiltonian using the binomial expansion for the square-root

E± =
a+ d

2
±1

2

√
(a− d)2 + 4g2|b|2 =

a+ d

2
±a− d

2

(
1 +

2g2|b|2

(a− d)2
+ · · ·

)
=

{
a+ g2|b|2

(a−d) + . . .

d− g2|b|2
(a−d) + . . .

(19)
This expansion for

√
1 + x2 is valid (converges) when |x| < 1∣∣∣∣ 2gb

a− d

∣∣∣∣ < 1 (20)

The physical interpretation is that such a perturbation series provides a good approximation only
if (1) the coupling constant g and (2) size of matrix elements of the perturbing Hamiltonian in
the eigen-basis of H0 ( |b|) are sufficiently small and (3) the difference between the unperturbed
levels a − d is sufficiently large. If the energy levels of the unperturbed H0 were degenerate,
these series expansions would not be useful. These are general features of such ‘non-degenerate’
perturbative expansions.

• However, even if H0 had degenerate energy levels a = d , we could still get a perturbation
series, but of a different sort. If a = d , going back to E± we find the exact formula

E± = a± g|b|. (21)

We see that the perturbing Hamiltonian gH1 breaks the degeneracy of unperturbed levels by
an amount proportional to g and the size of the matrix elements of H1 (namely b). This is
generally true. The degeneracy (in magnetic quantum number m) of hydrogen energy levels
can be broken by applying a constant magnetic field.

3.2 First order non-degenerate perturbation theory

More generally, suppose we split the Hamiltonian H = H0 + gH1 into an unperturbed (her-
mitian) H0 whose spectrum is known and a perturbation gH1 . For example H0 could be the
Hamiltonian of Helium (2 electrons and α-particle) ignoring inter-electron repulsion while gH1

is the Coulomb repulsion between electrons. Perturbation theory may be used to estimate the
separation between ortho- and para-helium energy levels.

We well attempt to obtain the energy levels and eigenstates of H as series in powers of g

En = E(0)
n + gE(1)

n + g2E(2)
n + · · · and ψn = ψ(0)

n + gψ(1)
n + g2ψ(2)

n + · · · (22)

where H0ψ
(0)
n = E

(0)
n ψ

(0)
n . Our aim is to find the first order corrections E

(1)
n and ψ

(1)
n . Roughly,

we might expect that any change to ψ
(0)
n that is in the direction of ψ

(0)
n would not change the

physical state and can be ignored. In other words, we expect to be able to take ψ
(1)
n orthogonal

to ψ
(0)
n . This is indeed the case.

More precisely, let us assume that the unperturbed states are normalized 〈ψ(0)
n |ψ(0)

n 〉 = 1 and
choose to normalize the perturbed eigenstates as well. To order g , the normalization condition
reads

1 ≈ 〈ψ0
n + gψ1

n|ψ0
n + gψ1

n〉 = 〈ψ0
n|ψ0

n〉+ g〈ψ1
n|ψ0

n〉+ g〈ψ0
n|ψ1

n〉+O(g2) ⇒ <〈ψ(1)
n |ψ(0)

n 〉 = 0 (23)

7



So the real part of the inner product vanishes. In fact, by a choice of phase, we can also take

the imaginary part of the inner product to vanish, i.e. 〈ψ(0)
n |ψ(1)

n 〉 = 0!2

• Now the eigenvalue problem for H becomes

(H0+gH1)
(
ψ(0)
n + gψ(1)

n + g2ψ(2)
n + · · ·

)
=
(
E(0)
n + gE(1)

n + g2E(2)
n + · · ·

)(
ψ(0)
n + gψ(1)

n + g2ψ(2)
n + · · ·

)
.

At the lowest order g0 this reduces to the unperturbed eigenvalue problem H0ψ
(0)
n = E

(0)
n ψ

(0)
n .

At O(g),
H0ψ

(1)
n +H1ψ

(0)
n = E(0)

n ψ(1)
n + E(1)

n ψ(0)
n . (26)

To isolate E
(1)
n let us take the inner product with ψ

(0)
n ,

〈ψ(0)
n |H0|ψ(1)

n 〉+ 〈ψ(0)
n |H1|ψ(0)

n 〉 = E(0)
n 〈ψ(0)

n |ψ(1)
n 〉+ E(1)〈ψ(0)

n |ψ(0)
n 〉. (27)

Using orthogonality of ψ
(0)
n and ψ

(1)
n and hermiticity of H0 we get

E(1)
n =

〈ψ(0)
n |H1|ψ(0)

n 〉
〈ψ(0)

n |ψ(0)
n 〉

⇒ En = E(0)
n + g

〈ψ(0)
n |H1|ψ(0)

n 〉
〈ψ(0)

n |ψ(0)
n 〉

+ . . . . (28)

So to first order in perturbation theory, the correction to energy levels is given by the expectation
value of the perturbing Hamiltonian in the unperturbed state.

• Remark: As a consequence of the variational principle, we notice that first order perturbation
theory never underestimates the ground state energy:

E1st order
0 = E0

0 + g〈ψ0
0|H1|ψ0

0〉 = 〈ψ0
0|H0 + gH1|ψ0

0〉 ≥ E0. (29)

Here the exact ground state satisfies Hψ0 = E0ψ0 . By the variational principle E0 is the
minimum of the expectation value of the Hamiltonian

E0 = min||ψ||=1〈ψ|H0 + gH1|ψ〉. (30)

3.2.1 First order correction to the eigenstates

• To find ψ(1) , it suffices to know its components in any basis. A convenient basis is the

orthonormal basis of unperturbed energy eigenstates ψ
(0)
m . So we wish to express

|ψ(1)
n 〉 =

∑
m

〈ψ(0)
m |ψ(1)

n 〉 |ψ(0)
m 〉. (31)

2Suppose =〈ψ(0)|gψ(1)〉 = cg for some constant c . Then

〈ψ(0)|gψ(1)〉 = icg ≈ eicg − 1. (24)

Now we may split ψ into a part parallel to ψ(0) and a part perpendicular to it. At order g

|ψ〉 = |ψ(0)〉+ 〈ψ(0)|gψ(1)〉|ψ(0)〉+ g|ψ(1)
⊥ 〉+ · · · ≈ eicg|ψ(0)〉+ g|ψ(1)

⊥ 〉+ · · · (25)

By multiplying |ψ〉 by the phase e−icg (which does not change its normalization) we may get rid of the phase
factor from the first term without affecting the second term to order g . Thus, we may assume that the first order
correction to the eigenstates are orthogonal to the unperturbed eigenstates 〈ψ(0)

n |ψ(1)
n 〉 = 0.
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The aim is to find the coefficients in this expansion. We already saw in the last section that

ψ
(1)
n can be chosen not to have any component in the direction of ψ

(0)
n , so we restrict the sum

above to run over m 6= n .

• To find ψ
(1)
n we return to the eigenvalue equation at order g

H0ψ
(1)
n +H1ψ

(0)
n = E(0)

n ψ(1)
n + E(1)

n ψ(0)
n . (32)

Taking the inner product with the mth eigenstate of the unperturbed Hamiltonian we get

〈ψ(0)
m |H0ψ

(1)
n 〉+ 〈ψ(0)

m |H1ψ
(0)
n 〉 = 〈ψ(0)

m |E(0)
n ψ(1)

n 〉+ 〈ψ(0)
m |E(1)

n ψ(0)
n 〉

⇒ E(0)
m 〈ψ(0)

m |ψ(1)
n 〉+ 〈ψ(0)

m |H1|ψ(0)
n 〉 = E(0)

n 〈ψ(0)
m |ψ(1)

n 〉+ E(1)
n 〈ψ(0)

m |ψ(0)
n 〉. (33)

In the last section, we studied the consequences of this equation when m = n and concluded

that 〈ψ(0)
n |ψ(1)

n 〉 = 0, i.e., ψ
(1)
n has no component in the direction of ψ

(0)
n . To find its remaining

components, we assume m 6= n and that the unperturbed levels are non-degenerate and get

〈ψ(0)
m |ψ(1)

n 〉 =
〈ψ(0)

m |H1|ψ(0)
n 〉

E
(0)
n − E(0)

m

for m 6= n. (34)

Thus assuming E
(0)
m 6= E

(0)
n for m 6= n , we find

ψn = ψ(0)
n + gψ(1)

n , where ψ(1)
n =

∑
m6=n

〈ψ(0)
m |H1|ψ(0)

n 〉 ψ(0)
m

E
(0)
n − E(0)

m

. (35)

So the first order correction to the unperturbed eigenstates is a linear combination of unper-
turbed eigenstates, weighted by the quotient of the matrix elements of H1 between unperturbed

states and the energy differences E
(0)
n − E

(0)
m . If the unperturbed energy levels E

(0)
n = E

(0)
m

were degenerate, this formula would run into difficulties if 〈ψ(0)
m |H1|ψ(0)

n 〉 6= 0. As long as the
unperturbed energy level of interest (n) is non-degenerate, the terms in this sum make sense
(for instance, other levels could be degenerate and the formula would still work). So we still
need to develop a formula for perturbative corrections to energy levels that are degenerate. We
will do this shortly.

• Note also that for fixed n the terms in this sum over m eventually involve division by

successively larger energy differences. So we might expect the projections of ψ
(1)
n on the highly

excited unperturbed states ψ
(0)
m to be negligible, provided the matrix elements in the numerator

〈ψ(0)
m |H1|ψ(0)

n 〉 do not grow too fast with growing m .

3.3 Second order correction to the energy

At second order in g the eigenvalue equation becomes

H0ψ
2
n +H1ψ

1
n = E0

nψ
2
n + E1

nψ
1
n + E2

nψ
0
n. (36)

As before, we look at this equation in the orthonormal basis of unperturbed eigenstates by
taking the inner product with ψ0

m . Using hermiticity of H0 we get

〈ψ0
m|H1ψ

1
n〉 = E2

nδmn + E1
n〈ψ0

m|ψ1
n〉 (37)
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Specializing to the case m = n allows us to extract E2
n since 〈ψ0

n|ψ1
n〉 = 0 by a choice of phase:

E2
n = 〈ψ0

n|H1ψ
1
n〉 (38)

Now we substitute the known expression

ψ1
n =

∑
m6=n

〈ψ0
m|H1|ψ0

n〉ψ0
m

E0
n − E0

m

(39)

to get

E(2)
n =

∑
m6=n

〈ψ0
m|H1|ψ0

n〉〈ψ0
n|H1|ψ0

m〉
E0
n − E0

m

=
∑
m6=n

∣∣〈ψ0
m|H1|ψ0

n〉
∣∣2

E0
n − E0

m

(40)

We notice that the second order correction to the ground state energy E
(0)
0 is always negative.

This is because the numerators are all absolute squares while the denominators are negative
E0

0 − E0
m < 0

E(2)
gs ≤ 0. (41)

Summary: To second order in the coupling constant, the energy levels are

En(g) = E0
n + g〈ψ0

n|H1|ψ0
n〉+ g2

∑
m6=n

∣∣〈ψ0
m|H1|ψ0

n〉
∣∣2

E0
n − E0

m

+ . . . (42)

3.4 Example: Point-like scatterer in a square-well potential

Let us illustrate perturbative approximations to energy levels with the example of a particle in
a 1-dimensional infinite square-well, perturbed by a repulsive delta function. H = H0 + gH1

H0 = − ~2

2m

d2

dx2
+ V (x), gH1 = gδ

(
x− L

2

)
, V (x) =

{
0 if 0 < x < L

∞ otherwise
(43)

g has dimensions of Energy × L . The unperturbed Hamiltonian is parity even about x =
L/2, and so the unperturbed energy eigenstates are either even or odd about x = L/2. The
unperturbed spectrum is non-degenrate

E(0)
n =

n2π2~2

2mL2
, ψ(0)

n =

√
2

L
sin
(nπx
L

)
, n = 1, 2, 3, . . . . (44)

n = 1, 3, 5 correspond to the even states and n = 2, 4, 6 . . . to the odd parity states. The first
order correction to the energies

E(1)
n = 〈ψ(0)

n |δ(x− L/2)|ψ(0)
n 〉 =

2

L
sin2(nπ/2) =

1− (−1)n

L
(45)

vanishes for the odd parity states since they vanish where the delta scatterer is located. Thus
within the approximation of first order perturbation theory

En =
n2π2~2

2mL2
+

2g

L
δn,odd (46)
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The second order correction to energies is

E(2)
n =

∑
p6=n

|〈ψ(0)
p |H1|ψ(0)

n 〉|2

E
(0)
n − E(0)

p

=

∞∑
n 6=p=1

sin2(pπ/2) sin2(nπ/2)8m

(n2 − p2)π2~2
=

2m

π2~2
∞∑

n 6=p=1

1− (−1)n − (−1)p + (−1)n+p

n2 − p2 .

(47)

Specializing we find that the second order correction to the ground state energy is negative and
equal to3

E
(2)
1 = − 8m

π2~2

[
1

32 − 1
+

1

52 − 1
+

1

72 − 1
+ · · ·

]
= − 8m

π2~2

∞∑
n=1

1

4n(n+ 1)
= − 2m

π2~2
(48)

Thus to second order in perturbation theory, the ground state energy of the perturbed Hamil-
tonian is

E1 =
π2~2

2mL2
+

2g

L
− 2mg2

π2~2
+O(g3) (49)

Check that the dimensions are correct.

• To understand the quantitative accuracy of this perturbative approximation, let us compare
with the exact ground state energy.

• To find the exact energy levels, we solve the Schrodinger equation in the above potential. The
boundary conditions are

ψ(x ≤ 0) = ψ(x ≥ L) = 0, ψ

(
L

2

+)
= ψ

(
L

2

−)
, ψ′

(
L

2

+)
− ψ′

(
L

2

−)
=

2mg

~2
ψ

(
L

2

)
(50)

Like H0 , the total H is also even about L/2, so its eigenstates can be taken as either even or
odd. The odd parity states n = 2, 4, 6, · · · of the unperturbed H0 automatically satisfy these
boundary conditions and are seen to be eigenstates of H since they satisfy the free particle
Schrodinger equation both to the left and right of the delta scatterer. But the ground state of
H is an even parity state which we now determine.

• For x < L/2 the solution of the Schrodinger eigenvalue problem with energy E = ~2k2/2m
is ψ = A sin kx+B cos kx , imposing ψ(0) = 0 we get ψ = A sin kx . Thus, the even parity wave
functions are

ψeven(x) =

{
A sin kx if 0 ≤ x ≤ L/2
A sin(k(L− x)) if L/2 ≤ x ≤ L.

(51)

A will be fixed by normalization and it remains to find the allowed values of k . The continuity
of ψ at L/2 is guaranteed but the condition on discontinuity of the derivative gives us the
condition

−Ak cos(kL/2)−Ak cos(kL/2) =
2mg

~2
A sin(kL/2) (52)

This leads to the transcendental equation

− ~2k

mg
= tan

(
kL

2

)
or − κ = α tanκ, where α =

mgL

2~2
> 0 and κ =

kL

2
. (53)

The allowed energies correspond to solutions κ 6= 0 of this transcendental equation. The ground
state corresponds to the smallest non-trivial solution π/2 ≤ κ1 ≤ π as is seen graphically.

3The series is seen to be telescoping when we use partial fractions 1
n(n+1)

= 1
n
− 1

n+1
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• For a quantitative test of perturbation theory, let us restrict to the ground state and use the
values

~ = 1,m = 2, L = 1, g = 1, α = 1. (54)

In this case we find that κ1 ≈ 2.02876 and k1 ≈ 4.06 and

Eexact1 =
~2k2

1

2m
≈ 4.11586 (55)

• On the other hand, our perturbative approximation for the ground state energy is

E1 =
π2~2

2mL2
+

2g

L
−2mg2

π2~2
+O(g3) =

π2

4
+2− 4

π2
+· · · = 2.4674+2−.405+· · · = 4.06212+· · · (56)

Thus we see that second order perturbation theory gives an estimate of the ground state energy
4.062 which is within 1.3% of the exact ground state energy ≈ 4.116! If g were smaller, the
accuracy of perturbation theory would be even better. Moreover we notice that first order
perturbation theory (E1st order

1 ≈ 4.46) overestimates the energy of the g.s. while the second
order correction is negative.

3.5 First order degenerate perturbation theory

Suppose H = H0 + gH1 and we wish to find the correction to a degenerate energy level E
(0)
n

of H0 . Since it is degenerate there are several linearly independent eigenvectors of H0 with
eigenvalue E0

n . In fact, H0 is diagonal in any basis within the E0
n eigenspace. For convenience

let us work with orthonormal bases and denote one such orthonormal basis by ψ0
nα where

α = α(n) enumerates the degenerate levels

H0ψ
0
nα = E0

nψ
0
nα (57)

Of course, ψnα are not uniquely determined by H0 . We will see that the perturbation H1

helps us to determine the ‘right’ basis within the degenerate subspace. Moreover, we expect the
perturbation H1 to break the degeneracy among the unperturbed levels, since it was found that
application of a magnetic field ‘splits’ the degenerate energy levels of hydrogen.

• We wish to expand the energies and eigenstates of H in a series in g

Enα = E0
n + E1

nαg + E2
nαg

2 + . . . ψnα = ψ0
nα + ψ1

nαg + ψ2
nαg

2 + . . . (58)

Now we can’t just take over the formula for E1
n = 〈ψ0

n|H1|ψ1
n〉 from non-degenerate perturbation

theory since we do not know which of the states ψ0
nα to calculate this expectation value in.

• The eigenvalue problem Hψnα = Enαψnα is (the super-scripts on ψ and E are not powers!)

(H0 + gH1)
(
ψ0
nα + gψ1

nα + g2ψ2
nα + · · ·

)
=
(
E0
nα + gE1

nα + g2E2
nα + · · ·

) (
ψ0
nα + gψ1

nα + g2ψ2
nα + · · ·

)
.

At order g0 this just says that α labels the degenerate levels with energy E0
n :

H0ψ
0
nα = E0

nψ
0
nα. (59)

Due to the degeneracy, we don’t know the states ψnα uniquely, but without much loss of
generality, let us suppose the unperturbed eigenstates are orthonormal

〈ψ0
mβ|ψ0

nα〉 = δαβδmn. (60)
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At order g1 we get
H0ψ

1
nα +H1ψ

0
nα = E0

nψ
1
nα + E1

nαψ
0
nα (61)

As before, let us take the inner product with the unperturbed states ψ0
mβ . Using hermiticity of

H0 and orthonormality of unperturbed states we get

〈ψ0
mβ|H1|ψ0

nα〉 = E1
nαδmnδαβ +

(
E0
n − E0

m

)
〈ψ0

mβ|ψ1
nα〉. (62)

To find E1
nα let us take m = n , i.e., focus on a particular degenerate eigenspace of H0 . Then

we have
〈ψ0

nβ|H1|ψ0
nα〉 = E1

nαδαβ. (63)

Bear in mind that we have still not fixed the basis ψ0
nα within the E0

n degenerate eigenspace,
and nor do we know E1

nα . This interesting equation determines them both. It says that the
basis ψ0

nα is one in which H1 is diagonal, and the diagonal entries are the first order corrections
to the energy levels E1

nα . In other words, E1
nα are the eigenvalues of H1 restricted to

the degenerate E0
n eigenspace of H0 . And ψ0

nα are the corresponding eigenvectors.
This is the main result of 1st order degenerate perturbation theory.

3.5.1 Simplest example of Zeeman effect

The Zeeman effect refers to the experimentally observed shift in atomic energy levels in the
presence of a uniform external magnetic field. Let us consider a very simple example of this
effect4, where a hydrogen atom is placed in an external magnetic field. The magnetic dipole
interaction energy is

Hint = −µ ·B =
( e

2m
~L+

e

m
~S
)
·B. (64)

Now the unperturbed Hamiltonian is just the hydrogen atom Hamiltonian H0 = ~p2

2m −
e2

4πε0r
whose eigenstates are |nlml〉 × a spin wave function which we may take to be |sms〉 where
s = 1

2 and ms = ±1
2

H0|nlmlsms〉 = − R
n2
|nlmlsms〉, n = 1, 2, . . . , l = 0, 1, . . . n−1, m = −l, · · · , l, ms = −1

2
,
1

2
(65)

where R = −me4/2~2 = −13.6 eV is the Rydberg energy. The energy levels are 2n2 -fold
degenerate. We wish to find the correction to the energy levels due to the magnetic dipole
interaction with the uniform external magnetic field, H = H0 + Hint . Let us assume that the
magnetic field is oriented along the z direction, B = Bz ẑ . Now it is a fortunate circumstance
that

Hint =
e

2m
(Lz + 2Sz)Bz (66)

is diagonal in the basis of unperturbed energy levels:

Hint|nlmlsms〉 =
e~
2m

(ml + 2ms)Bz|nlmlsms〉 (67)

4We ignore here the effect of the internal magnetic field (due to the motion of the electron in the electric field
of the nucleus).
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So the diagonalization of the perturbed Hamiltonian within each degenerate subspace of H0 has
already been done. The exact energy eigenstates of H0 +Hint are |nlmlsms〉 with the energies

(H0 +Hint) |nlmlsms〉 =

(
− R
n2

+
e~
2m

(ml + 2ms)Bz

)
|nlmlsms〉 (68)

Thus the unperturbed states with different values of ml , ms , which were degenerate in energy
are now split in the presence of an external magnetic field. ml is therefore called the magnetic
quantum number.

4 Semiclassical (WKB) approximation

4.1 Semi-classical regime and slowly varying potentials

• Named after Wentzel, Kramers and Brillouin. We wish to approximately solve the time-
independent Schrödinger equation for stationary states that are nearly classical.

− ~2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x). (69)

To do this, we wish to exploit the knowledge of some solution of the classical (Hamilton/Newton)
equations of motion. In stationary perturbation theory, the zeroth order was a solution of
the unperturbed problem. In the semi-classical approximation, the zeroth order is typically a
classical solution (in an appropriate form). Classically, the particle is confined to the region x
where E ≥ V (x). So we focus on this region and postpone phenomena like tunneling through
barriers, which are classically forbidden.

• Let us recall which (stationary) states behave more classically than others. If the potential is
a constant (as in an infinite square-well of length L in which V = 0), ψ(x) = Aeikx + Be−ikx

where k =

√
2m(E−V )

~ and the boundary conditions imply that the stationary states are ψn(x) =√
2
L sin nπx

L . Classically, a particle with non-zero speed spends on average equal times in all

subintervals of [0, L] of equal length, as it bounces back and forth against the walls. This
uniform distribution is approximated by the probability distribution |ψ(x)|2 of highly excited
states. So the classical limit here is the limit of high energies (En � V ). This is also the limit
of large wave number kn = nπ

L compared to 1
L . This is also the limit where the de Broglie wave

length λdB = h√
2m(E−V )

= 2π
kn

= 2L
n is small compared to L .

• Notice that L here is the length scale over which the potential changes significantly. More
generally, if V = V (x) we say we are in the semi-classical regime if the de Broglie wave length
is small compared to the length scale over which the potential varies significantly.

• This is the case, for example for a highly excited state of a particle in an SHO potential. As
long as we stay away from the classical turning points, the wave function oscillates rapidly and
its wavelength is small. Near the turning points, λdB diverges and the quantum effects have to
be treated more carefully.

• If the potential is varying slowly with x , we may still surmise that the wave function is of
the form Ae±ipx/~ but that p = h/λ is no longer the constant ~k , but varies slowly with x . In
other words, this suggests the ansatz ψ ∼ eiS(x)/~ where for a constant potential, S(x) = px =

14



±x
√

2m(E − V ). Before we work out the consequences of this ansatz, let us say more on what
we mean by the semi-classical regime and what it means for the potential to be slowly varying.

• If V = V (x), we require that the wavelength is small compared to the length scale over which
the potential changes by an amount of the order of the kinetic energy of the particle5. Indeed,
suppose the potential changes by p2/2m over a length L , then6

p2

2m
≈ δV ≈

∣∣∣∣dVdx
∣∣∣∣L ⇒ L ≈ p2

2m

∣∣∣∣dVdx
∣∣∣∣−1

(70)

Now

λ� L ⇒ 2mλ

p2

∣∣∣∣dVdx
∣∣∣∣� 1 or

∣∣∣∣2mhp3

dV

dx

∣∣∣∣� 1 or

∣∣∣∣dVdx
∣∣∣∣� √2m

h
|E − V (x)|

3
2 (71)

This is our condition for semi-classical behavior. It is a condition on the potential, that also
involves the energy and depends on x . It is easier to satisfy this condition for a fixed potential
and x , if we make E bigger: excited states behave more classically. It is easier to satisfy (for
fixed E ) where dV/dx is ‘small’. The criterion involves x , so even for fixed V (x) and E there
may be some locations where the behavior is semi-classical (E � V (x)), and other locations
where it is not semi-classical (E ≈ V (x)). Also, the ‘smaller’ ~ is, the easier it is to satisfy this
condition so in a sense ~→ 0 is the classical limit.

• Let us re-derive this condition by thinking in terms of the de Broglie wavelength. For a
non-constant V (x), the de Broglie wavelength changes with x . The concept of a wavelength is
useful if there are many oscillations with roughly the same wavelength. This is the case if the
change in wavelength (over a length of one wavelength) is small compared to the wavelength
itself. The change in wavelength over a distance δx is

δλ =
dλ

dx
δx. (72)

So putting δx = λ , the change in wavelength over a wavelength is δλ = dλ
dxλ . Thus we

require
∣∣ δλ
λ

∣∣ =
∣∣dλ
dx

∣∣ � 1. We can express this as a condition on the potential using λ =

h/
√

2m(E − V (x)). ∣∣∣∣δλλ
∣∣∣∣ =

∣∣∣∣mhp3

dV

dx

∣∣∣∣� 1 (73)

This is the same condition for semi-classicality as obtained earlier. So we can either say the
potential is slowly varying or the de Broglie wavelength is slowly varying.

5We need to decide what we mean by potential ‘changes appreciably’. The change in the potential has
dimensions of energy and the KE of the particle is a reasonable scale of energy to compare with. Indeed, near the
turning points of the SHO, the KE is small, so the length scale over which the potential changes by an amount
of the order of the KE is quite small. On the other hand, far away from the turning points the KE is large (for
a highly excited state), and the length scale over which the potential changes appreciably compared to the KE is
large. So by this definition, the SHO potential is slowly-varying away from the turning points for a highly excited
state, and not slowly-varying near the turning points. The corresponding statement about the smallness/largeness
of λdB is a consequence since λ = h/

√
2m(E − V (x)) is determined by E and V (x) .

6In approximating δV by its first derivative, we assume that L is not so large that this approximation breaks
down.

15



4.2 Method of variation of constants for a slowly varying potential

• We motivated the ansatz ψ = AeiS(x)/~ in seeking a solution of the time-independent
Schrödinger equation in the semi-classical regime. Without further assumptions, this ansatz
(for complex S and real A), does not involve any approximation, it is merely a change of
dependent variable from ψ(x) to S(x), in terms of which the eigenvalue problem becomes

− ~2

2m
ψ′′ = (E − V )ψ ⇒ − i~

2m
S′′ +

1

2m
(S′)2 + V (x) = E. (74)

Now we exploit the slowly varying nature of V (x) to assume that S′(x) is slowly varying7 so
that we may ignore S′′(x) and approximate the SE by

1

2m

(
∂S

∂x

)2

+ V = E (75)

Notice that this approximation could also be obtained by letting ~ → 0 (assuming S(x) has
a finite limit as ~ → 0), more on this later. Moreover, the resulting equation is the time-
independent Hamilton-Jacobi equation of classical mechanics for the distinguished generating
function S of a canonical transformation S(x, P, t) = S(x, P ) − Et from ‘old’ coordinates x, p
to new coordinates X,P in which the new Hamiltonian K(X,P ) = H(x, p) + ∂S

∂t = 0 van-
ishes identically. Note that the Hamiltonian appearing in the Schrödinger equation is the old
Hamiltonian H , not K . Moreover, even though K = 0, this does not mean that the quantum
mechanical energy levels are all zero, K is not a unitary transform of H , they do not have the
same spectra. It is just that in the new coordinates (Q = ∂S

∂P and P ), the classical dynamics

is as simple as it could be since X and P are both constants of motion Ẋ = ∂K
∂P = 0 and

Ṗ = −∂K
∂X = 0. All the complications of the original Hamiltonian have been dumped in the

transformation from old coordinates (x and p = ∂S
∂x ) to new coordinates (X and P ). The

generating function S(x) in the above H-J equation in fact also depends on the new momenta
P , though it is not apparent from (75). This dependence enters through the dependence of S
on the constants of integration resulting from solving the time-dependent H-J partial differential
equation. The constants of integration can be taken as the constant new momenta.

• In our context, we write the H-J equation in the form S′(x)2 = p2 and integrate to get

S(x)− S(x0) = ±
∫ x

x0

p(x′) dx′ where p(x) =
√

2m(E − V (x)). (76)

Thus, our crude approximation for the wave function in the semi-classical regime is essentially
the exponential of an abbreviated action integral8

ψ(x) = Ae
i
~
∫ x
x0
p(x′) dx′

+Be
− i

~
∫ x
x0
p(x′) dx′

. (77)

• We will improve on this approximation shortly. But even this crude approximation leads
to some interesting consequences such as a simple case of the Bohr-Sommerfeld quantization
condition.

7For a constant potential S′(x) = ~k is a constant, so now we imagine that this earstwhile ‘constant’ varies
with x .

8By absorbing a phase and its conjugate into A and B , the limit of integration x0 may be set equal to the
left turning point of the classical trajectory.
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• Suppose a particle moves in the 1 dimensional potential V (x) which becomes infinite for x < 0
and x > L but is arbitrary for 0 ≤ x ≤ L . Then the approximate wave function satisfying the
boundary condition ψ(0) = 0 is

ψ(x) ≈ A sin

(
S(x)

~

)
where S(x) =

∫ x

0
p(x′) dx′. (78)

The boundary condition ψ(L) = 0 then becomes S(L) = nπ~ which is the Bohr quantization
condition ∮

p(x′) dx′ = 2

∫ L

0
p(x′) dx′ = nh. (79)

Use this condition to find a semi-classical approximation to the square-well energy levels.

• Let us continue with the theme of making constants vary. A simple way of improving on this
approximation is to suppose that both the amplitude and phase are slowly varying functions.
Let us put ψ(x) = A(x)eiS(x)/~ in the SE, where we now suppose that both A(x) and S(x) are
real. We get

− ~2

2m

(
A′′ +

i

~
(
2A′S′ +AS′′

)
− AS′2

~2

)
+ V (x)A(x) = EA(x). (80)

The real part gives us

− ~2

2m

(
A′′ − AS′2

~2

)
= (E − V (x))A(x) (81)

which reduces to the time-independent H-J equation, if we ignore the second derivative of A(x).
The solution is S = ±

∫ x
p(x′) dx′ as before. The imaginary part gives us the condition

2A′S′ + AS′′ = 0 which means (A2S′)′ = 0 or A(x) = ± C√
S′

= ± C√
p(x)

for some constant

C . The approximate wavefunction is

ψ(x) ≈ C1√
p(x)

e
i
~
∫ x p(x′) dx′ + C2√

p(x)
e−

i
~
∫ x p(x′) dx′ where p(x) =

√
2m (E − V (x)). (82)

This is already a better approximation. The contributing amplitudes are inversely proportional
to
√
p(x). So aside from interference effects, the particle is less likely to be found in a place

where its classical velocity is large, as we observed for a particle near the equilibrium point in
an SHO potential.

• It is possible to improve on this approximation by developing a systematic semi-classical
expansion that incorporates effects of more rapid variation in the potential.

4.3 Examples and features of the semi-classical limit ~→ 0

• To get the Hamilton-Jacobi equation of classical mechanics from the Schrödinger equation,
we let ~ → 0 after making the ansatz ψ = AeiS/~ . So we should expect classical behaviour to
emerge in the limit ~→ 0.

• To reinforce this idea, let us look at the gaussian wave packet for a free particle in this limit.
The probability density of a gaussian wave packet is

P (x, t) = |ψ(x, t)|2 =
1√

2πa(t)
e
−(x− potm )

2

2a(t)2 where a(t) = a

√
1 +

t2

τ2
and τ =

2ma2

~
(83)

17



τ is the characteristic time scale over which the wave packet broadens. The mean momentum of
this wave packet is 〈p〉 = po = ~k0 and the mean position is 〈x〉 = pot

m . We take the limit ~→ 0
holding po fixed (i.e. the limit of large wave number ko = po

~ →∞). As ~→ 0, τ →∞ and the
wave packet does not broaden out. The dispersive effects of wave mechanics die out as ~ → 0
and the object behaves like a classical particle of fixed size a . To model a classical point-like
particle, we could further let a→ 0 and get the probability density P (x, t) = δ (x− pot/m) as
expected of a free point-like particle moving at velocity po/m .

• The limit ~→ 0 is a very convenient way of approaching the classical limit. ~ is a dimensional
constant, so what we mean by ~→ 0 is that certain physical quantities with dimensions of action
are very large compared to ~ . In the above example of a free particle gaussian wave packet,
the relevant quantity with dimensions of action is 2ma2

t . So the classical limit is the one where
we consider times t much shorter than the time-scale τ for quantum mechanical dispersive
broadening of the wave packet.

• E.g. 3. For highly excited states of the harmonic oscillator, the quantity En
ω = ~(n + 1

2)
with dimensions of action is large compared to ~ . These states behave semi-classically in many
respects.

• E.g. L2 eigenstates of a rigid body with very large angular momentum quantum number
l � 1 behave semi-classically, the magnitude of their total angular momentum

√
~2l(l + l) is

the quantity with dimensions of action, that is large compared to ~ .

• Spin is somewhat different from angular momentum. A given rigid body or atom can be
in states of very different angular momentum quantum number l . So letting ~ → 0 and
simultaneously l→∞ while holding the classical quantity |~L| =

√
~2l(l + 1) fixed is a classical

limit. On the other hand, an electron is always a spin s = 1
2 particle, so for an electron, the

eigenvalue of S2 is always 3~2/4 which is not large compared to ~2 . So it does not make direct
sense to let the spin quantum number s of an electron take any value other than 1

2 , leave alone
let it go to infinity.

• However, the limit ~ → 0 is not a simple one. The wave function of a free particle ψ(x) =
Aeipx/~ does not have a good classical limit ~→ 0, holding the classically meaningful quantities
x, p fixed. Indeed, the wave function has an essential singularity as ~→ 0. However, −i~ logψ
does have a good limit as ~→ 0, it tends to the abbreviated action px for a trajectory between
positions 0 and x .

• In the case of the SHO, the stationary states are

ψn(x) =
(mω
π~

)1/4 1√
2nn!

Hn

(√
mω

~
x

)
e−

mωx2

2~ (84)

Here too ψ(x) has an essential singularity at ~ = 0, but ~ logψ(x) has a finite limit −mωx
2

2 as
~→ 0.

4.4 Semi-classical expansion in powers of ~

• For a general potential, the above examples suggest it isn’t a good idea to look for an expansion
of ψ(x) in powers of ~ around a ‘classical wave function’, since such a thing does not even exist
for a free particle. It is better to make the ansatz ψ = AeiS(x)/~ and try to expand S(x) in
powers of ~ . Thus we will seek a solution of the time-independent SE in the form ψ = AeiS(x,~)/~
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where S(x) is a (possibly complex) function of x depending on ~ and A is a constant9. Then

ψ′(x) =
iS′

~
ψ(x), ψ′′(x) =

(
iS′′

~
− S′2

~2

)
ψ(x) (85)

and the SE becomes

− ~2

2m

(
iS′′

~
− S′2

~2

)
+ V (x) = E (86)

Now we suppose S(x) is expanded in a series in ~

S(x) = S0(x) + ~S1(x) + ~2S2(x) + . . . (87)

In effect, we are assuming that S(x) has a finite limit as ~→ 0. This is true for the free particle
as well as for the highly excited states of many problems we have solved (SHO, square well,
delta potential). In fact it is true even for low lying states of many of the problems we have
solved (like the SHO above). However, it is not always the case that S(x, ~) has a finite limit
as ~ → 0. Not all states are semi-classical. This is especially true for low lying states such as
the ground state of the δ potential well or the hydrogen atom, where

ψ0(x) =

√
mg

~
e−mg|x|/~

2
and ψ100(x) =

1√
πa3

e
− me2r

4πεo~2 where a =
4πεo~2

me2
. (88)

For both these ground states, ~ logψ does not have a finite limit as ~→ 0, though ~2 logψ has
a finite limit. In both these cases, we anticipate that the above semi-classical approximation
may not be accurate. On the other hand, the semi-classical expansion will be seen to be a good
approximation in situations where our criterion for the semi-classical regime (slowly varying
potential or de Broglie wavelength) is satisfied. In those situations, we may use solutions of the
classical HJ equation to obtain accurate semi-classical wave functions.

• Note that we are not claiming that the expansion of S(x, ~) in powers of ~ is convergent. This
is true for the free particle where S(x) = px . But for most potentials, even in the semi-classical
regime, the expansion S(x, ~) = So+S1~+S2~2 + · · · is divergent. Nevertheless, it does provide
an excellent asymptotic approximation in many cases.

• Equating coefficients of like powers of ~ , we get a sequence of differential equations for Sn .
At order ~0 we recover the time-independent H-J equation, which is the non-linear differential
equation

S′0(x)2

2m
+ V (x) = E (89)

with solution S0(x) = ±
∫ x
x0

√
2m(E − V (x′)) dx′ = ±

∫ x
x0
p(x′) dx′ . This is called the Eikonal

approximation or the classical approximation. S0 is called the Eikonal or (abbreviated) action
or Hamilton’s principal function.

• At order ~ we get a linear equation for S1 , into which we substitute the known S′0 = p(x):

S′1(x)S′0(x) =
i

2
S′′0 ⇒ S′1(x) =

i

2

S′′0
S′0

=
i

2
(logS′0)′ =

i

2
(log p(x))′ ⇒ S1 =

i

2
log p(x) + const.

9We were in effect beginning to do this when we previously made the ansatz ψ(x) = A(x)eiS(x)/~ =

e
i
~ (S(x)−i~ logA(x)) .
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Thus we find at this order of approximation

ψ(x) ≈ A1√
p(x)

e
i
~
∫ x
x0
p(x′) dx′

+
A2√
p(x)

e
− i

~
∫ x
x0
p(x′) dx′

. (90)

This matches our earlier result. But the present method is more systematic and allows us to
find further quantum corrections around the classical limit! What is more, this method can also
be applied to regions which the classical trajectory is forbidden from exploring (e.g. tunneling
through a barrier).

• Let us find a condition for the validity of the eikonal approximation. Recall that we found
upon substituting S = S0 + ~S1 + · · · and ψ = eiS/~ in the Schrodinger eigenvalue problem

(S′o)
2 + ~(2S′oS

′
1 − iS′′o ) +O(~2) = 2m(E − V (x)). (91)

Now for the Eikonal approximation to be good, the order of magnitude of the terms of order ~0

must be large compared to that of the terms of order ~ . |(So)′2| can be taken as the order of
magnitude of the constant terms in ~ and |i~S′′o | the order of magnitude of the terms of linear
in ~ . So the condition is

|(So)′2| � |~S′′o | or

∣∣∣∣~S′′oS′2o

∣∣∣∣� 1 (92)

This is the same as our earlier criterion for the semi-classical regime, that the potential or de
Broglie wavelength be slowly varying

∣∣dλ
dx

∣∣� 1:

λ(x) =
h

p(x)
=

h

S′0
⇒

∣∣∣∣dλdx
∣∣∣∣ =

∣∣∣∣hS′′0S′20

∣∣∣∣� 1 (93)

4.5 Estimation of Tunneling amplitude

• Previously, we tried to use solutions of the classical Hamilton-Jacobi equation to approximately
infer the quantum mechanical wave function. This program was applicable in the classically
allowed region E > V (x). On the other hand, the wave function can be non-zero even in
classically forbidden regions (E < V (x)) as in the case of tunneling through a barrier. In
such classically forbidden regions, we may still obtain a semiclassical approximation to the
wavefunction using the expansion in powers of ~ developed in the last section. Even if E < V ,

the condition for the semi-classical regime |dλdx | � 1 or
∣∣dV
dx

∣∣ � √
2m
h |E − V (x)|

3
2 can still be

satisfied, especially if E � V or if dV
dx is small.

• For simplicity let us consider scattering against a barrier in one dimension that extends
between x = −L and L , such as a rectangular barrier with an undulating top V (x) > 0 for
|x| ≤ L and V (x) = 0 for |x| > L . Classically if the energy E > Vmax , the particle ‘rolls over’
the barrier, but is reflected otherwise. Quantum mechanically, even if E < Vmax there can be
a non-zero transmission probability due to tunneling. We wish to get a semi-classical estimate
for the transmission coefficient in cases where it is small. (After all, it is zero classically.)

• Let us consider scattering from the left with incident energy E = ~2k2/2m < Vmax . Suppose
the repulsive potential is such that there are just two classical turning points (xL = −L on the
left of the barrier and xR = L on the right) between which V (x) > E , as is the case for a
rectangular barrier.
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• In the classically allowed regions to the left (ψ(x) = Aeikx+Be−ikx ) and right (ψ(x) = Feikx )
of the barrier, the WKB approximation gives the exact free particle wave functions since the
potential is a constant. The transmission coefficient we wish to find is |F/A|2 . Instead of trying
to solve the SE in the classically disallowed region, we use the WKB approximation

ψ(x) ≈ C ′√
p(x)

e
i
~
∫ x
xL

p(x′)dx′
+

D′√
p(x)

e
− i

~
∫ x
xL

p(x′)dx′
(94)

Here p(x) =
√
E − V (x) is purely imaginary and we may absorb some phases into C ′ and D′

and write

ψ(x) ≈ C√
|p(x)|

e
− 1

~
∫ x
xL

√
2m(V (x)−E)dx′

+
D√
|p(x)|

e
1
~
∫ x
xL

√
2m(V (x)−E)dx′

. (95)

• Since we assumed the tunneling probability is small, the barrier must be high (compared to E )
or wide (compared to the de Broglie wavelength of the incident wave). In this case, the coefficient
D of the exponentially growing wavefunction must be very small and we ignore it (D → 0 as
the barrier width L → ∞). This can be motivated by imposing continuity of ψ(x) and its
first derivative at the classical turning points xL, xR . The attenuation of the wavefunction is
approximately

|F |
|A|
≈ e−

1
~
∫ xR
xL

√
2m(V (x′)−E)dx′ ≡ e−γ (96)

So the WKB estimate for the transmission probability is

T ≈ e−2γ = e
− 2

~
∫ xR
xL

√
2m(V (x′)−E)dx′

(97)

We see that as ~→ 0, T → 0 exponentially fast and classically the particle is not transmitted.

• Tunneling was used by Gamow and others to explain the decay of a nucleus to a daughter
nucleus by emission of an α(nnpp) particle. The strong nuclear forces create something like
an attractive finite spherical potential well inside the nucleus for the alpha particle. Outside
the nucleus, the alpha particle is repelled by the electrostatic force with the positively charged
daughter nucleus. But in order to escape, the alpha particle has to tunnel through a potential
barrier. See the discussion in Griffiths or elsewhere.

5 Born series and approximation in potential scattering

• Consider the wave mechanical treatment of scattering of non-relativistic particles of mass
m against a potential V (r) that vanishes for large |r| . We suppose that free particles (with
wave amplitude Aeikz ) come in along the z -axis from −∞ and scatter. Scattered particles are
detected at large r = |r| at the angular location specified by the polar and azimuthal angles
θ and φ . The scattered wave amplitude is expressed as f(θ, φ)eikr/r for large r . f(θ, φ) is
called the scattering amplitude. The differential cross section is given by dσ/dΩ = |f |2 and
the total cross section is σ =

∫
|f |2dΩ where dΩ = sin θdθdφ is the element of solid angle. σ

with dimensions of area may be thought of as the total effective cross-sectional area (normal to
the incident beam) presented by the scattering potential. dσ is the average number of particles
scattered into the angular region dΩ per unit time per unit incident flux of particles. The
incident flux is jinc · ẑ where j is the probability current density.
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• Max Born’s approximation to find the scattering amplitude f(θ, φ) is useful especially when
the scattering potential V (~r) is weak compared to the energy of the incoming wave ~2k2/2m .
In such a situation, the scattered wave is expected to be small compared to the incoming plane
wave. So it is useful in the regime of high energies while the partial wave approximation is useful
at low energies. Loosely, the Born series is an expansion in powers of the potential V , treated
as a perturbation to the kinetic term. V need not be spherically symmetric.

5.1 Integral form of the Schrödinger equation and Green’s function for the Helmholtz
operator

• The starting point for the Born series is a rewriting of the Schrödinger eigenvalue problem as
an integral equation. We begin by writing

− ~2

2m
∇2ψ + V (~r)ψ =

~2k2

2m
ψ ⇒

(
∇2 + k2

)
ψ =

2mV

~2
ψ. (98)

∇2 + k2 is the Helmholtz operator and if the rhs 2mV
~2 ψ had been a source χ(~r) independent of

ψ(~r), this would be the inhomogeneous Helmholtz equation. Recall that the general solution of
an inhomogeneous linear equation Aψ = χ is given by the sum of a particular solution and the
general solution of the homogeneous equation Aψ = 0. Though the SE is in fact a homogeneous
equation, it pays to think of it as an inhomogeneous Helmholtz equation and treat the rhs 2mV

~2 ψ
as a small source.

• The idea is to try to invert the operator ∇2 + k2 and take it to the rhs. However, ∇2 + k2

is not invertible, as it is ‘many to one’, it has zero eigenvalues. Indeed, it has a large null space

consisting of all free particle eigenstates: (∇2 + k2)ψ0 = 0, e.g., the plane waves ψ0(~r) = ei
~l·~r

for any vector ~l whose length is |~l| = k . These plane waves span the zero eigenspace of the
Helmholtz operator (though we could just as well use angular momentum eigenstates of the free
particle with energy ~2k2/2m).

• Though it isn’t invertible, we may be able to find a ‘right inverse’ in the sense of a ‘Green’s
function’ G(r, r′) satisfying (here ∇ is the gradient in ~r as opposed to the gradient ∇′ in ~r′ )(

∇2 + k2
)
G(~r, ~r′) = δ3(~r − ~r′). (99)

But such a Green’s function is not unique. However, any two Green’s functions G(1), G(2) for
the Helmholtz operator differ by a solution ψ0 of the homogeneous Helmholtz equation[

∇2 + k2
] (
G(1)(~r, ~r′)−G(2)(~r, ~r′)

)
= 0 ⇒ G(1)(~r, ~r′)−G(2)(~r, ~r′) = ψ0(r) (100)

We will find a Green’s function for the Helmholtz operator shortly. The virtue of having one is
that it in effect provides a ‘particular solution’ of the inhomogeneous Helmholtz equation. In
more detail, we may write the ‘general solution’ of the SE as

ψ(~r) = ψ0(~r) +

∫
G(~r, ~r′)

2mV (~r′)

~2
ψ(~r′) d3r′ (101)

where ψ0(~r) is any solution of (∇2 + k2)ψ = 0, i.e., a free particle energy eigenstate. It is easily
checked that this ψ satisfies the SE. However, it is not an explicit solution since ψ appears
both on the left and right sides. Nevertheless, it is an integral equation for ψ which looks a bit
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like the scattering boundary condition if we take ψ0 = eikz ! So we should expect the integral
expression on the rhs to tend to the scattered wave for large r .

• We can iterate this expression to get the Born series, which gives a formal solution of the SE:

ψ(r) = ψo(r) +

∫
G(r, r′)

2mV (r′)

~2
ψo(r

′) dr′ +

∫∫
G(r, r′)

2mV (r′)

~2
G(r′, r′′)

2mV (r′′)

~2
ψo(r

′′) dr′ dr′′

+

∫∫∫
G(r, r′)

2mV (r′)

~2
G(r′, r′′)

2mV (r′′)

~2
G(r′′, r′′′)

2mV (r′′′)

~2
ψo(r

′′′) dr′ dr′′ dr′′′ + · · · (102)

• We still have to find a Green’s function for the Helmholtz operator, i.e., any one solution of(
∇2 + k2

)
G(~r, ~r′) = δ3(~r − ~r′). (103)

We will select a solution that is appropriate to the scattering problem. A priori G(r, r′) is
a function of six coordinates and it is daunting to find a solution of this partial differential
equation that involves derivatives in three of them r, θ, φ . However, on account of the translation
invariance (~r → ~r + ~b) of the Helmholtz operator, we choose to look for a Green’s function
that depends only on the translation-invariant vector ~r − ~r′ . So we have gone from 6 to 3
variables. Furthermore, on account of the rotation invariance of the Helmholtz operator10, we
choose to look for a Green’s function that depends only on the rotation invariant quantity
s = |~s| = |~r− ~r′| . This reduces the above partial differential Helmholtz operator to an ordinary
differential operator. G(s) must satisfy11

1

s

d2sG(s)

ds2
+ k2G(s) = δ3(~s). (104)

Let us first consider the case s > 0 where this is a homogeneous linear ODE (sG)′′+ k2sG = 0.

The general solution is G(s) = Aeiks

s + Be−iks

s . However, we choose B = 0 since we will be
interested in the outgoing scattered wave. To find A , we look at the behavior for small s , where
G(s)→ A

s independent of k . So to find A , it suffices to consider the case k = 0. For k = 0, it
is easy to show that

∇2

(
1

r

)
= −4πδ3(~r) (105)

For r 6= 0, this is immediate since ∇2r−1 = 1
r (rr−1)′′ = 0. To check that it is correct also at

r = 0 we integrate over the interior of a unit sphere and use Stokes theorem:∫
~∇ · ~∇1

r
d3r =

∫
S2

~∇1

r
· r̂r2dΩ =

∫
− r̂

r2
· r̂r2dΩ = −4π. (106)

10By rotation-invariance we mean that if ~r′ = (x′, y′, z′) = R~r for a rotation R applied to ~r = (x, y, z) , then

the formula for the Laplacian ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
= ∂2

∂x′2 + ∂2

∂y′2 + ∂2

∂z′2 is unchanged. It is good to check this first

in two dimensions, where x′ = cx − sy and y′ = sx + cy for s = sinα and c = cosα where α is the angle
of (counter-clockwise) rotation. Just as translation-invariance is manifest in Cartesian coordinates, rotation-
invariance is manifest in spherical polar coordinates. Suppose the rotation is by a counter-clockwise angle α
about some axis. Let us choose our coordinate system so the axis of rotation is the z -axis. Then under such a

rotation (r, θ, φ) 7→ (r, θ, φ+α) . Now the laplacian is ∇2 = 1
r
∂2

∂r2
r+ 1

r2 sin θ
∂
∂θ

sin θ ∂
∂θ

+ 1
r2 sin2 θ

∂2

∂φ2 . The formula
for this differential operator is clearly unchanged under φ→ φ+ α . Thus the Laplacian is rotation invariant.

11For G(~r, ~r′) = G(~r − ~r′) , we can re-cast the derivatives w.r.to ~r as derivatives with respect to ~s since
∂G(x−x′)

∂x
= ∂G(x−x′)

∂(x−x′) .
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So we conclude that A = − 1
4π . Thus we have found one Green’s function for the Helmholtz

operator

G(s) = − 1

4π

eiks

s
or G(~r − ~r) = − 1

4π

eik|~r−~r
′|

|~r − ~r′|
. (107)

A Green’s function is not unique, we can add to this G(s) any solution of the homogeneous
equation and get another Green’s function. However, for the problem of interest, G(s) is most
appropriate, as it satisfies the scattering b.c.

• To summarize, we have written the Schrödinger eigenvalue problem as an integral equation

ψ(r) = ψ0(r)− 1

4π

∫
eik|~r−~r

′|

|~r − ~r′|
2mV (~r′)

~2
ψ(~r′) d3r′ (108)

and iterated it to obtain the Born series (102).

5.2 Born approximation

So far we have not made any approximation. Now we apply this to the scattering problem by

choosing ψ0(r) = ei
~k·~r to be the incoming plane wave with ~k = kẑ . Notice that successive terms

in the Born series involve higher powers of the potential. We suppose that the potential is weak
so that the total wave function does not differ much from the incoming plane wave and truncate
the Born series after one iteration. This gives the first Born approximation

ψ(r) = ei
~k·~r − 1

4π

∫
eik|~r−~r

′|

|~r − ~r′|
2mV (~r′)

~2
ei
~k·~r′ d3r′ +O(V 2). (109)

To find the scattering amplitude, we must extract the asymptotic behavior for large r and
compare with the scattering boundary condition

− 1

4π

∫
eik|~r−~r

′|

|~r − ~r′|
2mV (~r′)

~2
ei
~k·~r′ d3r′ → f(θ, φ)

eikr

r
. (110)

To extract the large r behavior of the integral, we assume that the potential is localized around
r = 0, so that the integral over ~r′ receives non-trivial contributions only for small r′ . So we
may assume that r � r′ inside the integral. The simplest possibility is to take |~r − ~r′| ≈ r .
Within this crude approximation the scattering amplitude is independent of θ and φ (below
~k = kẑ for a plane wave incident from the left)

fcrude(θ, φ) = − 1

4π

2m

~2
Ṽ
(
−~k
)

where Ṽ
(
~k
)

=

∫
V (~r′)e−i

~k·~r′ d3r′. (111)

Though too crude, it indicates that the scattering amplitude is proportional to the Fourier
transform of the potential, which we will see is a general feature of the Born approximation.

• To do justice to the first Born approximation and extract the angular dependence of the
scattering amplitude, we need a better approximation for |~r − ~r′| . We write

|~r−~r′|2 = r2−2~r·~r′+r′2 = r2
(

1− 2
~r · ~r′

r2
+
r′2

r2

)
⇒ |~r−~r′| = r

(
1− 2

~r · ~r′

r2
+
r′2

r2

) 1
2

= r−r̂·~r′+O
(
r′2

r2

)
.
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Using |~r − ~r′| ≈ r − r̂ · ~r′ in the first Born approximation, we get12

ψ(r) ≈ ei~ki·r̂ − 1

4π

2m

~2

eikr

r

∫
V (~r′)e−i(

~kf−~ki)·~r′d3r′ (112)

where we defined ~ki = ~k for the incoming wave vector and an13 outgoing wave vector ~kf = kr̂
in the direction defined by θ, φ . From this we can read off the scattering amplitude

f(θ, φ) = f(k̂f ) = f(r̂) = − 1

4π

2m

~2
Ṽ (~kf − ~ki) = − m

2π~2
Ṽ (~q) . (113)

This is the first Born approximation for the scattering amplitude and is valid even if V isn’t
spherically symmetric. The vector ~q = ~kf − ~ki is called the momentum transfer. The main
result of the Born approximation is that the scattering amplitude f(r̂) is proportional to the
Fourier transform of the potential with respect to the momentum transfer ~q = kr̂ − ~k .

• The Born approximation gives a solution to the direct scattering problem valid at high energies.

In treating the potential term in the Hamiltonian H = p2

2m + V as a perturbation, V has been
assumed to be small compared to the free particle energy, which is the energy of the incoming
particle in the beam. This is what allows us to replace ψ(~r′) under the integral by the free
particle ψ0(~r′).

• The Born approximation also gives a partial result in inverse scattering: a way to extract the
potential if the scattering amplitude is known.

• In the limit of zero momentum transfer ~q → 0, the Born scattering amplitude simplifies. In
this limit, the scattering amplitude is spherically symmetric and sensitive only to the integral
of the potential:

f~q→0(r̂) = − m

2π~2
Ṽ (0) = − m

2π~2

∫
V (~r′)d3r′. (114)

5.3 Born approximation for spherically symmetric potential

• For a spherically symmetric potential, the Born approximation for the scattering amplitude
may be simplified. If ~k = kẑ and ~kf = kr̂ , then from the isosceles triangle, the momentum

transfer ~q = ~kf −~ki is seen to have a magnitude q = 2k sin θ
2 . To evaluate the Fourier transform

of the potential

Ṽ (~q) =

∫
e−i~q·r

′
V (r′)r′2dr′ sin θ′dθ′dφ′ (115)

we pick the ẑ′ axis to point in the direction of ~q so that ~q · ~r′ = qr′ cos θ′ and get

Ṽ (q) =

∫
V (r′)e−iqr

′ cos θ′r′2 sin θ′dr′dθ′dφ′ (116)

12In the denominator we use the crude approximation |~r−~r′| ≈ r . This is because |~r−~r′|−1 ≈ 1
r

(
1− r̂·~r′

r

)−1

≈
1
r

(
1 + r̂·~r′

r
+ · · ·

)
≈ 1

r
+ r̂·~r′

r2
. The 2nd term is ∼ r−2 for r → ∞ and wouldn’t contribute to f(θ, φ) , which is

the coefficient of eikr

r
for large r .

13~kf = kr̂ is not the wave vector of a plane wave. The outgoing wave is a spherical wave. k̂f is just a convenient
notation for the unit vector r̂ in the direction in which we are interested in finding f(θ, φ) . But it is a reasonable
notation, since in an experiment, we would detect a outgoing scattered free particle at angular location θ, φ with
momentum ~~kf .
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We can perform the θ′ integral by the substitution t = cos θ′∫ π

0
e−iqr

′ cos θ′ sin θ′dθ′ =

∫ 1

−1
e−iqr

′tdt =
2 sin qr′

qr′
(117)

Thus the Fourier transform of a spherically symmetric potential is rotationally invariant in
momentum space as well

Ṽ (~q) = Ṽ (q) =
4π

q

∫ ∞
0

V (r′) r′ sin qr′ dr′ (118)

Thus the scattering amplitude in the first Born approximation is

f(θ, φ) = −2m

~2q

∫ ∞
0

V (r) r sin qr dr where q = 2k sin
θ

2
. (119)

5.4 Rutherford scattering

• In the case of Rutherford scattering of charge q1 against charge q2 , the potential is V (r) =
q1q2

4πε0r
, and

Ṽ (q) =
q1q2

ε0q

∫ ∞
0

sin qr dr =
q1q2

ε0q2

∫ ∞
0

sin ρ dρ (120)

However, the dimensionless oscillatory integral appearing above is not absolutely convergent. In
the absence of additional (physical) input we could assign any numerical value to it. However
aside from this numerical constant, if we put q = 2k sin θ/2, we see that the cross section
| m
2π~2 Ṽ (q)|2 resembles the Rutherford cross section. We have already encountered difficulties

with the Coulomb potential in that its total scattering cross section is infinite classically. The
Coulomb potential does not die off fast enough as r → ∞ for us to be able to legitimately
treat the incoming and scattered particles as free. This is reflected in the above ambiguity in
defining the Fourier transform of the Coulomb potential. However, in many physical situations,
the Coulomb potential is screened beyond a screening length. So we can treat the Coulomb
potential as the µ→ 0 limit of a screened Coulomb (or Yukawa) potential

V (r) = α
e−µr

r
where α =

q1q2

4πε0
. (121)

µ−1 is called the screening length. For r > µ−1 , the Coulomb potential is effectively screened
by the exponential damping factor. For the Yukawa potential, we find

Ṽ (q) =
4π

q

∫ ∞
0

αe−µr

r
r sin qr dr =

4πα

µ2 + q2
. (122)

Putting α = q1q1/4πε0 in the limit µ→ 0 we get for the Coulomb potential

Ṽ (q)→ q1q2

ε0

1

q2
. (123)

Putting q = 2k sin(θ/2) we get the limiting scattering amplitude in the Born approximation

f(θ, φ) ≈ −2m

~2

q1q2

4πε0

1

q2
= − q1q2

16πε0E

1

sin2 θ/2
(124)
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where E = ~2k2/2m . The differential cross section for Coulomb scattering in the Born approx-
imation is found to match Rutherford’s result from classical mechanics

dσ

dΩ
= |f |2 ≈

(
q1q2

16πε0E

)2 1

sin4 θ/2
. (125)

Scattering in the forward direction dominates, but there is significant scattering through wide
angles as well, as found in Rutherford’s alpha scattering experiment.
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