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3. K Huang, Statistical mechanics 2nd Ed. (2008), [Appendix A].
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5. C Itzykson and J-B Zuber, Quantum Field Theory (1980).
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7. V P Nair, Quantum Field Theory: A Modern Perspective (2006).
8. A Lahiri and P Pal, A First Book of Quantum Field Theory, 2nd Ed. (2005).
9. S Weinberg, Quantum Theory of Fields, Vol I and II (2005).
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11. M D Schwartz, Quantum Field Theory and the Standard Model (2014).
12. M E Peskin and D V Schroeder, An Introduction to Quantum Field Theory (1995).
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15. F Mandl and G Shaw, Quantum Field Theory, 2nd Ed. (2010).
16. R D Klauber, Student Friendly Quantum Field Theory, 2nd Ed. (2013).

0.2 Classical fields model systems with infinitely many degrees of freedom

• The number of degrees of freedom is the number of real coordinates needed to
specify the instantaneous location of all parts of the system under consideration.
• A point particle moving in a room has three degrees of freedom: the cartesian coor-
dinates of its position.
• A rigid rock has six degrees of freedom: 3 to locate its center of mass (or other
marked point) and three angles to orient it holding the CM fixed.
• The solar system with the Sun and nine planets, all treated as point particles has
10× 3 = 30 degrees of freedom.
• The ≈ 1024 gas molecules in a football have about 5 × 1024 degrees of freedom,
when treated as rigid rotors (diatomic molecules O2, N2).
• For practical and conceptual purposes, it is fruitful to treat a stretched string, gas,
liquid or deformable solid as a system with a continuously infinite number of degrees
of freedom. These could be the displacement of the string at each point along its
length, the density, pressure and components of the velocity of the fluid at each point
in the container, etc. Pressure p(r, t) is an example of a scalar field while velocity
v(r, t) is a vector field. Fields are dynamical variables (quantities that evolve in time)
that depend on position, so they have infinitely many degrees of freedom.
• A system with finitely many degrees of freedom is sometimes called a mechani-
cal system. The name continuum mechanics is used for the study of systems whose
variables are fields.
• The electric and magnetic vectorsE(r, t) andB(r, t) and the gravitational potential
V (r, t) are other examples of fields. In particle physics, we have fields associated
with various particles: the electron Dirac field ψα(x), the photon vector potential field
Aµ(x), the Higgs scalar field φ(x), gluon gauge fields Aaµ(x) and so forth.

0.3 Examples of field equations

• In classical mechanics, the dynamics of a system of N particles moving in 3d space
and labeled by a = 1, 2, 3, . . . , N , is governed by Newton’s equations of motion
mar̈a = fa. Here ra is the position of particle a while ma is its mass and fa the
force acting on it. These are a (generally nonlinear) system of second order ordinary
differential equations (ODEs) for the position coordinates of the particles. There are
as many equations (3N ) as there are degrees of freedom.
• Fields have infinitely many degrees of freedom. So we might expect to model their
dynamics by an infinite collection of ODEs. This is essentially true, except that these
infinite systems of ODEs can often be arranged as a single or finite system of partial
differential equations (PDEs). Thus, the classical dynamics of fields is governed by
field equations, which are typically PDEs: they involve both spatial and time deriva-
tives of the fields.
• Here are a few representative examples of field equations. Some are linear (usually



0.3 Examples of field equations 3

due to some approximation) while others are nonlinear. Some are nonrelativistic while
others are relativistic.
• d’Alembert’s wave equation for the height u(x, t) of a stretched string executing
small transverse oscillations is

ρ
∂2u

∂t2
= τ

∂2u

∂x2
or ρutt = τuxx. (1)

We call u(x, t) a 1 + 1 dimensional field since there is one space and one time coordi-
nate. ρ is the uniform mass per unit length of the string while τ is the constant tension
in the string. The quantity c =

√
τ/ρ turns out to be the speed at which disturbances

propagate along the string. d’Alembert’s equation is linear in the height u because we
restricted to small oscillations. Although it describes nonrelativistic phenomena, this
approximate equation is invariant under Lorentz transformations if u is considered as
a scalar and c a constant speed, analogous to that of light.
• According to Maxwell theory, the electric field vector E(r, t) in vacuum and in
the absence of electric charges and currents satisfies a linear vector wave equation in
three dimensional space

1

c2
∂2E

∂t2
−∇2E = 0. (2)

Here, ∇2 = ∂2x + ∂2y + ∂2z is the Laplace operator. Evidently, each component of the
electric field satisfies a 3 + 1 dimensional d’Alembert wave equation. Disturbances
in the electric field propagate at a speed c, the speed of light. The magnetic field
B(x, y, z, t) also obeys the same equation and both fields must be solenoidal in the
absence of sources: ∇ · E = 0 and ∇ · B = 0. These are the equations of a 3+1
dimensional relativistic field theory. In the presence of sources (electric charges and
currents), Maxwell’s equations in rationalized Heaviside-Lorentz units are

∇ ·B = 0, ∇×E = −1

c

∂B

∂t
, ∇ ·E = ρ, ∇×B =

j

c
+

1

c

∂E

∂t
. (3)

They can be written in a manifestly Lorentz covariant form. The homogeneous Maxwell
equations (∇ · B = 0 and ∇ × E = −(1/c)∂B∂t ) are automatically satisfied if
we introduce the scalar and vector potentials (φ,A) via E = −∇φ − c−1 ∂A∂t and
B = ∇ ×A. They are combined in the 4-vector potential Aµ = (φ,A). The com-
ponents of E and B then arise as the components of the antisymmetric field strength
tensor Fµν = ∂µAν − ∂νAµ. The remaining two inhomogeneous Maxwell equa-
tions then become ∂µFµν = jν/c, where jν = (cρ, j) is the 4-vector current density,
composed of the charge density and electric current density.
• Fourier’s heat conduction equation for the absolute temperature T on a plate in
the x-y plane is

∂T

∂t
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
. (4)

Here α is the thermal diffusivity, it controls the rate at which heat diffuses. This is
an example of a 2 + 1 dimensional nonrelativistic field equation. It is linear in the
temperature T . This linearity is an approximation, which is justified when Fourier’s
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empirical law on the proportionality of the heat flux vector to the temperature gradient
holds.
• The Euler equations for a nonrelativistic incompressible inviscid fluid flowing in
three dimensional space are a system of PDEs for the velocity v density ρ and pressure
p:

∂v

∂t
+ v ·∇v = −1

ρ
∇p,

∂ρ

∂t
+ ∇ · (ρv) = 0 and ∇ · v = 0. (5)

These equations are nonlinear in v due to the ‘advection’ term v ·∇v.
• The Klein-Gordon field equation is a relativistic wave equation that is obtained
from d’Alembert’s wave equation in 3+1 dimensions by adding a wavelength term
(more commonly called a ‘mass’ term):

1

c2
∂2φ

∂t2
−∇2φ+

1

λ2
φ = 0. (6)

Here, λ is a parameter with dimensions of length. It is sometimes called the Compton
wavelength and controls the distance over which influences decay. The reason for the
name ‘mass term’ becomes clearer when one studies the corresponding quantum the-
ory where the quantity m = h/λc may be interpreted as the mass of a particle, with
h denoting Planck’s constant. The Klein-Gordon equation was originally introduced
in an attempt at a relativistic treatment of a quantum mechanical particle. However,
there are physical difficulties with such a relativistic quantum mechanical interpre-
tation. Thus, it is better to view the Klein-Gordon field equation as a classical field
equation. It is Lorentz invariant if φ is treated as a scalar under Lorentz transforma-
tions. It is sometimes written as (� + 1/λ2)φ = 0 where � = (1/c2)∂2t −∇2 is
called the d’Alembertian or wave operator.
• The Dirac equation is another classical field equation. It is a relativistic linear wave
equation for a 4-component Dirac field ψα(r, t) where α = 1, 2, 3, 4:(

iγ0
1

c

∂ψ

∂t
+ iγ1

∂

∂x
+ iγ2

∂

∂y
+ iγ3

∂

∂z
− 1

λ

)
ψ = 0. (7)

As with the Klein-Gordon equation, λ is a parameter with dimensions of length.
γ0, γ1, γ2 and γ3 are four constant 4 × 4 matrices called Dirac matrices. The Dirac
equation was originally introduced as a relativistic quantum mechanical wave equa-
tion for an electron. However, such a relativistic quantum mechanical treatment is
physically problematic and valid at best as an approximation. In view of this, it is
better to regard the Dirac equation as a classical field equation. Despite the use of
the symbol ψ, we do not regard ψ as a quantum mechanical probability amplitude.
Instead, ψ is a field like the electric field.
• Self-interacting scalar field. The Klein-Gordon and Dirac equations are linear rel-
ativistic field equations. Physically, this means they describe noninteracting systems.
An important example of a relativistic system with interactions is the self-interacting
scalar field with a cubically nonlinear field equation:

1

c2
∂2t φ−∇2φ+

1

λ2
φ+ gφ3 = 0. (8)
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The reason to consider a cubic (rather than quadratic) interaction is to ensure that the
φ→ −φ symmetry of the Klein-Gordon equation is retained.
• Yang-Mills equations are a matrix or ‘nonabelian’ generalization of Maxwell’s
equations. The vector potential Aµ(x) = AaµT

a is now an N × N matrix in the Lie
algebra of a so-called gauge group (e.g., SU(2) or SU(3)) with structure constants fabc

and generators T a satisfying [T a, T b] = ifabcT c and trT aT b = (1/2)δab. The field
strength is F aµν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . In the absence of sources, the field

equations are a system of nonlinear PDEs for the gauge potentials Aµ:

∂µF aµν + gfabcAµbFµνc = 0 (9)

Here, g is a coupling constant like the electric charge or fine-structure constant. In fact,
when the gauge group is the abelian group U(1), the Yang-Mills equations reduce to
Maxwell’s equations.
• Einstein equations of general relativity. Einstein’s field equations are PDEs for
the metric tensor gµν of space-time:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (10)

Here Rµν is the Ricci curvature tensor and R = gµνRµν the Ricci scalar curvature.
The Ricci curvature Rµν is the trace Rλµλν of the Riemann curvature tensor Rλµρν ,
which is constructed from the metric. Tµν is the energy-momentum or stress tensor of
the matter present. G, c and Λ are Newton’s gravitational constant, the speed of light
and the cosmological constant.
• It is important to recognize that the Schrödinger wave equation i~∂ψ∂t = Hψ, say
for a particle in a potential [where H = −(~2/2m)∇2 + V (r)] is not a classical
field equation, although it is a PDE. It is an equation for the quantum mechanical
probability amplitude or wavefunction ψ. In this case, ψ is not a classical field and the
equation describes just one particle.

0.4 Approaches to the quantum theory

• The passage from a classical theory to a corresponding quantum theory is called
quantization. Quantization does not necessarily imply any notion of discreteness.
• The quantization of systems with finitely many degrees of freedom (mechanical
systems) is sometimes called first quantization.
• The quantization of fields (systems with infinitely many degrees of freedom) is
called second quantization. The name second quantization should not give the im-
pression that quantization is performed twice. The name comes from some historical
confusions.
• There are several approaches to the quantum theory. In particle mechanics (e.g.,
atomic physics), one usually uses one of three methods:

1. The Schrödinger approach via the Schrödinger equation for the wavefunction de-
scribing the system’s state. This is the quantum analogue of the Hamilton-Jacobi
equation of classical mechanics.
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2. The Heisenberg approach via the Heisenberg equations of motion for operator ob-
servables and their commutation relations. This is the quantum analogue of the
Poisson bracket-Hamiltonian formulation of classical mechanics.

3. Feynman’s approach via path integrals, which is the quantum analogue of the prin-
cipal of extremal action.

• Notably, in all three approaches, the process of quantization does not start directly
from Newton’s equation of motion but uses either the Hamiltonian or Lagrangian for-
mulation of the classical theory. Direct quantization starting with the classical equa-
tions of motion can be done using the method of stochastic quantization, but is used
less frequently.
• The quantization of fields is usually carried out using the ‘canonical’ Heisenberg op-
erator approach or the path integral approach or occasionally in terms of the Schrödinger
wave functional. Each of these uses either a Hamiltonian or a Lagrangian.
• For these reasons, it is useful to have a Lagrangian or Hamiltonian formulation of
the field equations.

0.5 Action, Lagrangian and Euler-Lagrange equations for fields

• Not all field equations admit Lagrangian or Hamiltonian formulations. As a rule of
thumb, dissipative systems (such as the heat equation or equations of viscous hydro-
dynamics) do not while conservative systems often do.
• There is no general recipe for finding a Lagrangian for a given set of equations of
motion. However, in many cases, the difference between kinetic and potential energies
does the job.
• Let us illustrate the Lagrangian and Hamiltonian formulations with the example
of d’Alembert’s wave equation ρutt = τuxx for small transverse oscillations of a
stretched string. For definiteness, we assume the string is clamped at x = 0 and x = `
(Dirichlet boundary conditions) or is free to move at the ends without any resistance:
ux = 0 at x = 0 and x = ` (Neumann boundary conditions).
• To begin with, we derive a conserved energy by using an integrating factor. Multi-
plying the wave equation by the velocity ut and summing over the degrees of freedom
(integrating in x), we get ∫ `

0

1

2
ρ(u2t )t dx =

∫ `

0

τutuxx dx. (11)

Integrating by parts on the RHS, the boundary term [τutux]`0 vanishes with either
Dirichlet or Neumann BCs. We get

d

dt

∫ `

0

(
1

2
ρu2t +

1

2
τu2x

)
dx = 0. (12)

Thus, we have found a conserved energy

E = T + V =

∫ `

0

E dx where E =
1

2
ρu2t +

1

2
τu2x. (13)
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The energy density E = T + V is a sum of kinetic and potential energy densities:

T =
1

2
ρu2t and V =

1

2
τu2x. (14)

• This suggests a Lagrangian

L = T − V =

∫
L dx where L = T − V =

1

2
ρu2t −

1

2
τu2x (15)

is called the Lagrangian density. In this case, L is a quadratic polynomial in the time
and space derivatives ut and ux of the field.
• The corresponding action is

S =

∫ t2

t1

Ldt =

∫ t2

t1

∫ `

0

L dx dt. (16)

• The principle of extremal action says that if the Lagrangian is chosen suitably, the
conditions for the action to be stationary with respect to small variations in u are
equivalent to the equations of motion. Let us derive the Euler-Lagrange equations for
extremization of S and verify that they are equivalent to d’Alembert’s wave equation.
Keeping only the first order terms in the variation,

δS = S[u+ δu]− S[u] ≈
∫∫ (

∂L
∂u

δu+
∂L
∂ut

δut +
∂L
∂ux

δux +
∂L
∂uxx

δuxx

)
dx dt

=

∫∫ [
∂L
∂u
− ∂t

(
∂L
∂ut

)
− ∂x

(
∂L
∂ux

)
+ ∂xx

(
∂L
∂ux

)]
δu dx dt. (17)

Here, we assumed that the variations are such that ∂tδu = δ∂tu and ∂xδu = δ∂xu.
This allowed us to integrate by parts twice. Boundary terms vanish assuming the vari-
ations vanish at the initial and final times: δu(x, t1) = δu(x, t2) = 0. The condition
for the first variation in the action to vanish for any sufficiently small δu is the EL
equation

∂t

(
∂L
∂ut

)
=
∂L
∂u
− ∂x

(
∂L
∂ux

)
+ ∂xx

(
∂L
∂uxx

)
. (18)

For the case at hand,

∂L
∂ut

= ρut,
∂L
∂u

= 0,
∂L
∂ux

= −τux, and (19)

Consequently, the EL equation is

∂t(ρut) = ∂x(τux) or ρutt = τuxx, (20)

which is the desired d’Alembert wave equation. Thus, we have found a Lagrangian
formulation for the 1d wave equation.
• For the 3d wave equation ρutt = τ∇2u, verify that a suitable Lagrangian density is
given by

L =
ρ

2
u2t −

τ

2
|∇u|2. (21)



8 CONTENTS

• For the Klein-Gordon equation (1/c2)φtt = ∇2φ− (1/λ2)φ (6), the EL equations
(18) allow us to identify a Lagrangian density:

L =
1

2c2
(∂tφ)2 − 1

2
|∇φ|2 − φ2

2λ2
. (22)

• Similarly, show that a Lagrangian density for the self-interacting scalar field equa-
tion (8) is given by

L =
1

2c2
(∂tφ)2 − 1

2
|∇φ|2 − φ2

2λ2
− g

4
φ4. (23)

0.6 Hamiltonian and canonical Poisson bracket formulation for fields

The above field equations can also be given canonical Hamiltonian-Poisson bracket
formulations. The Hamiltonian is obtained via a Legendre transform from the La-
grangian. Let us illustrate this with the example of the 1d wave equation. First, we
view the Lagrangian as a function of coordinates u(x, t) and velocities ut(x, t). From
(15), the momentum conjugate to the field u is given by

π(x, t) =
δL

δut(x, t)
= ρut. (24)

This allows us to express the velocity ut = π/ρ in terms of the conjugate momentum.
The Hamiltonian is

H[u, π] =

∫ `

0

πut dx− L[u, ut] (25)

where ut is to be eliminated in favor of u and π. We get

H[u, π] =

∫ `

0

(
1

ρ
π2 − 1

2
ρ
π2

ρ2
+

1

2
τu2x

)
dx =

∫ `

0

(
π2

2ρ
+
τ

2
u2x

)
dx. (26)

The quantity in parentheses is the Hamiltonian densityH = π2

2ρ + τ
2u

2
x.

• Since π(x) is the momentum conjugate to u(x) we propose the canonical equal-time
Poisson brackets

{u(x, t), π(x′, t)} = δ(x−x′), {u(x, t), u(x′, t)} = {π(x, t), π(x′, t)} = 0. (27)

•We verify that Hamilton’s equations ut = {u,H} and πt = {π,H} following from
the Hamiltonian (26) along with these PBs, gives the desired wave equation.
• Since the Poisson brackets are canonical, Hamilton’s equations can also be written
in a canonical form. Recall that in classical mechanics with generalized coordinates
qi and conjugate momenta pi, Hamilton’s equations take the form

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
. (28)
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In passing to field theory, these partial derivatives are replaced by functional deriva-
tives. The corresponding Hamilton equations for a field u(x) and its conjugate mo-
mentum π(x) are

∂tu(x) =
δH

δπ(x)
and ∂tπ(x) = − δH

δu(x)
. (29)

How do we compute functional derivatives? Recall the basic partial derivatives from
multivariable calculus

∂x

∂x
= 1,

∂x

∂y
= 0 and more generally

∂xi

∂xj
= δij (30)

where δij is the Kronecker symbol. This basic partial derivative coupled with the
Leibniz product rule and chain rule allow us to compute derivatives of functions. The
basic functional derivative is

δu(y)

δu(x)
= δ(x− y) (31)

where the Dirac delta function plays the role of the Kronecker delta. Let us use this to
evaluate Hamilton’s equations. The first one is

u̇(x) =
δ

δπ(x)

∫ [
1

2ρ
π2(y) +

τ

2
u2
y

]
dy =

∫
2

2ρ
π(y)

δπ(y)

δπ(x)
dy =

∫
π(y)

ρ
δ(x−y)dy =

π(x)

ρ
.

(32)
The second of Hamilton’s equations is

π̇(x) = − δ

δu(x)

∫ [
1

2ρ
π2(y) +

τ

2
u2y

]
dy = −

∫ [
τ

2
2uy

δuy(y)

δu(x)

]
dy

= −
∫ [

τuy∂y
δu(y)

δu(x)

]
dy = −

∫
[τuy∂yδ(x− y)] dy

=

∫
τuyyδ(x− y)dy = τuxx. (33)

Combining the two first order Hamilton equations u̇ = π/ρ and π̇ = τuxx, we recover
the second order wave equation ρutt = τuxx.

0.7 Which classical fields are to be quantized?

It is physically justified to quantize some of the field theories mentioned above. Al-
though quantum effects are not significant in the vibrations of a macroscopic stretched
string, the quantum version of the wave equation arises in studying massless scalar
particles. The quantum theory of the Maxwell field is a part of quantum electrody-
namics. The quantized Klein-Gordon and self-interacting scalar fields arise as ingre-
dients in the physics of pions and the Higgs particle. The quantized Dirac field is used
to model electrons. Quantum Yang-Mills theory is at the heart of our description of
the strong and weak forces. On the other hand, it is not quite appropriate to quantize
the Euler equations of fluid mechanics or the heat equation to study quantum fluids
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or quantum effects in heat transport. The fluid and heat equations deal with some
effective approximate classical degrees of freedom. A quantum fluid like a Bose con-
densate or superfluid Helium require a different treatment that takes into account the
atomic structure of these fluids. General relativity (GR) describes classical gravity.
Although quantum effects in gravity have not yet been found in nature, there is much
effort to develop a quantum theory of gravity. However, a quantization of GR along
the lines adopted for the Maxwell, Klein-Gordon, Dirac and Yang-Mills fields runs
into some conceptual problems that have not yet been overcome. In fact, it is unclear
what degrees of freedom are relevant to a description of quantum gravity.

0.8 Nonlinear Schrödinger field in 1 + 1 dimensions

• The nonlinear Schrödinger field is a complex scalar field ψ(x, t). Although the two-
and three-dimensional versions are also of interest, it is often studied in one spatial di-
mension, where it finds application to light propagation in nonlinear optical fibers and
Bose-Einstein condensates in cigar-shaped traps in a mean field approximation. We
will use the one-dimensional nonlinear Schrödinger field to illustrate many features of
classical and quantum field theory.

0.8.1 Classical nonlinear Schrödinger equation & conserved quantities

• Classically, the nonlinear Schrödinger field evolves according to the cubically non-
linear Schrödinger field equation (NLSE)

i∂tψ = −αβ∂2xψ + ακ|ψ|2ψ. (34)

Here, α, β and κ are constant real parameters1. Comparing the linear terms, we infer
that αβ has dimensions of areal speed, L2/T . We will fix the other dimensions shortly.
The coupling constant κ controls nonlinearities.
• We will work with decaying boundary conditions, i.e., |ψ(x, t)| → 0 sufficiently
fast as x→ ±∞ at all times t.
•Using the NLSE and its complex conjugate, we verify that the real (and nonnegative)
quantity

N =

∫
ψ∗ψ dx (35)

is independent of time. Indeed,

Ṅ =

∫
[(−iαβψ∗′′ + iακ|ψ|2ψ∗)ψ + ψ∗(iαβψ′′ − iακ|ψ|2ψ)] dx

= iαβ

∫
[−ψ∗ψ′′ + ψ∗ψ′′] dx = 0. (36)

We integrated by parts twice. Boundary terms do not contribute with decaying BCs.
We will postulate that N is dimensionless. The quantum version of N will be an

1Although it is only the products αβ and ακ that appear in the NLSE, the three will appear
separately in the Hamiltonian and Poisson brackets to be introduced shortly. The constant α is
introduced so that the conserved quantity N is dimensionless.
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operator whose measured values give the number of particles. Using this, we infer the
dimensions

[ψ] = [ψ∗] = L−1/2, [αβ] = L2/T, [β/κ] = L and [ακ] = L/T. (37)

These relations still do not allow us to fix the dimensions of α, β and κ since it is only
the products αβ and ακ that appeared in the NLSE.
• It can be shown that the structure of the NLSE (first order in time and second order
in space derivatives) allows it to be viewed as a 1 + 1 dimensional nonrelativistic
field theory. In fact, the quantum theory will describe a fixed number of particles. By
contrast, in interacting relativistic field theories, processes like pair-production and
annihilation allow the number of particles to change with time.
• The NLSE admits a second conserved quantity. We verify that

H =

∫ (
β|∂xψ|2 +

1

2
κ|ψ(x)|4

)
dx =

∫ (
−βψ∗∂2xψ +

1

2
κ|ψ(x)|4

)
dx (38)

is independent of time. We will interpret the manifestly real quantity H as the total
energy of the system, a sum of kinetic and potential contributions. Combining with
(37), this implies the following dimensions for the parameters:

[β] = energy · L2 =
ML4

T 2
, [κ] = energy · L =

ML3

T 2
, [α] = 1/action =

T

ML2
.

(39)
• One checks that α, β and κ have independent dimensions. In other words, there
is no nontrivial dimensionless combination that can be formed from them. In fact,
requiring that [α]a[β]b[κ]c = 1, leads to the homogeneous systemA(a b c)t = 0, with

coefficient matrix A =
(

1 −2 −2
1 −1 −1
2 −4 −3

)
having unit determinant.

• Thus, the nonlinear Schrödinger field theory does not have any dimensionless free
parameters. One is free to work in units where α, β and κ take specific numerical
values. Without loss of generality, α and β may both be taken positive: a change in
sign of either of them can be compensated for by exchanging the roles of ψ and ψ∗

and reversing the sign of κ. Once the signs of α and β have been fixed, the sign of κ
acquires a physical meaning.
• Assuming α > 0 and β > 0 (in fact, one often works in units where α = 1 and
β = 1

2 ), the equation is called repulsive or defocusing if κ > 0 and attractive or
focusing if κ < 0. If κ > 0, then the energy H ≥ 0. By a choice of units, κ can be
taken equal to ±1 in these two cases. When κ = 0, (34) reduces to the free particle
linear Schrödinger equation of quantum mechanics [i~∂tψ = −(~2/2m)ψ′′], which
explains the name. However, the name can be misleading, as ψ here is a classical field,
not a quantum wavefunction.
• The classical NLSE admits a third conserved quantity

P = iαβ

∫
ψ∗ψ′ dx. (40)

Integrating by parts, we check that P = P ∗ is real. As defined, P has dimensions of
speed. We may interpret it as the total field velocity. We check that it is independent
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of time:

Ṗ = iαβ

∫
(ψ̇∗ψ′ + ψ∗ψ̇′) dx

= iαβ

∫
[(−iαβψ∗′′ + iακ|ψ|2ψ∗)ψ′ + ψ∗(iαβψ′′ − iακ|ψ|2ψ)′] dx

= −α2β

∫
[−βψ∗′′ψ′ + κ|ψ|2ψ∗ψ′ − ψ∗′(βψ′′ − κ|ψ|2ψ)] dx

= −α2β2

∫
[ψ∗′ψ′′ − ψ∗′ψ′′] dx− α2βκ

∫
|ψ|2(ψ∗ψ′ + ψ∗′ψ) dx

= −α2βκ

∫
|ψ|2(|ψ|2)′ dx = −α

2βκ

2

∫
(|ψ|4)′dx = 0. (41)

We integrated by parts thrice and omitted boundary terms which vanish for decaying
BCs.

0.8.2 Hamiltonian-Poisson bracket and Lagrangian formulations of NLSE

• The cubic NLSE admits a Hamiltonian-Poisson bracket formulation if we take the
energy (38) as the Hamiltonian and postulate the ‘canonical’ PBs

{ψ(x), ψ∗(x′)} = −iαδ(x− x′), {ψ(x), ψ(x′)} = {ψ∗(x), ψ∗(x′)} = 0. (42)

Recall that the operation of taking Poisson brackets introduces a factor of 1/action:
in particle mechanics, this comes from the derivatives with respect to coordinates and
momenta:

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (43)

The factor of α on the RHS of (42) ensures that the PBs have consistent dimensions.
We may interpret the PBs as saying that iψ∗/α is the field conjugate to ψ.
• Using the linearity and Leibniz rule properties of PBs, Hamilton’s equation for ψ is

∂tψ(x) = {ψ(x), H}

=

∫
dy
[
β∂yψ(y)∂y{ψ(x), ψ∗(y)}+ κψ(y)22ψ∗(y){ψ(x), ψ∗(y)}

]
=

∫
dy
[
iαβ∂2yψ(y)− 2iακψ(y)2ψ∗(y)

]
δ(x− y)

= iαβ∂2xψ − iακ|ψ(x)|2ψ(x). (44)

We integrated by parts and used decaying BCs to ignore the boundary term. Hamil-
ton’s equation agrees with (34) upon multiplying by i. Hamilton’s equation for ψ∗

gives the complex conjugate of the NLSE:

ψ̇∗ = −iαβψ∗′′ + iακ|ψ|2ψ∗. (45)

• Verify that {N,H} = 0, which is expected from the conservation of N .
• Verify that {P,H} = 0, which is expected from the conservation of P .
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Lagrangian for the NLSE. Recall from (42) that π = iψ∗/α is the field conjugate
to ψ. As in mechanics, we define the Lagrangian via an (inverse) Legendre transform:

L =

∫
πψ̇ dx−H where π = iψ∗/α (46)

is used to eliminate π. From the Hamiltonian in (38), we get

L =

∫ [
i

α
ψ∗ψ̇ + βψ∗∂2xψ −

1

2
κψ∗ψ∗ψψ

]
dx. (47)

The integrand is the Lagrangian density L. It is a polynomial in ψ,ψ∗ and their space
and time derivatives.
• To be sure, let us check whether the Euler-Lagrange equations that follow from this
Lagrangian reproduce the nonlinear Schrödinger equation. Since L does not depend
on derivatives of ψ∗, the corresponding EL equation is simply ∂L

∂ψ∗ = 0, i.e.,

(i/α)ψ̇ + β∂2xψ − κψ∗ψψ = 0, (48)

which agrees with (34). On the other hand, proceeding as in (18), the EL equation for
ψ is

∂

∂t

∂L
∂ψ̇

=
∂L
∂ψ
− ∂

∂x

∂L
∂ψx

+
∂2

∂x2
∂L
∂ψxx

. (49)

This leads to

∂t(iψ
∗/α) = −κψ∗ψ∗ψ + ∂2x(βψ∗)

or i∂tψ
∗ = αβ∂2xψ

∗ − ακ|ψ|2ψ∗, (50)

which agrees with the complex conjugate NLSE (45).
• Thus, we have furnished Hamiltonian-Poisson bracket and Lagrangian formulations
for the NLSE.

0.8.3 Noether’s Theorem and conserved quantities

• In classical mechanics, Noether’s theorem constructs a conserved quantity asso-
ciated to each infinitesimal symmetry of the Lagrangian. If qi → qi + δqi is an
infinitesimal symmetry of the Lagrangian (and therefore of the equations of motion),
then the corresponding conserved quantity is the Noether charge Q = piδq

i. Here, a
sum over degrees of freedom labeled by i is implied and pi are the momenta conjugate
to the generalized coordinates qi. In a field theory with field φ(x) and conjugate mo-
mentum field π(x), the conserved quantity associated to the infinitesimal symmetry
φ→ φ+δφ is given by

∫
π(x)δφ(x) dx. The integral over x plays the role of the sum

over degrees of freedom.
• The conservation of N (35) and P (40) in the nonlinear Schrödinger field theory
could have been arrived at by an application of Noether’s theorem.
• Global U(1) symmetry and conservation of N . We begin by noting that a change
in phase

ψ → eiθψ and ψ∗ → e−iθψ∗ (51)
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leaves the NLSE (34), the Hamiltonian (38) and the Lagrangian (47) unchanged. This
is called the global U(1) symmetry of the NLSE. The qualifier global is used to imply
that θ is constant, independent of x and t. Taking θ small, we get the infinitesimal
symmetry

ψ → ψ + iθψ so that δψ = iθψ. (52)

Recalling that the momentum conjugate to ψ is iψ∗/α, Noether’s theorem then guar-
antees the conservation of∫

(iψ∗/α)(iθψ) dx = − θ
α

∫
|ψ|2 dx. (53)

Up to constant factors, this is equal to N (35).
• Translation invariance and conservation of P . The NLSE is translation-invariant:
x does not appear explicitly, it enters only through derivatives and in the arguments of
fields. Thus, a constant shift x → x + a leaves the NLSE (34), the Hamiltonian (38)
and the Lagrangian (47) unaltered. Taking a small, the corresponding infinitesimal
symmetry transformation is

ψ(x)→ ψ(x) + aψ′(x) so that δψ = aψ′. (54)

The resulting conserved Noether charge is∫
(iψ∗/α)(aψ′) dx =

ia

α

∫
ψ∗(x)ψ′(x) dx, (55)

which we notice is proportional to P .

0.8.4 Canonical commutation relations

• In passing from the classical mechanics of a particle to the corresponding quantum
theory, we replace the dynamical variables q, p by operators (often matrices or dif-
ferential operators) acting on a suitable quantum state space. The latter is a linear
vector space with inner product, i.e., a Hilbert space. The operators are required to
obey commutation relations that replace classical Poisson brackets. For position and
momentum:

{qi, pj} = δij  [qi, pj ] = i~δijI (56)

where [A,B] = AB − BA is the commutator of operators, I is the identity and δij is
the Kronecker symbol.
• The reduced Planck’s constant ~ = h/2π, with dimensions of action is a new pa-
rameter that is present in the quantum theory. As a consequence, unlike the classical
theory, the quantum theory appears to possesses a dimensionless parameter, namely
~α. However, we will see that it can be absorbed into a redefinition of the fields.
Thus, the quantum theory can be formulated in terms of three dimensionful parame-
ters. They will be physically interpreted as Planck’s constant, the mass and interaction
strength of a collection of identical particles.
• In a similar manner, to quantize the nonlinear Schrödinger field, we replace the
classical field ψ(x) and its complex conjugate ψ∗(x) with the field operator ψ(x) and
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its hermitian adjoint ψ†(x). By analogy with (56) and based on (42), they are required
to satisfy the commutation relations

[ψ(x), ψ†(y)] = −iα i~ δ(x− y) = α~δ(x− y) and
[ψ(x), ψ(y)] = [ψ†(x), ψ†(y)] = 0. (57)

These commutation relations are not quite ‘canonical’ due to the α~ factor on the
right. Getting rid of this factor will make things easier to interpret. However, α~ is a
dimensionless free parameter, so we are not free, for instance, to put it equal to one
[Although we are free to work in units where α = 1, in those units ~ cannot also,
in general, be taken equal to 1]. To make the commutation relations take a canonical
form, we will define rescaled field operators

φ(x) = ψ(x)/
√
~α and φ†(x) = ψ†(x)/

√
~α. (58)

These rescaled operators satisfy so-called canonical commutation relations

[φ(x),φ†(y)] = δ(x− y), [φ(x),φ(y)] = [φ†(x),φ†(y)] = 0. (59)

The fields φ and φ† continue to have dimensions of 1/
√
L as in the classical theory.

0.8.5 Number and Hamiltonian operators

• Next, we define a dimensionless ‘number operator’

N =
N

~α
=

∫
φ†(x)φ(x) dx. (60)

The name will be justified shortly. This operator is hermitian and positive definite by
construction. Thus, its eigenvalues must be nonnegative.
• The Hamiltonian operator (with dimensions of energy) is similarly defined:

H =
H

~α
= β

∫
∂xφ

†(x)∂xφ(x)dx+
κ~α

2

∫
φ†(x)φ†(x)φ(x)φ(x) dx. (61)

It too is a hermitian operator. Notice that we have ordered the operators with φ† to
the left of φ. Although the order did not matter classically, it can have an effect in
the quantum theory since the field operators generally do not commute. This choice
is part of the definition of the quantum theory and is called normal ordering.
• We will assume that the fields (and states they act on) are such that integration by
parts with decaying BCs is permitted, so that we may write

H = −β
∫
φ†(x)∂2xφ(x) dx+

κ~α
2

∫
φ†(x)φ†(x)φ(x)φ(x) dx. (62)

•We then verify that [H,N ] = 0. It follows that the hermitian operators N and H
are simultaneously diagonalizable. They have a common set of eigenvectors which
can be chosen to form an orthonormal basis for the Hilbert space. We will denote these
common eigenvectors |E,N〉 where E and N are the corresponding eigenvalues:

〈E,N |E′, N ′〉 = δEE′δNN ′ , H|E,N〉 = E|E,N〉 and N |E,N〉 = N |E,N〉.
(63)
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0.8.6 Raising and lowering operators, vacuum state

• Raising and lowering property. From the canonical commutation relations (59)
and definition ofN , we show that

[N ,φ(x)] = −φ(x) and [N ,φ†(x)] = φ†(x). (64)

In anticipation of its interpretation, we will say that the state |E,N〉 has N particles.
Using these commutators, we show that

N (φ(x)|E,N〉) = (N − 1) φ(x)|E,N〉 and
N (φ†(x)|E,N〉) = (N + 1) φ†(x)|E,N〉. (65)

What this means is that if |E,N〉 is an eigenstate of N with eigenvalue N , then
φ†|E,N〉 is also an eigenstate but with eigenvalue N + 1. Similarly, φ|E,N〉 is
an eigenstate of N with eigenvalue N − 1. In other words, φ(x) lowers N by one
while φ†(x) raises N by one. φ and φ† are called lowering and raising operators or
annihilation and creation operators.
• Vacuum state. Recall that N (60) is a positive definite operator, so its eigenvalues
must be ≥ 0. For this to be consistent with the lowering property of φ, there must be
a state |E0, 0〉 (called a vacuum state) which is annihilated by φ(x), i.e.,

φ|E0, 0〉 = 0|E0, 0〉 = 0. (66)

If this were not the case, then by repeated application of φ, we could produce eigen-
states of N with negative eigenvalues. We will say that the vacuum state has no
particles.
• What is more, since H is normal ordered with φ to the right, it must annihilate a
vacuum state:

H|E0, 0〉 = 0. (67)

Thus, we infer that the energy of the vacuum state vanishes: E0 = 0. Although we will
not attempt to prove it here, it turns out there is only one such vacuum state, which we
denote |0, 0〉 or |0〉 for short. Furthermore, if κ > 0 (repulsive or defocusing NLSE),
thenH is a positive definite operator and the vacuum must be the ground state.
• Since φ†(x) is a raising operator, by successively applying it to the vacuum state,
we obtain eigenstates ofN

φ†(x1)|0〉, φ†(x2)φ†(x1)|0〉, . . . (68)

with eigenvalues N = 1, 2, 3, . . .. These are states with 1, 2, 3, . . . particles. Although
these states are generally not eigenstates of H , since [N ,H] = 0, eigenstates of H
can be obtained by taking suitable linear combinations of states with the same number
of particles.

0.8.7 N -particle wave function and its normalization

• An N -particle wavefunction. Suppose |E,N〉 is an N -particle state with energy
E. Then applying N lowering operators, we arrive at a state

φ(x1)φ(x2) · · ·φ(xN )|E,N〉 (69)
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with zero particles. So it must be proportional to the vacuum state and must be or-
thogonal to all other basis states |E′, N ′〉:

〈E′, N ′|φ(x1)φ(x2) · · ·φ(xN )|E,N〉 = 0 if N ′ 6= 0. (70)

This leads us to define a complex function of N positions:

ΨEN (x1, x2, . . . , xN ) =
1√
N !
〈0|φ(x1)φ(x2) · · ·φ(xN )|E,N〉. (71)

Since the field operators φ commute, Ψ is a symmetric function of the N position
coordinates. Recall that the wavefunction of a system of identical bosons must be
symmetric under exchange of the coordinates of any pair of bosons. Thus, we should
view Ψ as a candidate for an N -boson wavefunction in many-body quantum mechan-
ics. We will establish its properties in the sequel.
• The numerical prefactor 1/

√
N ! in (71) ensures that this wavefunction has unit L2

norm-squared. We will show that

I =

∫
dx1 · · · dxNΨ∗EN (x1, · · · , xN )Ψ(x1, · · · , xN ) = 1. (72)

To begin with, Eq. (71) allows us to write

I =
1

N !

∫
dNx 〈E,N |φ†(xN ) · · ·φ†(x1)|0〉〈0|φ(x1) · · ·φ(xN )|E,N〉. (73)

Using the orthogonality (70), we introduce a sum over all the basis states:

I =
1

N !

∫
dNx

∑
E′,N ′

〈E,N |φ†(xN ) · · ·φ†(x1)|E′N ′〉〈E′N ′|φ(x1) · · ·φ(xN )|E,N〉.

(74)
The completeness relation or resolution of the identity∑

E′,N ′

|E′N ′〉〈E′N ′| = I (75)

then allows us to write

I =
1

N !

∫
dNx 〈E,N |φ†(xN ) · · ·φ†(x1)φ(x1) · · ·φ(xN )|E,N〉. (76)

The integral over x1 gives us the number operatorN =
∫
dx1φ

†(x1)φ(x1).
•We will show that the subsequent integral over x2 is

ν2 =

∫
dx2φ

†(x2)Nφ(x2) = N(N − I) (77)

and that ∫
dx3ψ

†(x3)N(N − 1)ψ(x3) = N(N − I)(N − 2I). (78)
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It is then plausible (and possible to show by induction) that∫
dNx φ†(xN ) · · ·φ†(x1)φ(x1) · · ·φ(xN ) =N(N − I)(N − 2I) · · · (N − (N − 1)I)I.

(79)
Taking the expectation value in the state |E,N〉, it then follows that I = N !/N ! = 1,
which implies that the N -body wavefunction ΨEN (71) has unit norm.
• We now sketch the proof of these claims. It is convenient to define the number
density operator

n(x) = φ†(x)φ(x) so that N =

∫
n(x) dx. (80)

Then the canonical commutation relation (59)

φ†(x2)φ(x1)− φ(x1)φ†(x2) = −[φ(x1),φ†(x2)] = −δ(x1 − x2), (81)

upon multiplying on the left by φ†(x1) leads to the commutator identity

φ†(x2)n(x1) = n(x1)φ†(x2)− φ†(x1)δ(x1 − x2). (82)

We note in passing that the delta function is an even function of its argument. Using
this identity, the integral over x1 and x2 is∫

dx1dx2φ
†(x2)n(x1)φ(x2) =

∫
dx1dx2 n(x1)φ†(x2)ψ(x2)

−
∫
dx1dx2 δ(x2 − x1)φ†(x1)φ(x2)

= N2 −N = N(N − I). (83)

Using this, the integral over x3 is∫
dx3φ

†(x3)N(N − I)φ(x3) =

∫
dx3φ

†(x3)N2φ(x3)− (N2 −N). (84)

We will show that the first term is

ν3 =

∫
dx3φ

†(x3)N2φ(x3) = N(N − I)2. (85)

It then follows that∫
dx3φ

†(x3)N(N − I)φ(x3) = N(N − I)(N − 2I). (86)

To find ν3, we use (82) to write

φ†(3)n(1)n(2) = n(x1)φ†(x3)n(x2)− φ†(x1)n(x2)δ(x1 − x3)
= n(1)[n(2)φ†(3)− φ†(2)δ(x2 − x3)]− φ†(1)n(2)δ(x1 − x3)
= n(1)n(2)φ†(3)− n(1)φ†(2)δ(x2 − x3)
−[n(2)φ†(1)− φ†(2)δ(x1 − x2)]δ(x1 − x3)
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= n(1)n(2)φ†(3)− δ(x2 − x3)n(1)φ†(2)
−δ(x1 − x3)n(2)φ†(1) + δ(x1 − x3)δ(x1 − x2)φ†(2). (87)

We have abbreviated φ(x1) = φ(1) etc. Multiplying on the right by φ(3),

φ†(3)n(1)n(2)φ(3) = n(1)n(2)n(3)− δ(x2 − x3)n(1)n(2)
−δ(x1 − x3)n(2)n(3) + δ(x1 − x3)δ(x1 − x2)n(2). (88)

Integrating over x1, x2 and x3, we get formula (85) for ν3:

ν3 = N3 −N2 −N2 +N = N(N − 1)2. (89)

The proof of the general case by induction is left as an exercise.

0.8.8 Interpretation: system of N bosons with contact interactions

•We now return to the Hamiltonian operator (62) of the quantum Schrödinger field:

H = T + V = −β
∫
φ†(x)∂2xφ(x) dx+

κ~α
2

∫
φ†(x)φ†(x)φ(x)φ(x) dx. (90)

•We will now interpret this quantum field theory in terms of a (first quantized) quan-
tum mechanical system ofN identical bosons. Let x1, · · · , xN denote the positions of
the N point particles. We associate to the field Hamiltonian (90) an N -body quantum
mechanical Hamiltonian

HN = −β
(
∂2x1

+ · · ·+ ∂2xN

)
+

∑
1≤i<j≤N

κ~α δ(xi − xj). (91)

Each pair of particles interacts via a contact (delta function) potential with strength
κ~α. It is attractive/repulsive according as κ < 0 or κ > 0.
• The coefficients in (91) can be related to the ones familiar from quantum mechanics.
Indeed, putting

β =
~2

2m
and κ~α = g, (92)

where m is the mass of the particles, the many body Hamiltonian becomes

HN = − ~2

2m

(
∂2x1

+ · · ·+ ∂2xN

)
+

∑
1≤i<j≤N

g δ(xi − xj). (93)

The dimensions are verified to be consistent. The dimension of g is the same as that
of κ (energy ×L) with ~α dimensionless. On the other hand, ~2/2m has dimensions
of energy×L2 which is the same as that of β (39).
• Interestingly, the formulation of this many body quantum system as a QFT allows us
to write an expression for the position space energy eigenfunctions in terms of matrix
elements of the field operators. Indeed, if ΨEN is defined as in (71):

ΨEN (x1, x2, . . . , xN ) =
1√
N !
〈0|φ(x1)φ(x2) · · ·φ(xN )|E,N〉, (94)
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then
HNΨEN (x1, x2, . . . , xN ) = E ΨEN (x1, x2, . . . , xN ). (95)

The dimension of the N -body wave function ΨEN is L−N/2, which is consistent
with that of the field [ψ] = L−1/2, with the bra and ket vectors 〈0| and |EN〉 being
dimensionless.
• Let us sketch the proof of (95). To begin with, we recall from (63) that

H|E,N〉 = E|E,N〉 and that H|0〉 = 0 ⇒ 〈0|H = 0. (96)

We exploit this to write EΨEN as the matrix element of a commutator:

EΨEN (x1, x2, . . . , xN ) =
1√
N !

{
〈0|φ(x1)φ(x2) · · ·φ(xN )H|E,N〉

−〈0|Hφ(x1)φ(x2) · · ·φ(xN )|E,N〉
}

=
1√
N !

{
〈0|[φ(x1)φ(x2) · · ·φ(xN ),H]|E,N〉. (97)

Next, by repeated use of the Leibniz rule [A1A2, H] = [A1, H]A2 + A1[A2, H], we
write the commutator as a sum

[φ1φ2 · · ·φN ,H] =

N∑
j=1

φ1 · · ·φj−1[φj ,H]φj+1 · · ·φN . (98)

For instance, when N = 3, we have

[φ1φ2φ3,H] = [φ1,H]φ2φ3 + φ1[φ2φ3,H]
= [φ1,H]φ2φ3 + φ1[φ2,H]φ3 + φ1φ2[φ3,H]. (99)

The general case can be established by induction.
• Next, we show that the commutator

[φ(xj),H] = −β∂2xj
φ(xj) + ~ακφ†(xj)φ(xj)φ(xj)

=
(
−β∂2xj

+ ~ακn(xj)
)
φ(xj). (100)

To see this, we deal with the kinetic and potential operators separately. First,

[φ(xj),T ] = −β[φ(xj),

∫
φ†(x)∂2xφ(x)dx]

= −β
∫

[φ(xj),φ
†(x)]∂2xφ(x) dx

= −β
∫
δ(xj − x)∂2xφ(x) dx = −β∂2xj

φ(x). (101)

And next,

[φ(xj),V ] =
1

2
~ακ

∫
[φ(xj),φ

†(x)φ†(x)]φ(x)φ(x)
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=
1

2
~ακ

∫ (
φ†(x)[φ(xj),φ

†(x)] + [φ(xj),φ
†(x)]φ†(x)

)
φ(x)φ(x) dx

= ~ακ
∫
δ(xj − x)φ†(x)φ(x)φ(x) dx

= ~ακn(xj)φ(xj), (102)

implying (100). Putting this in (98), we get

[φ1 · · ·φN ,H] = −β
N∑
j=1

∂2xj
φ1 · · ·φN + ~ακ

N∑
j=1

φ1 · · ·φj−1n(xj)φjφj+1.

(103)
Consequently, (97) becomes

EΨEN (x1, . . . , xN ) = −β
N∑
j=1

∂2xj
ΨEN (x1, . . . , xN )

+
~κα√
N !

N∑
j=1

〈0|φ1 · · ·φj−1n(xj)φj · · ·φN |EN〉.(104)

To simplify the potential term, we use 〈0|φ† = 0. To exploit this, we move n(xj) all
the way to the left using the commutator relation (show this!)

[φ(x),n(y)] = δ(x− y)φ(y). (105)

• For instance, for N = 2, the sum over j has two terms:

((((
((((〈0|n(x1)φ1φ2|E2〉+ 〈0|φ1n(x2)φ2|E2〉 = 〈0|(���

�n(x2)φ1 + δ(x1 − x2)φ2)φ2|E2〉
= δ(x1 − x2)〈0|φ(x1)φ(x2)|E2〉. (106)

So for N = 2 we get

EΨE,2(x1, x2) =
[
−β(∂2x1

+ ∂2x2
) + ~ακδ(x1 − x2)

]
ΨE,2(x1, x2). (107)

This shows that ΨE,2 is an eigenstate of the 2-body Hamiltonian with energy E.
•More generally, we write

φ1 · · ·φj−1n(xj)φj · · ·φN = φ1 · · ·φj−2n(xj)φj−1 · · ·φN
+δ(xj − xj−1)φ1 · · ·φN

= φ1 · · ·φj−3n(xj)φj−2 · · ·φN
+[δ(xj − xj−1) + δ(xj − xj−2)]φ1 · · ·φN

= · · ·

= n(xj)φ1 · · ·φN +

j−1∑
i=1

δ(xi − xj)φ1 · · ·φN .(108)

Returning to (104), n annihilates 〈0|. Performing the sum over j, we get

EΨEN (x1, . . . , xN ) = −β
N∑
j=1

∂2xj
ΨEN (x1, . . . , xN )
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+
~κα√
N !

∑
1≤i<j≤N

δ(xi − xj)〈0|φ1 · · ·φN |EN〉

=

−β N∑
j=1

∂2xj
+ ~κα

∑
i<j

δ(xi − xj)

ΨEN (x1, . . . , xN )

= HNΨEN (x1, . . . , xN ). (109)

Thus, we have shown that ΨEN (x1, . . . , xN ) is an eigenstate of the N -body quantum
mechanical Hamiltonian (91) with eigenvalue E.
• To summarize, we have established that the quantum nonlinear Schrödinger field
theory describes a system of N identical nonrelativistic bosons moving on a line
and interacting via contact (delta function) potentials (either attractive or repulsive)
for each N = 0, 1, 2, . . .. Such a system models dilute atomic Bose gases (such as
Rubidium-87) at low temperatures in cigar-shaped traps. Since the atoms are neutral,
they do not interact via long-range electrostatic Coulomb forces, but rather via short-
range residual forces which we have treated as as arising from delta function poten-
tials. What is more, one learns in quantum scattering theory that (in three dimensions)
it is the s-wave part of the interparticle wavefunction that is most significant as the
interatomic spacing r → 0, since the wavefunction has a factor rl, which reduces
the amplitude of higher angular momentum (l = 1, 2, 3, . . .) partial waves as r → 0.
Thus, when we take the interparticle interaction to be very short-ranged, it is the s-
wave scattering that may be expected to dominate. Moreover, the sign of the s-wave
scattering length (positive/negative) is roughly correlated with whether the interaction
is repulsive or attractive (κ > 0 or κ < 0).
• For any fixedN , thisN -body system has only a finite number of degrees of freedom
(N ). The field theory acquires an infinite number of degrees of freedom by virtue of
including all possible values of N . Of course, since N is conserved, the number
of particles cannot change during the course of time evolution and is fixed by initial
conditions.
• We note that although our classical nonlinear Schrödinger field theory had three
dimensionful parameters (β, α, κ), after rescaling the fields and Hamiltonian in the
quantum theory, we were left with only two combinations β = ~2/2m and g = ~κα
aside from the (reduced) Planck constant ~.
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