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2 Events, sample space, probabilities and combination of events

Outcomes of an experiment. Suppose the performance of an experiment can lead to
various mutually exclusive outcomes. E.g.: (a) Tossing a coin can lead to the outcomes
heads and tails. (b) Rolling a die can lead to the outcomes 1,2,3,4,5,6 displayed on
the die. (c) Switching on a digital thermometer can lead to outcomes consisting of
temperature estimates such as 24.1, 22.5. 23.0 Celsius etc.

Elementary events are the possible mutually exclusive outcomes of an experiment.
The typical elementary event is denoted ω. The set of possible elementary events of a
given experiment is called the sample space, denoted Ω.

General events. Event A is associated to the elementary events of an experiment if
given any elementary event, we can say whether or not the outcome ω leads to the
occurrence of A. For example, event A could be that the outcome of rolling a die
is even. In this case, there are three elementary events ω = 2, 4, 6 that lead to the
occurrence of A. Thus, a general event A is associated to a set of elementary events.
Bearing this in mind, we may view an event A as simply a subset of the sample space
Ω.

Probability of an event when outcomes are equally likely. Consider an experiment
with a finite number N of mutually exclusive outcomes. This means the sample space
Ω is a finite set of N elementary events. Suppose further that the elementary events
are all equally likely. Then the probability of the event A is defined as the fraction
of outcomes in which A occurs: P(A) = N(A)/N where N(A) is the number of
elementary outcomes leading to the occurrence of A. For example, in the rolling of a
die, the event A corresponding to an even outcome has probability P(A) = 3/6.

Frequentist definition of probability. Experience allows us to extend the notion of
probability beyond experiments with equally likely outcomes. Suppose an experiment
can be repeatedly performed resulting in a sequence of independent trials under the
same conditions. These trials may be the repeated tossing of a coin or the repeated
estimation of the direction of wind in the horizontal plane at a fixed point in a room.
In each of these trials, we suppose that (based on chance) an event A of interest either
occurs or does not occur. The event A could be, for instance, the occurrence of heads
or the wind direction lying between North and North-East. Now, suppose the experi-
ment is repeated n times and the eventA occurs in n(A) of the trials. Then the relative
frequency of the event A in the given sequence of trials is n(A)/n. Remarkably, it is
found that the relative frequencies arising in different sequences of n trials approach
a common value as the number of trials grows indefinitely. This limiting frequency1

P(A) = lim
n→∞

n(A)/n (1)

is called the probability of the event A in the given experiment.
1This formula is further justified by the strong law of large numbers discussed in §12.
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• Evidently, the probability of any eventAmust be a real number with 0 ≤ P(A) ≤ 1.
• A pair of events A1 and A2 are mutually exclusive or incompatible if they cannot
both occur simultaneously. For example the events corresponding to an even and
an odd outcome from the roll of a die are incompatible. Viewed as subsets of the
sample space Ω, mutually exclusive events have empty intersection. An event A and
its complement Ā (the event that A does not occur) are mutually exclusive.

Combining events. Unions and intersections of sequences of events are defined in a
natural way. One often abbreviates A ∩B = AB. The difference between two events
A1 \A2 is one where A1 occurs but A2 does not. In particular Ā = Ω \A.

Visualizing relations between events. It is convenient to represent the sample space
Ω by a plane region whose points are the elementary events. Then events, which are
subsets of Ω are represented by various subsets of the plane region. In particular, Ā1

is the complement of A1. The complement of Ω is the empty set ∅ corresponding to
the event that nothing happened. Mutually exclusive events are represented by disjoint
subsets. Draw figures to illustrate the following general relations (i) If A1 ⊂ A2 then
Ā1 ⊃ Ā2. (ii) If A = A1 ∪ A2 then Ā = Ā1 ∩ Ā2 and (c) If A = A1 ∩ A2 then
Ā = Ā1 ∪ Ā2. More generally, given a relation between events, we may obtain an
equivalent relation by replacing events by their complements and changing ∪,∩,⊂,⊃
to ∩,∪,⊃,⊂.

Addition law for probabilities. Suppose A1 and A2 are a pair of mutually exclusive
events associated with the outcomes of a random experiment and let A = A1 ∪ A2.
Suppose the experiment is repeated n times resulting in a series of independent trials
under identical conditions. Let n(A1), n(A2) and n(A) be the number of trials in
whichA1,A2 andA occur. Since they are mutually exclusive, n(A) = n(A1)+n(A2)
whence

n(A)

n
=
n(A1)

n
+
n(A2)

n
. (2)

For large n, these relative frequencies approach limits which coincide with the corre-
sponding probabilities. Thus, for mutually exclusive events,

P(A1 ∪A2) = P(A1) + P(A2). (3)

Similarly, if A1, A2, A3 are mutually exclusive, then A1∪A2 is mutually exclusive of
A3. Applying the previous addition law twice,

P(A1 ∪A2 ∪A3) = P(A1) + P(A2) + P(A3). (4)

This addition law extends to n mutually exclusive events for n = 2, 3, 4, . . ..
• P(Ω) = 1 and P(∅) = 0

3 Conditional probability and statistical independence

Conditional probability. This concerns how the occurrence of one event is influ-
enced by that of another event. The probability of A occurring given that B is known
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to have occurred is denoted P(A|B) and may be expressed as

P(A|B) = P(AB)/P(B), (5)

assuming P(B) 6= 0 (so we cannot takeB = ∅). This may be understood by writing it
as P(AB) = P(B)P(A|B). In other words, the probability that both A and B occur
may be factorized as the product of the probability of B times the probability that A
occurs given that B did. Evidently, one also has P(AB) = P(A)P(B|A).
• Some consequences of the definition of conditional probabilities follow.

1. Since P(AB) ≤ P(B), conditional probabilities must lie in the interval [0, 1]

2. If A and B are mutually exclusive, P(A|B) = 0 = P(B|A).

3. If B implies A so that B ⊂ A, then P(A|B) = 1.

4. Suppose A1, A2, · · · are mutually exclusive events with (disjoint) union A =
∪kAk. Then

P(A|B) =
∑
k

P(Ak|B). (6)

5. Suppose A1, A2, · · · is an exhaustive collection of mutually exclusive events in
the sense that precisely one of the Ak always occurs (∪kAk = Ω), then

P(A) =
∑
k

P(A|Ak) for any event A. (7)

This formula is often helpful in calculating P(A).

Statistical independence. Two events A1 and A2 are said to be statistically indepen-
dent or simply independent if the probability that both occur factorizes as a product:

P(A1A2) = P(A1)P(A2). (8)

If this factorization does not hold, the events are statistically dependent.
This definition is motivated by the intuitive idea that A1 and A2 are independent,

if the occurrence ofA2 has no bearing on the probability of occurrence ofA1 and vice
versa. In terms of conditional probabilities, this is the assertion that

P(A1|A2) = P(A1) and P(A2|A1) = P(A2) (9)

It follows that P(A1A2)/P(A2) = P(A1).

Statistical independence generalizes to several events. A1, · · · , An are mutually
independent if the probability that any q (for 2 ≤ q ≤ n) of them to occur simultane-
ously factorizes as a product of individual probabilities:

P(AiAj) = P(Ai)P(Aj), P(AiAjAk) = P(Ai)P(Aj)P(Ak), · · · ,
P(A1A2 · · ·An) = P(A1)P(A2) · · ·P(An), (10)

for all combinations of indices such that 1 ≤ i < j < · · · ≤ n. Notice that mutual
independence is a stronger condition than pairwise statistical independence.
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4 Random variables and probability distributions

Random variable. Suppose Ω is a sample space of events. A real random variable
ξ is a function that assigns a real number to each elementary event ω ∈ Ω. For
a coin toss, the function ξ(heads) = 1, ξ(tails) = −1 is an example of a random
variable. Of course, there are other random variables such as η(heads) = 23.45 and
η(tails) = −π/7.

Probability distribution of a random variable. Let P{x′ ≤ ξ ≤ x′′} be the proba-
bility of the event that ξ lies in the interval [x′, x′′]. Knowledge of P{x′ ≤ ξ ≤ x′′}
for all x′ ≤ x′′ is said to characterize the probability distribution of the random vari-
able ξ.

Discrete random variable. A random variable ξ is discrete (or has a discrete distri-
bution) if it takes only a finite or denumerably infinite number of distinct values xwith
probabilities

Pξ(x) = P{ξ = x}, (11)

subject to the condition that ∑
i∈I

Pξ(xi) = 1. (12)

Here xi (for i in some index set I) denote all the possible values taken by ξ. For the
above random variable associated to a fair coin, Pξ(±1) = 1

2 .
• For a discrete random variable,

P{x′ ≤ ξ ≤ x′′} =
∑

i∈I, x′≤xi≤x′′
Pξ(xi). (13)

• The probability density function (PDF) for a discrete random variable ξ that takes
the values xi with probabilities Pξ(xi), is defined as a sum of Dirac delta functions

pξ(x) =
∑
i∈I

Pξ(xi)δ(x− xi). (14)

The utility of this definition is that the above sums of probabilities may be written as
integrals:

P{x′ ≤ ξ ≤ x′′} =

∫ ∞
−∞

pξ(x) dx. (15)

Such formulae then apply also to continuous random variables which we turn to next.

Continuous random variable and probability density. The random variable ξ is
continuous (or has a continuous distribution) if

P{x′ ≤ ξ ≤ x′′} =

∫ x′′

x′
pξ(x) dx, (16)
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where the probability density function pξ(x) is a nonnegative function with unit inte-
gral ∫ ∞

−∞
pξ(x) dx = 1. (17)

Assuming that pξ(x) is a continuous function, the probability of the event ξ = x is
zero: P{ξ = x} = 0 since it is the integral of a continuous (and hence bounded)
function over an interval of zero length. However, the probability that ξ lies in a dx
neighborhood of x is given by P{ξ ∈ [x, x+ dx]} ∼ pξ(x) dx.

Cumulative distribution function. The (cumulative) distribution function (CDF) Φξ(x)
is defined as the probability of the event that ξ ≤ x:

Φξ(x) = P{ξ ≤ x} for −∞ < x <∞. (18)

It follows from the definition that limx→∞Φξ(x) = 1.
• For a discrete random variable, the cumulative distribution is a staircase function

Φξ(x) =
∑

i∈I,xi≤x

Pξ(xi) =
∑
i∈I

Pξ(xi)θ(x− xi) (19)

where θ(x) is the unit step function, equal to 0 for x < 0 and 1 for x ≥ 0. At the
discrete values xi taken by the random variable, Φξ(x) jumps up by Pξ(xi).
• For a continuous random variable,

Φξ(x) =

∫ x

−∞
pξ(x

′) dx′. (20)

Evidently, the cumulative distribution function is a nondecreasing function.
• The derivative of the cumulative distribution function is the probability density

dΦξ(x)

dx
= pξ(x). (21)

This formula also applies to a discrete random variable if we define the derivative of
the unit step function θ(x) to be the Dirac delta function δ(x).

Mixture of discrete and continuous distributions. There are situations where a ran-
dom variable is neither discrete nor continuous but a mixture of both. The density of
states of a quantum system with partly discrete and partly continuous energy spectrum
is of this sort. The corresponding probability density function is a sum of a continuous
function ρξ and a weighted sum of Dirac deltas:

pξ(x) = ρξ(x) +
∑
i∈I

Pξ(xi)δ(x− xi). (22)

To qualify as a probability density, we must of course have∫ ∞
−∞

ρξ(x) dx+
∑
i

Pξ(xi) = 1. (23)
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5 Joint distribution and independent random variables

Joint probability distribution and density. The joint probability distribution of a
pair of discrete random variables ξ1, ξ2 is characterized by the probabilities

Pξ1,ξ2(x1, x2) = P{ξ1 = x1, ξ2 = x2}. (24)

We may say that ξ = (ξ1, ξ2) is a 2 dimensional vector-valued random variable. The
probability of the event (ξ1, ξ2) ∈ B where B is a subset of R2 is

P{(ξ1, ξ2) ∈ B} =
∑

(x1,x2)∈B

Pξ1,ξ2(x1, x2). (25)

The joint probabilities may be expressed in terms of conditional probabilities:

Pξ1,ξ2(x1, x2) = Pξ1|ξ2(x1|x2)Pξ2(x2). (26)

Here Pξ1|ξ2(x1|x2) is the probability that ξ1 takes the value x1 given that ξ2 takes the
value x2.
• For a pair of continuous random variables ξ1, ξ2, by the joint probability density,
we mean a function pξ1,ξ2(x1, x2) such that the probability of any event of the form
(ξ1, ξ2) ∈ B is given by

P{(ξ1, ξ2) ∈ B} =

∫∫
B

pξ1,ξ2(x1, x2) dx1dx2. (27)

• The joint density of ξ1 and ξ2 can be expressed in terms of the conditional probability
density:

pξ,η(x, y) = pξ|η(x|y)pη(y). (28)

Independent random variables. A family of random variables ξ1, ξ2, · · · , ξn is sta-
tistically independent if the events x′k ≤ ξk ≤ x′′k for k = 1, 2, · · · , n are independent
for any x′k ≤ x′′k . The infinite sequence of random variables ξ1, ξ2, · · · are statistically
independent if ξ1, ξ2, · · · , ξn are independent for each n = 2, 3, · · · .
• Recall that independent events were defined via factorization of probabilities. It
follows that the joint probability distribution of a pair of independent random variables
is such that

Pξ1,ξ2(x1, x2) = Pξ1(x1)Pξ2(x2) and pξ1,ξ2(x1, x2) = pξ1(x1)pξ2(x2) (29)

for discrete and continuous random variables ξ1 and ξ2 respectively.

Marginal distribution Suppose ξ and η are a pair of discrete random variables with
joint probability distribution encoded in the probabilities Pξ,η(x, y). We wish to find
the (marginal) probability distribution of one of them, say, ξ without reference to the
value of η. Since we must account for all possible values of η, the marginal distribution
of ξ is obtained by summing over all possible values of η

Pξ(x) =
∑
yj

Pξ,η(x, yj). (30)
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If Pξ,η is normalized to have integral 1, then check that Pξ is automatically normalized
to one.
• Suppose the values of the probabilities Pξ,η(x, y) are written in a rectangular array
with rows labelled by ξ and columns by η. Then the marginal probabilities of ξ and
η are obtained by adding up the entries in each row or column. These sums are con-
ventionally written along the margins of the paper on which the array is written down.
This explains the name marginal distribution.
• Analogously, for a pair of continuous random variables ξ, η the marginal density of
ξ is given by averaging over all possible values of η:

pξ(x) =

∫
pξ,η(x, y) dy. (31)

• The same averaging procedure is used in the construction of the reduced density
matrix of a subsystem by tracing over the remaining degrees of freedom in the sys-
tem. The idea of a marginal distribution also finds use in the passage from the micro-
canonical to canonical distributions in classical statistical mechanics.

Convolution: distribution of the sum of two independent random variables. Sup-
pose ξ1 and ξ2 are a pair of independent continuous random variables with probability
densities pξ1(x1) and pξ2(x2). Then the probability density of their sum η = ξ1 + ξ2
is given by the convolution

pη(y) =

∫ ∞
−∞

pξ1(y − x)pξ2(x) dx. (32)

To see why this is the case, we begin by noting that on account of their independence,
the joint probability density is given by pξ1,ξ2(x1, x2) = pξ1(x1)pξ2(x2). It follows
that the probability that η lies in the interval [y′, y′′] is given by

P{y′ ≤ η ≤ y′′} =

∫∫
y′≤x1+x2≤y′′

pξ1(x1)pξ2(x2) dx1 dx2

=

∫ y′′

y′
dy

∫ ∞
−∞

pξ1(y − x)pξ2(x) dx (33)

where we let y = x1 + x2 and denoted x2 by x.

Uniform distribution. Suppose a point ξ is ‘tossed at random’ into the interval [a, b].
This means the probability of ξ falling in the subinterval [x′, x′′] ⊂ [a, b] is indepen-
dent of the location of the interval. In other words, this probability must be transla-
tion invariant: P{ξ ∈ [x′, x′′]} = P{ξ ∈ [x′ + c, x′′ + c]} for all c not too big in
magnitude. Thus this probability can depend on x′ and x′′ only through the length
x′′ − x′: i.e., P{ξ ∈ [x′, x′′]} = f(x′′ − x′). Furthermore, using the idea of mu-
tually exclusive events, the probability of falling in a subinterval of length l + l′ is
equal to the sum of probabilities of falling in subintervals of length l and length l′. So
f(l + l′) = f(l) + f(l′) for any allowed l, l′. It can be shown that such a function is
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either linear f(l) ∝ l or unbounded for every l. However, f(l) ≤ f(b − a) = 1 for
every l ≤ b− a. It follows that f(l) = l/(b− a). Thus

P{x′ ≤ ξ ≤ x′′} =
x′′ − x′

b− a
=

∫ x′′

x′

dx

b− a
. (34)

Thus ξ is a continuous random variable with probability density

pξ(x) =

{
1/(b− a) if a ≤ x ≤ b
0 if x < a or x > b.

(35)

It is said to have a uniform distribution.
• Statistical characterization of a probability distribution. Since random variables
take a variety of values in different trials of an experiment, we say that a random
variable fluctuates. In physics such random variations (say in the position of a particle
or pressure of a gas) typically arise due to quantum and thermal fluctuations. This
means we need to treat the behavior of random variables probabilistically. We can
characterize the distribution of a random variable using some statistical quantities. The
mean value is the simplest of them. Fluctuations around the mean measure the width
of the probability density function and are encoded in quantities such as the variance.
Moments are more general quantities that measure fluctuations. In what follows, we
will introduce these quantities and study their properties and interpretation.

6 Expectation or mean value

Expectation value. The expectation value or mean/average value of a discrete ran-
dom variable with probability distributionPξ(x) = P{ξ = x} is defined as a weighted
sum of all values that the random variable takes:

Eξ = 〈ξ〉 =
∑
i∈I

xiP{ξ = xi} =
∑
i∈I

xiPξ(xi), (36)

assuming the series converges absolutely. If η = ϕ(ξ) is some function of the random
variable ξ, then

Eη = 〈ϕ(ξ)〉 =
∑
i

ϕ(xi)Pξ(xi). (37)

To see why, we note that η is a discrete random variable that takes the values y = ϕ(x).
If ϕ is not one-to-one there may be several values of x corresponding to a given value
of y. Thus,

Pη(y) = P{η = y} =
∑

x:ϕ(x)=y

Pξ(x). (38)

Consequently,

〈η〉 =
∑
y

yPη(y) =
∑
y

y
∑

x:ϕ(x)=y

Pξ(x) =
∑
i

ϕ(xi)Pξ(xi). (39)
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• The expected value of a continuous random variable ξ with probability density func-
tion pξ(x) is

〈ξ〉 =

∫ ∞
−∞

xpξ(x) dx. (40)

As before, if η = ϕ(ξ), then

〈ϕ(ξ)〉 =

∫ ∞
−∞

ϕ(x)pξ(x) dx. (41)

• More generally, if ϕ(ξ, η) is a function of a pair of discrete or continuous ran-
dom variables with probability distribution Pξ,η(x, y) or probability density function
pξ,η(x, y), then

〈ϕ(ξ, η)〉 =
∑
i,j

ϕ(xi, yj)Pξ,η(xi, yj) or

〈ϕ(ξ, η)〉 =

∫∫
ϕ(x, y)Pξ,η(x, y) dxdy (42)

Properties of expectation value. We list some basic properties of the expectation
value of discrete as well as continuous random variables

1. 〈1〉 = 1. One way to interpret this is via 〈1〉 =
∫∞
−∞ pξ(x)dx = 1.

2. 〈cξ〉 = c〈ξ〉 for any real constant c.

3. 〈ξ1+ξ2〉 = 〈ξ1〉+〈ξ2〉 for a pair of random variables ξ1 and ξ2 with expectation
values appearing on the right.

4. The expectation of a nonnegative random variable is nonnegative: If ξ ≥ 0, then
〈ξ〉 ≥ 0 and more generally, if ξ1 ≤ ξ2, then 〈ξ1〉 ≤ 〈ξ2〉.

5. Suppose ξ1 and ξ2 are independent random variables. Since the joint probability
density of a pair of independent random variables factorizes, 〈ξ1ξ2〉 = 〈ξ1〉〈ξ2〉.

• The expectation value of a random variable ξ that is uniformly distributed in the
interval [a, b] is (a+ b)/2. In fact, the probability density is 1/(b− a) for a ≤ x ≤ b
and zero outside the interval, so that

〈ξ〉 =

∫ b

a

x dx

b− a
=
a+ b

2
. (43)

7 Mean square, Chebyshev’s inequality and variance

Mean square value. By the mean square value of a real random variable ξ we mean
the expectation value of ξ2:

〈ξ2〉 =
∑
i

x2iPξ(xi) or 〈ξ2〉 =

∫
x2pξ(x) dx (44)

according as ξ is discrete or continuous.
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Chebyshev’s inequality. For any real random variable and any ε > 0,

P{|ξ| > ε} ≤ 1

ε2
〈ξ2〉. (45)

We will use Chebyshev’s inequality to establish the (weak) law of large numbers in
§12. To establish Chebyshev’s inequality, consider the new ‘piece-wise constant’ ran-
dom variable η defined for any ε > 0 by

η =

{
0 if ξ2 ≤ ε2

ε2 if ξ2 > ε2
(46)

Roughly, where ξ2 is smaller than an arbitrary threshold value ε2, η vanishes while
when when ξ2 exceeds the threshold, η takes the constant threshold value. By con-
struction, η ≤ ξ2. It follows that

〈η〉 ≤ 〈ξ2〉 or ε2P{|ξ| > ε} ≤ 〈ξ2〉, (47)

which is Chebyshev’s inequality (45). To heuristically interpret Chebyshev’s inequal-
ity, suppose 1

ε2 〈ξ
2〉 < δ. Then P{|ξ| ≤ ε} ≥ 1− δ. So if δ is small, then |ξ| ≤ ε with

a high probability. In particular, if the mean square value 〈ξ2〉 = 0, then ξ = 0 with
probability one. Roughly speaking, if the mean square value is small, then the random
variable is likely to be small.

Variance or dispersion of a random variable. By the variance or dispersion of the
random variable ξ we mean the mean square value of ξ − 〈ξ〉:

var(ξ) = Dξ = 〈(ξ − 〈ξ〉)2〉 = 〈(ξ2 − 2ξ〈ξ〉+ 〈ξ〉2)〉 = 〈ξ2〉 − 〈ξ〉2. (48)

Note that 〈ξ − 〈ξ〉〉 is identically zero. This is why we squared it before taking the
expectation value.
• Standard deviation. The square-root of the variance is called the standard deviation
σ(ξ)

σ(ξ) =
√

var(ξ). (49)

The dispersion and standard deviation are measures of the fluctuations of ξ around its
mean value.
• Properties of the dispersion or variance

1. var (1) = 0

2. var (cξ) = c2 var (ξ) for any real number c.

3. If ξ1 and ξ2 are independent random variables, then

var (ξ1 + ξ2) = var (ξ1) + var (ξ2). (50)

Show that this is true using the property that the expectation value of a product
of independent random variables factorizes: 〈ξ1ξ2〉 = 〈ξ2〉〈ξ2〉.

• What is the variance of a random variable ξ with a uniform distribution on the
interval [a, b]?
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Covariance. Given a pair of random variables ξ and η, we define their covariance by

cov(ξ, η) = 〈(ξ − 〈ξ〉)(η − 〈η〉)〉. (51)

Evidently, it is symmetric: cov(ξ, η) = cov(η, ξ). The covariance is a measure of the
correlation between random variables. If ξ and η are independent random variables
then their covariance vanishes. On the other hand, if η = ξ then cov(ξ, η) = cov(ξ, ξ)
= var ξ.
• For any pair of real random variables (not necessarily independent), show that

var (ξ1 + ξ2) = var (ξ1) + var (ξ2) + 2 cov(ξ1, ξ2). (52)

8 Moments, cumulants, generating and characteristic functions

Moments. Given a random variable ξ, its moments Gn, when they exist, are defined
as

Gn = Eξn = 〈ξn〉 for n = 0, 1, 2, . . . . (53)

Evidently, G0 = 1, G1 = Eξ is the expected value and G2 = 〈ξ2〉 is the mean square
value. Moreover, the variance is given by Dξ = G2 −G2

1. If ξ is discrete, taking the
values xi with probability Pξ(xi), then

Gn = Eξn =
∑
i

Pξ(xi)x
n
i (54)

while for a continuous random variable with probability density pξ(x),

Gn =

∫ ∞
−∞

xnpξ(x) dx. (55)

Of course, not all moments may exist. If pξ(x) goes to zero exponentially fast as
|x| → ∞, then all moments are guaranteed to exist.

Generating function for a discrete random variable. Suppose ξ is a discrete ran-
dom variable taking the values 0, 1, 2, . . . with probabilities P{ξ = k} = Pξ(k) for
k = 0, 1, 2, 3, . . .. Associated to such a discrete random variable is a generating func-
tion, which is the function of a complex variable defined as

Fξ(z) =

∞∑
k=0

Pξ(k)zk for |z| ≤ 1. (56)

Clearly, Fξ(1) = 1. Since Pξ is a probability distribution, the series converges for
|z| = 1. In fact, the series defines an analytic function for |z| < 1. What is more, we
may recover the probability distribution of ξ via derivatives of Fξ at z = 0. In fact,

Pξ(k) =
1

k!
F

(k)
ξ (0). (57)

12



Interestingly, for any fixed z, Fξ(z) may be interpreted as the expectation value of the
random variable zξ:

Fξ(z) = 〈zξ〉 =
∑
k≥0

Pξ(k)zk. (58)

Differentiating this expression successively with respect to z and putting z = 1 allows
us to express the moments of ξ in terms of derivatives of F at z = 1. For instance,

F ′(z) = 〈ξzξ−1〉 ⇒ F ′(1) = 〈ξ〉 = G1, (59)

and
F ′′(z) = 〈ξ(ξ − 1)zξ−2〉 ⇒ G2 = 〈ξ2〉 = F ′′(1) + F ′(1). (60)

• The generating function of a sum of independent random variables each taking the
values k = 0, 1, 2, 3, . . . is the product of individual generating functions. In fact,
suppose ξ = ξ1 + · · ·+ ξn. Then

Fξ(z) = 〈zξ1+···ξn〉 = 〈zξ1zξ2 · · · zξn〉 =

n∏
i=1

〈zξi〉 =

n∏
i=1

Fξi(z). (61)

A similar factorization is used in calculating the partition function of a system of
noninteracting (free) particles in statistical mechanics.

Characteristic function. Given a real random variable ξ, its characteristic function
fξ(t) is defined as

fξ(t) = Eeiξt for t ∈ R. (62)

• For a discrete random variable that takes the values k = 0, 1, 2, . . ., we see that the
characteristic function reduces to the generating function evaluated on the boundary
of the unit circle (|z| = 1) in the complex plane:

fξ(t) = Fξ(z = eit) =
∑
k

Pξ(k)eikt. (63)

In fact, in this case, the characteristic function is a Fourier series with Fourier coeffi-
cients given by the probabilities Pξ(k).
• For a continuous random variable ξ, the characteristic function is the Fourier
transform of the probability density function pξ(x):

fξ(t) = 〈eiξt〉 =

∫ ∞
−∞

pξ(x)eixtdx. (64)

By inverting the Fourier transform, we may recover the probability density function
(where it is well-behaved) from the characteristic function

pξ(x) =

∫ ∞
−∞

fξ(t)e
−ixt dt

2π
. (65)
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Moments from characteristic function. Provided the moments exist, by differenti-
ating under the integral sign, we may obtain the moments as successive derivatives of
the characteristic function evaluated at t = 0. To begin with, f(0) = 〈1〉 = G0 = 1.
Next,

f ′(t) = i

∫
xeixtpξ(x) dx ⇒ f ′(0) = i〈ξ〉 = iG1. (66)

Similarly, f ′′(0) = i2G2 and more generally,

Gn = (−i)nf (n)(0) for n = 0, 1, 2, . . . . (67)

All moments need not exist. As long as 〈|ξ|k〉 exists, the above formulae for Gn hold
for n < k.

Characteristic function as generating series for moments. By expanding eiξt in
a power series and assuming the probability density is sufficiently well-behaved to
permit interchanging the order of integration and summation, we may express the
characteristic function as a power series with coefficients proportional to the moments:

fξ(t) =

∫ ∞∑
0

1

n!
tn(ix)npξ(x) dx =

∞∑
n=0

(it)n

n!
Gn. (68)

Thus, we may view the characteristic function as a generating function (or series)
for moments. Evidently, if the characteristic function is analytic at t = 0, then the
generating series of moments converges. This happens if the moments do not grow
too fast in magnitude (e.g., not faster than exponentially, i.e., |Gn| ≤ cn for some
constant c > 0).
•What is the characteristic function fξ(t) = 〈eiξt〉 of the uniform distribution on the
unit interval [0, 1]?
• Closely related to the characteristic function is the moment generating function, de-
fined as Mξ(t) = 〈etξ〉 for real t. Crudely, it is the characteristic function evaluated
at imaginary arguments. Unlike the characteristic function which is the expectation
value of the bounded random variable eiξt the moment generating function is the ex-
pectation value of the unbounded random variable etξ. Thus, the latter may fail to
exist if the probability density does not vanish sufficiently fast for large |ξ|.
• Cumulants. The cumulants Cn≥0 of a real-valued probability distribution provide
an alternative to its moments Gn. They may be defined as the coefficients in the series
expansion of the logarithm of the characteristic function

Wξ(t) = log fξ(t) = log〈eiξt〉 =

∞∑
n=0

(it)n

n!
Cn. (69)

The first few cumulants are

C0 = 0, C1 = 〈ξ〉 = G1, C2 = var ξ = G2 −G2
1, C3 = 〈(ξ − 〈ξ〉)3〉. (70)

Derive formulae for Cn in terms of Gk for n = 0, 1, 2, 3.
•We will see later that the third and higher order cumulants of a Gaussian vanish.
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9 Bernoulli trials and the binomial distribution

Bernoulli trials are identical independent experiments in each of which an event A
may occur with probability p and fail to occur with probability q = 1−p. Occurrence
of A is called a success and its nonoccurrence a failure. It is convenient to introduce
the ‘Bernoulli’ random variable ξk associated to the kth Bernoulli trial, taking the
values 1 or 0 depending on whether the trial is a success or a failure. With this under-
standing, each elementary event ω in n consecutive Bernoulli trials may be described
by an n digit binary number such as 0100111 · · · 01011.

Binomial distribution. Let us define the random variable ξ = ξ1 + · · · + ξn, which
is the number of successes in n Bernoulli trials. We wish to find the probability of
k successes i.e., P{ξ = k}. Since the trials are independent, the probability of any
elementary event ω with k successes and n− k failures is P(ω) = pkqn−k. There are(
n
k

)
elementary events ω with k successes. Thus P{ξ = k} =

(
n
k

)
pkqn−k. This leads

us to the binomial distribution

Pξ(k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, 2, · · · , n. (71)

It is the probability distribution of the discrete random variable ξ equal to the number
of successes in n Bernoulli trials with p being the probability of success in each trial.

Mean and variance of Binomial random variable ξ. To find these it is not necessary
to evaluate

∑
k Pξ(k)k and

∑
k Pξ(k)k2 etc. Instead we note that ξ = ξ1 + · · · + ξn

implies that 〈ξ〉 = 〈ξ1〉+· · ·+〈ξn〉 and since ξi are independent, var (ξ) = var (ξ1)+
· · ·+ var (ξn). What is more, since ξk are identically distributed for i = 1, 2, 3, · · · , n,
〈ξ1〉 = · · · = 〈ξn〉 and var ξ1 = var ξ2 = · · · = var ξn. Furthermore, 〈ξk〉 =
p · 1 + (1− p) · 0 = p. Moreover, ξ2k = ξk, so var ξk = 〈ξ2k〉 − 〈ξk〉2 = 〈ξk〉 − p2 =
p − p2 = pq. Consequently, 〈ξ〉 = np and var(ξ) = npq. Thus there are on average
np successes in n Bernoulli trials with a variance of np(1− p).
• Show that the generating function of a binomial random variable with parameters
n, p is

Fξ(z) = (pz + q)n. (72)

10 Poisson distribution: a limit of the binomial distribution

Poisson distribution. The Poisson distribution is a limit of the binomial distribution
as the number of trials n → ∞ and the probability of success p → 0 while the mean
number of successes np = a has a finite limit (we will apply this to radioactive decay
shortly). In fact,(

n

k

)
pk(1− p)n−k → ak

k!
e−a for k = 0, 1, 2, . . . . (73)

To see this we consider k = 0, 1, 2, . . . successively. To begin with,

Pξ(0) = (1− p)n = (1− a/n)n → e−a. (74)
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Furthermore,

Pξ(k)

Pξ(k − 1)
=

n!pkqn−k

(n− k)!k!

(n− k + 1)!(k − 1)!

n!pk−1qn−k+1
=
p(n− k + 1)

kq
→ a

k
(75)

as n→∞ and p→ 0. It follows that

Pξ(1) =
a

1
Pξ(0) = ae−a, Pξ(2) =

a

2
Pξ(1) =

a2

1 · 2
e−a,

Pξ(3) =
a

3
Pξ(2) =

a3

1 · 2 · 3
e−a, . . . , Pξ(k) =

a

k
Pξ(k − 1) =

ak

k!
e−a.(76)

• Thus, the probability of k successes in n Bernoulli trials when the probability p of
each success is small and the number of trials n→∞ holding a = np fixed is

Pξ(k) =
ak

k!
e−a for k = 0, 1, 2, . . . . (77)

A random variable ξ taking values k = 0, 1, 2, . . . and possessing this distribution is
said to have a Poisson distribution with parameter a. It is straightforward to check that
the distribution is normalized:

∑
k≥0 Pξ(k) = eae−a = 1.

•Unlike the binomial distribution that depends on two parameters n and p, the Poisson
distribution depends only on one positive real parameter a > 0, which is equal to its
mean value. This is immediate since the mean value of a Binomial random variable is
np, which in the limit considered is equal to a. Thus,

〈ξ〉 =

∞∑
k=0

kPξ(k) = a. (78)

• The variance of a binomial random variable is npq which becomes a in the limit
n → ∞, p → 0 and q → 1. Thus, the variance of a Poisson distribution is the same
as its mean, a.
• The generating function of the Poisson distribution with mean a is

Fξ(z) =

∞∑
k=0

Pξ(k)zk =

∞∑
k=0

(az)k

k!
e−a = ea(z−1). (79)

Modeling radioactive decay via a Poisson distribution. A gram of radium has about
1022 atoms. It gradually decays to radon through the emission of about 1010 alpha par-
ticles per second. Suppose there are a large number n0 of radium atoms in a container
at t = 0. The atoms are sufficiently far separated to justify the assumption that each
atom decays independently of all the others. Moreover, since they are identical, each
radium atom has the same probability p(t) to decay in t seconds. In fact, for moderate
times, this decay probability is quite small, p(1) ≈ 1010−22 = 10−12. Thus, it is
natural to model the radioactive decay of radium atoms in terms of a large number of
Bernoulli trials, each with a small probability of success (decay). Let the random vari-
able ξ(t) denote the number of alpha particles emitted in t seconds. It is the number
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of successes in n0 Bernoulli trials with probability of success p(t). Since n0 and p(t)
are small, the binomial distribution of ξ(t) may be well approximated by a Poisson
distribution

P{ξ(t) = k} =
ak

k!
e−a for k = 0, 1, 2, . . . where a = 〈ξ(t)〉 = n0p(t) (80)

is the average number of alpha particles emitted in t seconds. This probability distri-
bution agrees well with experimental measurements of the number of alpha particles
emitted in t seconds.

Related continuous probability distributions. Interestingly, if we think of k =
0, 1, 2, . . ., as a parameter, then

p(k)η (s) =
ske−s

k!
for s ≥ 0 (81)

may be viewed as a probability density function for a continuous positive real random
variable η. We verify that∫ ∞

0

p(k)η (s)ds =

∫ ∞
0

ske−s

k!
= 1 for any k = 0, 1, 2, . . . . (82)

Interpretation: The probability density p(k)η (s) arises in the spectral statistics of (un-
folded) quantum energy levels of a classically integrable system. It turns out that
p
(k)
η (s)ds is the probability that the spacing between kth nearest neighbor energy lev-

els lies between s and s+ ds.

11 Gaussian or Normal distribution

De Moivre-Laplace limit theorem. Suppose ξ1, ξ2, . . . , ξn are n independent iden-
tically distributed (‘iid’) random variables, each taking the values 1 and 0 with proba-
bilities p and q = 1− p. ξk are of course the ‘Bernoulli’ random variables introduced
in the context of Bernoulli trials. As before, we define the sum

Sn = ξ1 + · · ·+ ξn (83)

which is a random variable (previously denoted ξ) taking the values 0, 1, . . . , n with
mean and variance 〈Sn〉 = np and var(Sn) = npq. We know that Sn is the number
of successes in n Bernoulli trials. It has a binomial distribution

P{Sn = k} =

(
n

k

)
pkqn−k. (84)

Now consider the normalized sum

S∗n =
Sn − 〈Sn〉√

var(Sn)
, (85)
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which is a random variable taking the values x = (k−np)/√npq for k = 0, 1, 2, . . . , n
with probabilities given by the binomial formula

(
n
k

)
pkqn−k. Now, it can be shown

using the Stirling approximation (n! ∼
√

2πnnne−n) that as n → ∞, S∗n tends to a
continuous real random variable with probability distribution given by

lim
n→∞

P{x′ ≤ S∗n ≤ x′′} =
1√
2π

∫ x′′

x′
e−x

2/2 dx. (86)

This result was discovered by de Moivre in 1733.

Gaussian probability density. The corresponding limiting probability density

p(x) =
1√
2π
e−x

2/2 for −∞ < x <∞ (87)

is called the (standard) Gaussian or normal distribution. The graph of the probability
density is a bell-shaped curve. It is an even function.
• The Gaussian probability density occurs in the work of de Moivre from 1733.
Laplace considered normal random variables around 1780. They are named after
Gauss, who discussed them in 1809.
• A random variable ξ with the standard Gaussian probability density is called a stan-
dard Gaussian random variable. It has mean zero and variance one. In fact,

〈ξ〉 =

∫
xp(x) dx = 0 (88)

since the integrand is odd. On the other hand,

var(ξ) = σ2
ξ = 〈ξ2〉 − 〈ξ〉2 =

1√
2π

∫ ∞
−∞

x2e−x
2/2 dx = 1. (89)

Normal cumulative distribution function. The corresponding cumulative distribu-
tion function is

Φ(x) =
1√
2π

∫ x

−∞
e−u

2/2 du. (90)

We verify that Φ(x) → 0, 1 as x → ∓∞ as required of a cumulative distribution
function. Since p(x) = p(−x), it follows that Φ(−x) = 1 − Φ(x). In particular
Φ(0) = 1/2. Since Φ(x) is the probability that ξ ≤ x,

P{|ξ| ≤ x} = 2(Φ(x)− Φ(0)). (91)

Normal distribution with mean a and variance σ2. Note that if X is a standard
Gaussian random variable with mean zero and variance one, then Y = σ(X + a) is a
normal random variable with mean a and variance σ2. To obtain the pdf pY (y) of Y
from the standard gaussian for X we change variables y = σ(x + a) and dy = σdx
in pX(x)dx and use

pY (y)dy = pX(x)dx (92)
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to deduce that
pY (y) =

1√
2πσ2

e−(y−a)
2/2σ2

(93)

a random variable with this probability density function is called a normal random
variable with mean a and variance σ2.

Error function. The error function is conventionally defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (94)

It is closely related to the cumulative distribution function of a standard gaussian ran-
dom variable:

erf(x) = 2(Φ(
√

2x)− Φ(0)) = 2Φ(
√

2x)− 1. (95)

From this we deduce that erf(x) is the probability that a standard Gaussian random
variable ξ is at most

√
2x in magnitude:

erf(x) = P{|ξ| ≤
√

2x}. (96)

• Suppose ξ is a normal random variable with mean a and variance σ2. Then the
probability P{|ξ − a| < nσ} that ξ lies within nσ of µ for n = 1, 2, 3, · · · are
≈ 0.683, 0.954, 0.997. So with ≈ 99.7% probability, a gaussian random variable
takes values within 3σ of its mean. It lies within one standard deviation of the mean
with probability ≈ 68%.

Characteristic function of the Gaussian. Suppose ξ is a standard Gaussian random
variable with probability density e−x

2/2/
√

2π. It is possible to show that its charac-
teristic function is also a Gaussian

fξ(t) =
1√
2π

∫ ∞
−∞

e−x
2/2eixt dx = e−t

2/2. (97)

To see this, we complete the square to express this as a Gaussian integral:

e−x
2/2eixt = e−

1
2 (x

2−2ixt) = e−
1
2{(x−it)

2+t2}. (98)

Thus

fξ(t) =
1√
2π

∫ ∞
−∞

e−
1
2{(x−it)

2+t2} dx = e−t
2/2 1√

2π

∫ ∞
−∞

e−y
2/2dy = e−t

2/2

(99)
where we put y = x − it and used dy = dx. It follows that the cumulant generating
function of the standard Gaussian is

Wξ(t) = log fξ(t) = −t2/2. (100)

Consequently, the cumulants (Cn = (−i)nW (n)(0)) of the standard Gaussian are
C0 = 0, C1 = 0, C2 = 1 and Cn = 0 for n ≥ 3. The standard gaussian may be
characterized as the distribution for which all cumulants other than the second vanish
and C2 = 1.
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12 Law of large numbers

Weak law of large numbers. Heuristically, the weak law of large numbers says that
for large n, the arithmetic mean of n independent identically distributed random vari-
ables ξ1, · · · , ξn is a good approximation to the mean value a = 〈ξk〉. This is a
consequence of Chebyshev’s inequality, as we will argue below.
• Suppose ξ1, . . . , ξn are n independent identically distributed random variables. Then
they have the same mean a = 〈ξk〉 and variance σ2 = var ξk. Let the random variable
η = (ξ1 + · · ·+ ξn)/n denote the arithmetic mean. Then

〈η〉 = a and var (η) = σ2/n (101)

since they are independent. Chebyshev’s inequality applied to η − a leads to the
inequality

P{|η − a| > ε} ≤ 1

ε2
〈(η − a)2〉 =

σ2

nε2
for any ε > 0. (102)

Thus, given any ε > 0, however small, the probability that η is within ε of the mean
a can be made arbitrarily close to one by choosing n large enough. More formally,
given any ε > 0 and δ > 0, however small, then as long as n > σ2/δε2,

a− ε ≤ 1

n
(ξ1 + · · ·+ ξn) ≤ a+ ε (103)

with probability greater than 1− δ.

Strong law of large numbers. As in §9, consider n consecutive Bernoulli trials where
an eventA can occur or fail to occur with probabilities p and q = 1−p. Let ξ1, · · · , ξn
be the associated independent identically distributed Bernoulli random variables each
taking the values 1 and 0 with probabilities p and q so that a = 〈ξk〉 = p = P(A).
Moreover, let n(A) = ξ1 + · · ·+ ξn be the number of trials in which A occurs. Then
the relative frequency of A is simply the arithmetic mean of these Bernoulli random
variables

n(A)

n
=

1

n
(ξ1 + · · ·+ ξn). (104)

By the weak law of large numbers, n(A)/n nearly equals a = P(A) for sufficiently
large n. More precisely, given any δ, ε > 0 however small, there is an n such that

P(A)− ε ≤ n(A)

n
≤ P(A) + ε (105)

with probability greater than 1−δ. This justifies our frequentist definition of probabil-
ities in (1). What is more, with some more effort, one may show that with probability
one,

lim
n→∞

n(A)

n
= P(A). (106)

This is known as the strong law of large numbers.
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13 Central limit theorem

Central limit theorem. This is a generalization of the De Moivre-Laplace theorem
and was stated by Laplace in 1812. Subject to suitable hypotheses, it states that the
distribution of a ‘normalized’ sum of n independent random variables approaches a
Gaussian. The De Moivre-Laplace theorem deals with the special case of identical
Bernoulli random variables. More precisely, suppose ξk for k = 1, 2, . . . are a se-
quence of independent random variables with finite means ak = 〈ξk〉 and variances
σ2
k = Dξk satisfying the Lyapunov condition (to be specified below). As before,

consider the normalized sum

S∗n =
Sn − 〈Sn〉√

var(Sn)
where Sn =

n∑
k=1

ξk. (107)

Then as n→∞, the random variable S∗n is distributed normally:

lim
n→∞

P{x′ ≤ S∗n ≤ x′′} =
1√
2π

∫ x′′

x′
e−x

2/2 dx. (108)

Note that ξk need not be identically distributed, their means and variances could differ.

Lyapunov condition. The sequence of independent random variables ξk with finite
means ak and variances σ2

k is said to satisfy the Lyapunov condition if

lim
n→∞

1

B3
n

n∑
k=1

〈|ξk − ak|3〉 = 0 where B2
n = var(Sn) =

n∑
k=1

σ2
k. (109)

14 Brownian motion modeled as a random walk

•A small particle such as a pollen grain suspended in a stationary homogeneous liquid
at a fixed temperature is found to move around in a seemingly unpredictable manner:
jagged trajectories consisting of straight-lines that abruptly change direction. This
phenomenon is called Brownian motion and is due to repeated collisions of the grain
with molecules of the liquid. We will model one-dimensional Brownian motion as
a discrete random walk by making the following simplifying assumptions. (a) The
‘Brownian’ particle can be located at the sites of a uniformly spaced lattice xj = j∆x
where j = 0,±1,±2, . . .. Here ∆x is a fixed lattice spacing. (b) The particle’s
position is recorded at the discrete times ti = i∆t for i = 0, 1, 2, . . .. ∆t is the fixed
time step. (c) If at time t, the particle is at position x then at time t + ∆t it is at
either of its neighboring sites x±∆x with equal probability. In particular, the shift in
the particle’s position is assumed independent of its previous motion. (d) Assume for
definiteness that the particle begins at the point x = 0 at time t = 0.
• Let the random variable ξ(t) denote the position of the particle at time t. Then
ξ(0) = 0. After n time steps, i.e., when t = n∆t, the particle would have undergone
n displacements of which Sn are to the right and n− Sn are to the left. Thus

ξ(t) = Sn∆x− (n− Sn)∆x = (2Sn − n)∆x. (110)
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Now we are going to exploit the independence of displacements on the history of the
particle’s motion. Suppose s is an intermediate time (0 ≤ s ≤ t), in the sequence,
then we may write

ξ(t) = [ξ(s)− ξ(0)] + [ξ(t)− ξ(s)]. (111)

Since the rules governing displacements are independent of time, the probability dis-
tribution of ξ(t) − ξ(s) (which is the position after time t − s relative to the initial
position ξ(s)) is the same as that of ξ(t− s) = ξ(t− s)− ξ(0) (which is the position
after time t− s relative to the initial position ξ(0) = 0). Moreover, due to the lack of
memory, the increments ξ(s)− ξ(0) = ξ(s) and ξ(t)− ξ(s) are independent random
variables. Thus, the variance var ξ(t) is the sum of these variances:

var (t) = var (s) + var (t− s) for 0 ≤ s ≤ t. (112)

Putting s = s1 and t−s = s2 we have var (s1 +s2) = var (s1)+ var (s2) for all
s1, s2 ≥ 0. It follows that the variance must be proportional to time: var ξ(t) = 2Dt
where aside from the conventional factor of two, the proportionality constant D with
dimensions of area per unit time is called the diffusion constant or diffusivity. This
linear growth of the variance is also observed experimentally.

We wish to find the probability distribution of ξ(t). Since the particle’s motion
is memory-less, successive displacements are independent and may be viewed as
Bernoulli trials with probability of success p = 1

2 being the probability to move one
step to the right. Thus, Sn is the number of successes in n Bernoulli trials. From §9 we
know that var Sn = npq = n/4. We may combine this with var ξ = 2Dt = 2Dn∆t
to express the diffusion constant as D = (∆x)2/2∆t. In fact,

var ξ = var [(2Sn−n)∆x] = 4(∆x)2 var Sn = n(∆x)2 ⇒ D = (∆x)2/2∆t.
(113)

To find the probability distribution of ξ, it is helpful to relate it to the normalized
random variable S∗n (85). Using p = q = 1/2, we find

S∗n =
Sn − n/2√

n/4
=

2Sn − n√
n

=
ξ

∆x
√
n

=
ξ√
2Dt

. (114)

Now we let n → ∞ and ∆t → 0 holding t = n∆t fixed and also let ∆x → 0 in
such a way that the diffusion constant D remains fixed. In this limit, the De Moivre-
Laplace limit theorem of §11 applies and the distribution of S∗n approaches a standard
Gaussian:

lim
n→∞

P{y′ ≤ S∗n ≤ y′′} =
1√
2π

∫ y′′

y′
e−y

2/2 dy (115)

with probability density pS∗(y) = e−y
2/2/
√

2π. Changing variables to ξ =
√

2DtS∗

so that x =
√

2Dty and dx =
√

2Dtdy, we get the probability density of the Brown-
ian particle at time t:

pS∗(y)dy = pξ(x)dx ⇒ pξ(x) = (4πDt)−1/2e−x
2/4Dt. (116)
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pξ(x)dx is the probability to find the Brownian particle in an interval of size dx around
x at time t. This probability density satisfies a partial differential equation called the
diffusion equation (or Fourier’s heat conduction equation). Explicit differentiation
shows that

∂pξ(x, t)

∂t
= D

e−
x2

4Dt

(
x2 − 2Dt

)
8
√
π(Dt)5/2

, (117)

while
∂pξ
∂x

= − xe−
x2

4Dt

4
√
π(Dt)3/2

and
∂2pξ
∂x2

=
e−

x2

4Dt

(
x2 − 2Dt

)
8
√
π(Dt)5/2

(118)

Thus, we arrive at the diffusion equation

∂pξ(x, t)

∂t
= D

∂2pξ(x, t)

∂x2
. (119)

The diffusion equation may also be regarded as the free particle Schrödinger equation
in imaginary time.
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