Particle Physics 2, Spring 2015 CMI

Problem set 6
Due at the beginning of lecture on Tuesday Jan 13, 2015
Reducible and adjoint representations of Lie algebras

1. $\langle\mathbf{6}\rangle$ Show that the operators $\hat{p}=-i \hbar \frac{\partial}{\partial x}, \hat{x}=i \hbar \frac{\partial}{\partial p}+x$ acting on functions on phase space $\psi(x, p)$ furnish a representation of the Heisenberg algebra $[\hat{x}, \hat{p}]=i \hbar,[\hat{x}, \hat{x}]=0=[\hat{p}, \hat{p}]$. Is this representation reducible? Hint: Look for an invariant subspace on which this representation restricts to the standard Schrödinger representation.
2. $\langle\mathbf{6}\rangle$ Define three 3×3 matrices I_{1}, I_{2}, I_{3} with matrix elements $\left(I_{\alpha}\right)_{a b}=-i \epsilon_{\alpha a b}$ where $\epsilon_{\alpha a b}$ is the totally anti-symmetric Levi-Civita symbol. Show (using only the total antisymmetry of $\epsilon_{\alpha \beta \gamma}$) that I_{α} furnish a 3 d representation of the $\mathrm{SU}(2)$ Lie algebra $\left[I_{\alpha}, I_{\beta}\right]=i \epsilon_{\alpha \beta \gamma} I_{\gamma}$. After checking that the commutation relations are satisfied, write out the 3 matrices I_{α} and say whether any generator is diagonal in this representation. Note: This is called the adjoint representation of the Lie algebra and generalizes to any set of totally anti-symmetric structure constants $C_{\alpha \beta \gamma}$.
