Particle Physics, Autumn 2014 CMI Problem set 4 Due by beginning of lecture on Thursday Nov 6, 2014 Color, angular momentum, parity, RG, Feynman diagrams

- 1. $\langle \mathbf{4} \rangle$ About a third of all decays of the neutral kaon K_S^0 (which is a linear combination of K^0 and \overline{K}^0) is to two neutral pions $K_s^0 \to \pi^0 + \pi^0$. We assume that pions are spinless bosons and that angular momentum is conserved in this decay. Argue that the spin of the kaon cannot be an odd integer (1, 3, 5 etc.). Hint: Work in the rest frame of the kaon. What is the only source of angular momentum in the final state?
- 2. $\langle 10 \rangle$ Consider the evolution of a coupling constant $\alpha(\mu)$ under renormalization group flow $\frac{d\alpha(\mu)}{d\log\mu} = \beta(\alpha)$ for the polynomial beta function $\beta(\alpha) = \beta_0 \alpha^2 + \beta_1 \alpha^3$ with $\beta_0 < 0$ and $\beta_1 > 0$. μ is the sliding energy scale.
 - (a) $\langle 2 \rangle$ What are the two values of α (α_0, α_*) that are invariant under the RG evolution (i.e. fixed points of the flow)?
 - (b) $\langle 2 \rangle$ Plot β as a function of α and indicate the fixed points of the RG flow on this graph.
 - (c) $\langle 3 \rangle$ Explain qualitatively what happens to $\alpha(\mu)$ as (1) $\mu \to \infty$ goes to high energies and (2) when μ is decreased from a very high energy.
 - (d) $\langle 1 \rangle$ Indicate the flow from UV (large μ) to IR (small μ) with arrows on the α axis for α between α_* and α_0 .
 - (e) $\langle 2 \rangle$ Under what condition on β_0 and β_1 would weak coupling perturbation theory be expected to be reliable in this entire range of values of α ? Why?
- 3. $\langle \mathbf{4} \rangle$ Recall the spherical harmonics $Y_{11} = N_1 e^{i\phi} \sin \theta$, $Y_{10} = N_0 \cos \theta$, $Y_{1-1} = N_{-1} e^{-i\phi} \sin \theta$ upto normalization constants N_1, N_0, N_{-1} . Check explicitly that they transform as expected under parity $\mathbf{r} \rightarrow -\mathbf{r}$.
- 4. $\langle \mathbf{4} \rangle$ Propagators (edges) in Feynman diagrams represent free propagation of particles as implied by the non-interacting part of the Lagrangian (quadratic terms including mass terms like $\partial_{\mu}\phi\partial^{\mu}\phi$, $m^{2}\phi^{2}$). Emission and absorption of virtual particles by a propagating particle can lead to renormalization of its mass. Draw leading order (1-loop) diagrams for the renormalization of the Z^{0} and W^{-} masses due to virtual quarks and leptons (two representative diagrams for each will do).
- 5. $\langle 3 \rangle$ Say why a red up quark, anti-red anti-up quark state $u_{red}\bar{u}^{red}$ is not a color singlet. How would you modify this state to get one that is invariant under SU(3) color transformations?