Particle Physics, Autumn 2014 CMI

Problem set 2
Due by beginning of lecture on Monday Oct 13, 2014
Pions and nucleons

1. $\langle\mathbf{5}\rangle$ The $1 / E^{2}$ decay of scattering cross sections applies to scattering of point-like particles. It is found that at high energies, the cross section for $\pi^{+} p$ scattering tends to a constant around 30 millibarns. Use this to estimate the sum of the radii $R_{\pi}+R_{p}$. Hint: At high energies, a classical approximation to the collision cross section should be valid. What is this classical cross section in terms of R_{π} and R_{p} if you assume that the strong interaction has a very short (essentially zero) range?
2. $\langle\mathbf{1 2}\rangle$ Find the Clebsch-Gordan coefficients for addition of $j=1$ and $j=\frac{1}{2}$. This will be useful to understand pion nucleon scattering. The combination decomposes as $\frac{3}{2} \oplus \frac{1}{2}$. The uncoupled basis is ordered as

$$
\begin{equation*}
|1\rangle|\uparrow\rangle,|1\rangle|\downarrow\rangle,|0\rangle|\uparrow\rangle,|0\rangle|\downarrow\rangle,|-1\rangle|\uparrow\rangle,|-1\rangle|\downarrow\rangle . \tag{1}
\end{equation*}
$$

and the coupled basis is ordered with decreasing $m=m_{1}+m_{2}$

$$
\begin{equation*}
|3 / 2,3 / 2\rangle,|3 / 2,1 / 2\rangle,|1 / 2,1 / 2\rangle,|3 / 2,-1 / 2\rangle,|1 / 2,-1 / 2\rangle,|3 / 2,-3 / 2\rangle . \tag{2}
\end{equation*}
$$

Find the matrix C of CG coefficients by choosing phases in a suitable way so that it is a symmetric matrix. Verify that C is an orthogonal matrix.

