Particle Physics, Autumn 2014 CMI Problem set 13 Due on Wednesday March 4, 2015 [E, B], Euler-Lagrange equations, complex scalar coupled to EM, ϵ_{ij} ,

1. $\langle 6 \rangle$ Show that the equal-time commutator between quantized electric and magnetic fields is

$$[E_i(\mathbf{r}), B_j(\mathbf{r}')] = -i\hbar c \ \epsilon_{ijk} \frac{\partial}{\partial r_k} \delta^3(\mathbf{r} - \mathbf{r}').$$
(1)

- 2. $\langle 2 \rangle$ The Lagrangian for a complex scalar field with a self-interaction V is $\mathcal{L} = |\partial \phi|^2 m^2 |\phi|^2 V(\phi^*, \phi)$. What is the equation of motion for ϕ ?
- 3. $\langle 3 \rangle$ The Lagrangian for a real scalar field with self interaction V is $\mathcal{L} = \frac{1}{2}(\partial \phi)^2 \frac{1}{2}m^2\phi^2 V(\phi)$. What is the equation of motion for ϕ ? Explain the reason for the factor $\frac{1}{2}$ difference between real and complex scalar Lagrangians.
- 4. $\langle \mathbf{4} \rangle$ Show that the Euler-Lagrange equations following from $\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} j^{\mu}A_{\mu}$ are the inhomogeneous Maxwell equations $\partial_{\mu}F^{\mu\nu} = j^{\nu}$. Here $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$.
- 5. $\langle \mathbf{4} \rangle$ A complex scalar field coupled to an electromagnetic gauge potential has Lagrangian density $\mathcal{L} = (\partial_{\mu} + ieA_{\mu})\phi^* (\partial^{\mu} ieA^{\mu})\phi V(\phi^*\phi)$. Expand out the terms in this Lagrangian and try to give a physical interpretation to the various terms.
- 6. $\langle 3 \rangle$ Under a change of basis S_{ia} , the totally anti-symmetric ϵ tensor ($\epsilon_{12} = -\epsilon_{21} = 1$, $\epsilon_{11} = \epsilon_{22} = 0$) in 2d transforms to $\epsilon'_{ij} = S_{ia}S_{jb}\epsilon_{ab}$. Show explicitly that $\epsilon'_{ij} = (\det S)\epsilon_{ij}$. In particular, how does ϵ_{ij} transform under an SU(2) change of basis S? Note: $\epsilon'_{ijk} = (\det S) \epsilon_{ijk}$ holds in 3 dimensions etc.