Particle Physics, Autumn 2014 CMI Problem set 1 Due by beginning of lecture on Tuesday Oct 7, 2014 Lightest baryons and mesons

Note: These problems are to be attempted without looking up the answers in books/internet. We have discussed the necessary background in class.

1. $\langle 23 \rangle$ The lowest lying (lowest mass) baryons made of the light quarks u, d, s are

$$n(udd), p(uud), \Sigma^{-}(dds), \Sigma^{0}(uds), \Sigma^{+}(uus), \Lambda^{0}(uds), \Xi^{-}(dss), \Xi^{0}(uss).$$
(1)

The valence quark constituents are indicated, suppressing symmetrization/anti-symmetrization of flavors.

- (a) $\langle 3 \rangle$ Tabulate the charge Q, I_3 , B (baryon number) and S (strangeness) of these baryons. Note: Strangeness S counts the number of anti-strange quarks minus number of strange quarks. u, d form an isospin $\frac{1}{2}$ doublet with $I_3 = \pm \frac{1}{2}$ and strangeness zero. The strange quark is an isospin zero state.
- (b) $\langle 3 \rangle$ Arrange these 8 baryons in an I_3 vs S plot, with I_3 increasing to the right and S upwards. Identify the contours of constant charge in this diagram.
- (c) (2) Identify two isospin doublets, an isospin singlet and an isospin triplet from among these baryons (state the names of the particles involved).
- (d) $\langle 3 \rangle$ Guess a linear relation among these four quantum numbers (Q, I₃, B, S) based on the data for these baryons.
- (e) $\langle 12 \rangle$ These are stable baryons, they do not decay exclusively through strong interactions. Draw lowest order quark level Feynman diagrams for the beta decay (i) $n \rightarrow pe\bar{\nu}_e$ and strangeness changing weak decays (ii) $\Lambda^0 \rightarrow p\pi^-$, (iii) $\Sigma^- \rightarrow n\pi^-$ and (iv) $\Sigma^+ \rightarrow p\pi^0$. Take time to run roughly from left to right. You may treat π^0 as $u\bar{u}$ and π^- as $d\bar{u}$ here.
- 2. $\langle 8 \rangle$ The lowest lying (lowest mass) mesons made of the light quarks u, d, s are

$$\pi^{-}(d\bar{u}), \pi^{0}(d\bar{d} - u\bar{u}), \pi^{+}(u\bar{d}), K^{0}(d\bar{s}), K^{+}(u\bar{s}), K^{-}(s\bar{u}), \bar{K}^{0}(s\bar{d}), \eta^{0}(d\bar{d} + u\bar{u} - 2s\bar{s}).$$
(2)

- (a) $\langle 3 \rangle$ Tabulate the Q, I_3, B, S quantum numbers of these mesons.
- (b) $\langle 3 \rangle$ Arrange these mesons in an I_3 vs S plot as before and mark the contours of constant charge.
- (c) $\langle 2 \rangle$ Check whether the proposed relation among Q, I_3, B, S is satisfied by these mesons.