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1 Introduction

1.1 Some books on particle physics

The material in these rough notes is not original, it is based on what I have learned from my teachers and
colleagues and material in several fine books (which contain a lot more!), e.g.,

1. F Halzen and A D Martin, Quarks and Leptons: An Introductory Course in Modern Particle
Physics

2. D J Griffiths, Introduction to elementary particle physics

3. K Huang, Quarks, leptons and gauge fields

4. K Gottfried and V F Weisskopf, Concepts in Particle Physics.
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5. D. H. Perkins: Introduction to High Energy Physics

6. Alessandro Bettini, Introduction to Elementary Particle Physics.

1.2 ‘Elementary particles’

• The physics of particles and fields deals with the fundamental constituents of matter and their
interactions. This branch of physics is also called (elementary) particle physics or high energy
physics and sometimes sub-atomic or sub-nuclear physics. Sub-atomic/nuclear means of size
less than atomic/nuclear dimensions, rather than ‘lying inside the atom/nucleus’.

• The word elementary particle has a usage depending on context and era. Around 1934, the
photon, electron, proton, neutron, positron and neutrino were believed to be the only ‘elemen-
tary’ particles. It turned out that there are many more elementary particles like the soon-to-
be-discovered muon. What is more, it turned out that the neutron and proton are not truly
elementary, they have a size of about a fermi (10−15 m) and are composites of quarks and
gluons.

• Roughly, an elementary particle is one that may be treated as a point particle (or at least
one with fixed shape) with fixed properties and with no sub-structure for the purposes under
consideration. Any system (like an atom, nucleus or perhaps even a black hole) in its ground
state could serve as an elementary particle if the energy gap to the first excited state exceeds the
thermal or other energies available, since then, the system will display a fixed shape, size, mass,
angular momentum etc., associated to its ground state.

• In Newtonian and celestial mechanics we often treat billiard balls, the sun and planets as
point particles. In much of biology and some of chemistry, atoms may be treated as elementary
particles, as the energies exchanged are too small to excite atoms. In atomic physics, photons,
electrons and nuclei can be treated as elementary; they are much smaller than atomic sizes of
an angstrom. The eV energies of atomic physics are not sufficient to excite nuclei from their
ground states (that would require 0.1-10 MeV). In nuclear physics, we may often treat pions,
protons and neutrons as elementary, since the available energies of order MeV are too small to
excite them (that would require about a 100 MeV). In fact, even an alpha particle (He−4 nucleus
consisting of 2 protons and 2 neutrons) can be regarded as an elementary particle in much of
low energy nuclear physics, since it is very tightly bound (binding energy of 28 MeV). In the
physics of hadrons (hadrons comprise baryons like n, p and mesons like π,K ), we deal with
energies of the order of 100s of MeV to 100s of GeV at present. In hadronic physics, quarks,
gluons, photons, electrons, neutrinos, W, Z etc are the relevant elementary particles. Hadrons
are bound states of quarks and gluons, while e, ν, γ,W,Z etc are relevant when studying decays
and collisions with hadrons. A peculiar feature of hadrons is that quarks and gluons seem to be
permanently confined within them, we haven’t been able to isolate a quark or a gluon from a
hadron, unlike how we ionize atoms.

• The elementary particles we deal with in this course are primarily subatomic or subnuclear.
Aside from its location or energy and momentum (which could change), an elementary parti-
cle is often characterized by its fixed mass, spin/angular momentum, intrinsic parity, charge,

6



electric and magnetic moments and other quantum numbers like baryon and lepton number,
strangeness, charm, color, weak isospin, weak hypercharge etc. Most of these attributes are
associated with space-time or internal symmetries.

• For some purposes, Wigner’s theorem (1939) gives a way of thinking about an elementary
particle: one whose quantum states (labelled by momentum and spin projection) carry an irre-
ducible unitary representation of the Poincare group of space-time symmetries. The relevant
irreducible representations of the Poincare group are labelled by mass and spin. The group
of space-time symmetries may be extended to include internal symmetries like electromag-
netic gauge symmetry, leading to additional quantum numbers, some of which were mentioned
above.

1.3 Cast of characters: Particles and fields of the standard model

• The standard model (SM) of particle physics is our current theory of elementary particles. It is
a remarkably successful and elegant relativistic quantum field theory based on the ‘gauge prin-
ciple’ and ‘renormalizability’. The principle of local gauge invariance is a generalization of the
gauge symmetry of electromagnetism. Renormalizability is essentially predictive power, i.e.,
that the theory must depend only on a finite number of free parameters, which once determined
from experiment, allow definite predictions for all other physical quantities like scattering cross
sections, decay rates and binding energies of bound states.

• To each elementary particle of the SM, there is associated a quantum field whose elementary
excitation (produced by a creation operator acting on the vacuum) is the particle. Among other
things, this makes it plausible why all photons (or all electrons, etc.) are identical: they are all
produced from the same field. The particles are roughly divided into matter particles (fermionic
spin-half quarks and leptons) and force carriers (spin one gauge bosons) and a spin zero Higgs
boson. All these particles have been experimentally found and are point-like to current precision
(∼ 10−18 − 10−19 m).

1.3.1 Quarks and leptons

• The fundamental fermions (6 flavors of quarks and 6 leptons) may be arranged in three fam-
ilies of mass eigenstates. The quarks (named by Gell-Mann after the 3 quarks in J Joyce’s
Fennigan’s Wake) are(

up
down

)
,

(
charm
strange

)
,

(
top

bottom

)
, with charges

(
2/3
−1/3

)
in units of the proton charge. (1)

u, c, t are called up-type quarks while d, s, b are down-type. Quarks feel the electromagnetic
force since they are charged. Each quark comes in three colors (say red, green, blue, e.g.
ur, ug, ub ). Color is to the strong force what charge is to the EM force. So quarks feel the strong
force. In addition, the quarks carry weak-isospin and weak-hyper-charge quantum numbers
which enable them to participate in the weak interactions. The up and down type quarks differ
by one unit of electric charge, which permits weak transitions between them by emission or
absorption of the W± particles of unit charge. We are over-simplifying a bit here, unlike EM
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and strong, the weak interactions are not parity invariant, they distinguish left from right-handed
quarks1. A theory/phenomenon that distinguishes left from right (or mirror reflections) is called
chiral. The quarks can be split into their left and right-handed components, which have different
weak isospin T3 and hyper-charge YW assignments. The up- and down-type left handed quarks2

have T3 = ±1
2

while the right handed ones have T3 = 0 . Weak hyper-charges are given by
Y = 2(Q−T3) . Quarks also interact gravitationally since they carry energy. Quarks are unique
in that they feel all the 4 forces.

• The leptons (Greek ‘lepton’ for thin/slender) comprise the electron, muon and tau as well as
their neutrinos. They too come in 3 families of mass eigenstates(

νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
, with charges

(
0
−1

)
in units of the proton charge. (2)

Like the quarks, leptons carry weak isospin and weak-hyper-charge quantum numbers, but no
color quantum numbers. Again, one needs to make a distinction between left handed and right
handed leptons. The left-handed neutrinos and charged leptons have T3 = ±1

2
respectively.

There are no right handed neutrinos in the standard model, while the right-handed charged
leptons have T3 = 0 . As before the weak-hyper-charges are determined by YW = 2(Q − T3) .
As a consequence, leptons feel the weak and gravitational forces but not the strong force. The
charged leptons (e, µ, τ) feel the electromagnetic force while the neutral neutrinos do not.

• The masses of the charged leptons are me = 511 keV/c2 , mµ = 105.66 MeV/c2 and mτ =
1.777 GeV/c2 . Despite the historical name, lightness/slenderness is not a defining property of
leptons. The tau lepton is almost twice as heavy as the proton (mp = 938 MeV/c2 ). The muon
was initially called the µ-meson. That term is no longer appropriate. The word meson is now
reserved for the subset of hadrons (strongly interacting particles) with integer spin (e.g. π,K, ρ
mesons).

• Quark masses are only roughly determined since they have not been isolated from inside
hadrons. However, using weak and electromagnetic probes/currents to look deep inside a pro-
ton, one may estimate their masses. The ‘current’ quark masses of the ‘light’ quarks are roughly

mu ≈ 0− 5, md ≈ 6− 10, and ms ≈ 130− 200 MeV/c2 . (3)

The ‘heavier’ quarks have masses which are increasingly better determined (why?)

mc ≈ 1.3, mb ≈ 4.2, mt ≈ 173 (in GeV/c2 ). (4)
1Quarks are spin half Dirac particles, associated to 4 component spinor fields. In terms of Dirac’s γ matrices,

γ5 = iγ0γ1γ2γ3 is hermitian traceless and squares to the identity. Its +1 eigenspace is the space of right handed
spinors and its −1 eigenspace consists of LH spinors. Any spinor is uniquely the sum of LH and RH spinors.
PL,R = 1

2 (1∓ γ5) project to the two subspaces. Helicity is the projection of angular momentum on the direction
of momentum h = J · p̂ , eigenvalues of helicity are ± 1

2~ for spin half particles. For massless particles, +/- helicity
corresponds to right and left handedness.

2There is a complication due to quantum mechanical mixing. The weak interactions involve weak eigenstates
rather than mass eigenstates. So it is not (u, d)L that forms a weak isospin doublet but (u, d′)L where d′ is a
linear combination of the d-type quarks. But this does not affect the weak isospin T3 assignments given here. In
particular, a strange quark s has been seen to convert to an up quark in the weak decays of strange particles, this is
allowed since there is a little bit of s inside d′ .
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In the standard model, the neutrinos were taken to be massless, though oscillation experiments
show that neutrinos have masses, which however have not been determined beyond some upper
limits. Cosmological constraints suggest that the sum of the 3 neutrino masses is less than 1
eV/c2 . The huge variation of quark and lepton masses by over 11 orders of magnitude, from
less than an eV/c2 to 173 GeV/c2 is not understood.

• To each of these quarks and leptons, there is an anti-particle having opposite electric charge,
color, magnetic moment, strangeness, isospin projection etc. Three is the smallest number of
families that can accommodate CP violation, which is believed to be responsible for the pre-
ponderance of matter over anti-matter in the universe. The aesthetically pleasing quark-lepton
symmetry with equal number of quark and lepton families ensures cancellation of possible
anomalies that could render the quantum theory inconsistent. Check that the total charge of
each family (quarks and leptons included) is zero.

• Naturally occurring matter is largely composed of particles from the first family u, d, e , (and
the neutrinos ν̄e and νe from radioactive beta decay). Members of the 2nd and 3rd family decay
to those of the first family. The muon decays to the electron (and 2 neutrinos) and the τ lepton
decays to neutrinos and muon/electron or quarks in the first family. Particles (hadrons) contain-
ing the 2nd and 3rd families of quarks c, s, t, b are unstable and decay to hadrons containing u
and d quarks.

• The second and third families are at first glance, more massive copies of the first family,
though there is quantum mechanical mixing between the families to form three ‘generations’

of weak eigenstates e.g.,
(
u
d′

)
,

(
c
s′

)
,

(
t
b′

)
when they participate in the weak interactions.

(d′, s′, b′) are linearly related to (d, s, b) via the 3 × 3 CKM (Cabbibo-Kobayashi-Maskawa)
mixing matrix. (u, d′), (c, s′) and (t, b′) each forms a doublet under weak isospin. Charge-
changing weak interactions allow transitions between members of a generation (not a family).
The fact that d′ is a linear combination of d, s, b means that all three can decay to an up quark.
Indeed d → u is seen in beta decay while s → u is seen in decay of strange particles. If there
were no such mixing, the strange quark could not decay to a u . So mixing is both experimentally
observed and permitted by the linearity of the quantum mechanical state space.

• Anti-quarks and anti-leptons have opposite handedness to their matter counterparts. So anti-
quarks come in RH weak-isospin doublets and LH weak-isospin singlets. Similarly, (ν̄e, e)R is a
RH weak isospin doublet. LH charged anti-leptons are singlets under weak-isospin ēR, µ̄R, τ̄R .
Anti-neutrinos are always RH, there are no LH anti-neutrinos in the SM. The weak interactions
treat the left and right-handed components differently (e.g. they have different T3 and YW ).
We say that the weak interactions are chiral. Weak interactions to violate reflection (parity)
symmetry, as we shall see later.

1.3.2 Hadrons

• Hadrons, though they are not point-like elementary particles like the quarks and leptons (at
current precision), deserve special mention since most of the particles discovered so far are
hadrons, there are hundreds of them. They were named (by L. Okun) after the Greek word
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‘adros’ meaning bulky. Hadron is the collective name for strongly interacting particles that
have been isolated. This would include nuclei since they too feel the strong nuclear force,
though nuclei with more than one nucleon are more often referred to as nuclei rather than as
hadrons.

• Hadrons are subdivided into integer spin bosonic mesons like π,K, η, ρ, ω, φ and half-odd
integer spin fermionic baryons (from Greek word ‘barys’ for heavy) like n , p , ∆ , Λ , Σ , Ξ ,
Ω . The name meson (from Greek ‘mesos’ meaning middle or intermediate) seemed reasonable
since the first discovered mesons (π,K ) had masses (m±± = 140 MeV, mK± = 494 MeV)
intermediate between that of the electron and of the heavier baryons (n,p with mn,mp ≈ 938−
939MeV ). However, mesons with mass more than that of the proton have been discovered.

• Hadrons are bound states of quarks and gluons. Mesons typically consist of a valence quark
and anti-quark, while baryons consist of three valence quarks. Anti-baryons have three valence
anti-quarks. Though quarks and gluons feel the strong interactions, they are not called hadrons,
they have never been detected in isolation. In particle reactions we may produce quarks and
gluons, but we only detect hadrons in detectors. Quarks and gluons either decay or ‘hadronize’
to form bound states, before we can detect them. What is more, it is empirically found (and
theoretically suspected) that all hadrons are color neutral. It appears that color is confined
within hadrons.

• The proton is made of two up and one down quark (its valence quarks), along with an in-
finite sea of virtual quark anti-quark pairs and gluons). For many purposes (determination of
charge, baryon number, isospin, strangeness, magnetic moment etc., but not mass, momentum
or structure) we may treat the proton as simply made of valence quarks. The neutron’s va-
lence quark content is n = udd . The proton and neutron form a strong isospin doublet with
I3(p) = 1

2
, I3(n) = −1

2
. The up and down quarks also form a strong isospin doublet with

I3(u) = 1
2
, I3(d) = −1

2
. Other quarks (c,s,t,b) do not carry strong isospin (i.e., they are singlets

under strong isospin). The anti-proton and anti-neutron are p̄ = ūūd̄, n̄ = ūd̄d̄ . (n̄, p̄) form
an isospin doublet: I3(n̄) = 1

2
, I3(p̄) = −1

2
. Baryons are assigned baryon number B = +1

while anti-baryons have B = −1 . Though neutrons and anti-neutrons cannot be distinguished
by their electric charge, they can be distinguished by their isospin, baryon number and magnetic
moment!

• There are four kaons K+, K−, K0, K̄0 (having masses around 500 MeV/c2 ). They are
strange mesons (contain a strange quark or strange anti-quark) made of the ‘light’ quarks u,d,s
alone (charm quark with a mass of 1.3 GeV would be too heavy, as would b or t). K± are
anti-particles of each other, as are K0 and K̄0 . K+ and K0 form an isospin doublet as do K̄0

and K− . Based on this, try to figure out the valence quark content of the kaons. Do you get
K+ = us̄ , K0 = ds̄ , K− = ds̄ and K̄0 = d̄s?

• The atoms of chemistry are bound states of electrons and nuclei, held together by electrostatic
Coulomb forces between electrically charged electrons and nuclei. Similarly, hadrons are the
atoms of hadronic physics, they are bound states of quarks and gluons, held together by strong
forces between colored particles. Atoms are electrically neutral, and hadrons are color neutral.
A major difference is that an electron can be isolated from an atom, while it has not been
possible to isolate a quark or gluon from a hadron.
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• Molecules of chemistry are bound states of atoms, held together by residual electromagnetic
forces (van der Waal’s forces including dipolar forces) between neutral atoms. Similarly, nuclei
are the molecules of hadronic physics, they are bound states of several hadrons (in fact nucle-
ons), held together by residual strong forces between the quarks and gluons inside different
colorless hadrons. The simplest such hadronic ‘molecule’ (nucleus) is the isospin one deuteron,
an np bound state. It is the nucleus of deuterium, a heavy isotope of hydrogen. It turns out
there are no nn or pp bound states, the deuteron is the only nucleus with baryon number 2 .

1.3.3 Force carriers, gauge and Higgs bosons, interactions and Feynman diagrams

• In the quantum field theoretic description, the force between a pair of electrons is (to first
approximation) due to the exchange of a massless photon γ (emission and absorption of a pho-
ton), which is called the ‘quantum’ of the EM field. The photon is associated to the EM vector
potential or gauge field Aµ(x) . So the photon is called a vector boson or gauge boson. The
cross section for the scattering of a pair of electrons is calculated using Feynman diagrams
(FD). Each diagram gives an amplitude for a process. Amplitudes are added up and squared
to get probabilities. The legs or lines describe free propagation of particles and vertices de-
scribe interactions. The simplest FD for the scattering of electrons is drawn in the figure. Time
runs upwards. Incoming particles (incoming asymptotic states) are associated with external
lines/legs at the bottom (t → −∞) of the FD. Outgoing particles are associated to external
legs at the top of the diagram (t → ∞) . Incoming and outgoing particles (and anti-particles)
are ‘real’ particles, they come from the source (like a hot filament or a radioactive nucleus or
particle accelerator) and are received in the detector. They are characterized by being on mass
shell, i.e. the square of their 4-momentum is equal to their mass: pµpµ = m2 . The internal
lines, like the wavy photon line correspond to virtual particles that are exchanged, they are
intermediate states. Virtual particles need not be on mass shell and are not detected, they are
for the purpose of calculating the amplitude. So pµp

µ 6= 0 in general, for the virtual photon
that is exchanged, even though real photons are massless. In fact, to determine the amplitude,
one needs to sum over all possible 4-momenta of the internal lines (virtual particles), subject to
conservation of 4-momentum at each vertex where legs meet. This sum is much like the sum
over intermediate states encountered in calculating energy shifts to second order in quantum
mechanical perturbation theory:

H = H0 +gH1, En = E(0)
n +gE(1)

n +g2E(2)
n + . . . where E(2)

n =
∑
m

〈ψn|H1|ψm〉〈ψm|H1|ψn〉
E

(0)
n − E(0)

m

.

(5)

• The arrows in the FD distinguish between particles and anti-particles. No arrow is placed on
a line for a particle which is its own anti-particle, like the photon. For lines entering (ordered
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by time) a vertex (as in the case of incoming states), the arrow points towards the vertex for
electrons and away from the vertex for positrons. For lines leaving a vertex (as for the out-
states), arrow points away from the vertex for electrons and towards the vertex for positrons.
In the case of electrons and positrons, the arrow also indicates the direction of movement of
negative electric charge.

• The statement that a particle couples or interacts directly (or at tree level) with another par-
ticle is a consequence of the presence of interaction term(s) (cubic or higher order) in the SM
Lagrangian that contains a product of the respective fields. Such an interaction may also be
pictorially represented as a vertex in a Feynman diagram, as in the examples above. In the
case of quantum electrodynamics, the interaction is jµAµ where jµ = eψ̄γµψ . The photon
field A is a linear combination of photon creation and photon annihilation operators a†, a while
ψ annihilates an electron or creates a positron. Meanwhile, ψ̄ creates an electron or annihi-
lates a positron. Thus the basic photon emission vertex e− → e−γ corresponds to destruc-
tion of an electron and creation of a photon and an electron ψ̄a†ψ . However, it is important
to recognize that this basic tri-linear interaction vertex does not describe a physical process,
energy-momentum conservation would forbid the electrons and the photon to all be on mass
shell – check this. The trilinear vertex is merely an ingredient that is used to construct dia-
grams describing real processes (i.e., those where all external legs are on-shell, as in the case
of electron-electron scattering by one photon exchange). In particular e− → e−γ does not de-
scribe a real process. But electrons can radiate photons (as happens classically when they are
accelerated). The simplest such process involves two photon emission e− → e−γ → e−γγ
where the electron in the intermediate state is a virtual electron. See the figure. An electron can
also emit a single real photon in the Coulomb field of a nucleus, which provides the momentum
balance. Draw the two leading order Feynman diagrams for elastic e + e− → e+e− Bhabha
scattering.

• Photons couple to all quarks and charge leptons in the same way as they couple to electrons,
i.e., through the tri-linear vertex (weighted by the charge) γff̄ where f is the charged fermion.
So we also have scattering of muons via exchange of a photon.

• Feynman diagrams are a convenient way of depicting interactions and summarizing the pro-
cedure of determining amplitudes in perturbative quantum field theory. Perturbation theory
applied to scattering processes is not the only method of deriving physical consequences from
the SM Lagrangian. In particular, it is not very well-suited to the study of bound states. Never-
theless, a lot of what we know has been determined using perturbation theory.

• The other ‘force carriers’ include 8 massless colored gluons g for the strong interactions, and
the massive weak gauge bosons W± and Z0 (mW± = 80 GeV/c2 , mz = 91 GeV/c2 ) which
mediate the charge-changing and charge-preserving weak interactions. All these are spin one
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gauge bosons associated to gauge fields. They are also called vector bosons since the corre-
sponding gauge fields are vector fields like the electromagnetic vector potential Aµ(x) . The
numbers of these gauge bosons is equal to the dimensions of the Lie algebras of the various
gauge groups. The EM (charge) gauge group U(1)Q is one dimensional, there is one type of
photon. The color gauge group SU(3) is 8 dimensional, resulting in 8 types of gluons. The
electroweak interactions are governed by SU(2)L×U(1)Y , corresponding to weak isospin and
weak hypercharge. The cartesian product means the elements of weak isospin group commute
with those of the hypercharge group. This is a 4 dimensional group, with generators corre-
sponding to W+,W−, Z0 and the photon. The generator corresponding to the third component
of weak isospin ‘T3 ’ and the generator corresponding to weak hypercharge ‘YW ’ mix with each
other (i.e. form 2 linear combinations) to give rise to the photon and Z0 bosons.

• U(1) is the 1-dimensional circle group of complex numbers of unit magnitude eiθ . SU(n)
consists of n × n unitary matrices g†g = I of determinant det g = 1 . Its Lie algebra consists
of matrices that depart infinitesimally from the identity g ≈ I + A . Then unitarity becomes
anti-hermiticity A + A† = 0 and unimodularity becomes 1 ≈ det(1 + A) ≈ 1 + tr A . So
the Lie algebra of SU(n) is the space of traceless anti-hermitian matrices. It is conventional
to work with hermitian matrices by taking A → iA . The space of such matrices is n2 − 1
dimensional.

• Gauge fields at each space-time point are elements of the Lie algebra of the corresponding
gauge group. So they can be written as a linear combination of a set of generators (basis el-
ements of the Lie algebra). E.g. The Pauli matrices σ+, σ−, σ3 are a basis for SU(2) , so the
weak isospin gauge field may be written as Wµ(x) = W+

µ (x)σ+ + W−
µ (x)σ− + W 3

µ(x)σ(3) .
W±
µ (x) are the gauge fields corresponding to the W± weak gauge bosons. In addition, we have

the gauge field Bµ(x) for U(1)Y . Then the photon and Z0 fields are a pair of orthogonal linear
combinations of W 3

µ and Bµ :

Aµ = cos θw Bµ + sin θw W
3
µ and Zµ = − sin θw Bµ + cos θw W

3
µ . (6)

θw ≈ 30 degrees is called the weak mixing or Weinberg angle.

• The charge changing W± weak gauge bosons cause transitions between members of a lepton
or quark generation, (νe, e), (νµ, µ)(ντ , τ), (u, d′), (c, s′), (t, b′) e.g. the vertex ν̄eW describes
(for instance) transmutation of an electron into a neutrino while emitting a W− . This is a lot
like the vertex for photon emission by an electron in quantum electrodynamics. As before, this
describes a virtual process, an electron is too light to decay into a W− . But unlike in QED, the
charge of the leptons changes since W± are charged. The same interaction term ēνeW also
describes the decay of a W− into an electron and anti-neutrino.
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• Similarly we have the charge raising process d′ → uW− . Since the weak eigenstate d′ is
a combination of d, s, b mass eigenstates, this means a d quark (mass eigenstate) can make a
transition to a u quark by W− emission. This is what happens in beta decay of a neutron.
Indeed if we put together d→ uW− and W− → e−ν̄e we get d→ ue−ν̄ .

• The photon couples to quarks and charged leptons. The Z0 being another linear combination
of the same gauge fields has somewhat similar properties. It is neutral and its own anti-particle.
The Z0 boson couples to all quarks and leptons (neutrinos included) through the Zff̄ vertex:
e− → e−Z, νe → νeZ or Zu → u or d → Zd etc3. Z0 interactions are charge preserving
weak interactions (at any given vertex), they are also called neutral current interactions, they do
not change the flavor of quarks or leptons. One example is neutrino nucleon scattering. The
basic process is neutrino quark scattering, e.g., νeu → νeu . The up quark in the final state
hadronizes and there is typically a shower of hadrons produced. This is seen in the detector
as a sudden hadron shower without the track of any incoming particle (neutrinos do not leave
tracks like charged particles). Another such process is (anti-) neutrino electron elastic scattering
ν̄µe → ν̄µe by Z0 exchange. This is a ‘gold-plated’ process since it cannot be mediated by
anything but a Z and has minimal contamination from ‘backgrounds’ (other electron recoil
processes that could mimic it). Since it is a muon-anti-neutrino, it cannot couple to an electron
via W± , and neutrinos do not couple to photons or gluons either. This is one of the processes by
which neutral currents were first discovered in 1973 at the giant bubble chamber ‘Gargamelle’
at CERN. In the bubble chamber, one photographed the recoil of an electron when exposed to a
beam of muon anti-neutrinos, with missing energy in the final state carried away by the ν̄µ .

• Photons couple directly to the charged leptons and quarks. They do not interact directly
with other photons, or with gluons4. But due to electro-weak mixing, they do couple directly

3Unlike the electromagnetic vertex Aff̄ which is always proportional to the electric charge of f , the Zff̄
vertex involves both the electromagnetic and weak charges and the weak mixing angle, due to EW mixing. (It is
not just proportional to the weak hyper-charge or weak isospin). There is another difference between γ and Z0

interactions, the latter are parity violating.
4But can you draw a higher order ‘loop’ diagram by which photons can scatter off each other?
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to the W± and Z0 weak gauge bosons via AWW,AAWW,AZWW . Similarly, the weak
gauge bosons couple to each other ZWW,WWWW , WWZZ too. These interactions are
determined by the gauge principle along with the constraints of renormalizability. The field
strength associated to a (generally non-abelian) gauge field is

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] (7)

where g is called the gauge coupling constant. For an SU(2) gauge theory, Aµ(x) is a 2 × 2
matrix in the SU(2) Lie algebra, and different Lie algebra elements do not commute in gen-
eral. For an abelian gauge group like U(1) of EM, the commutator term vanishes. The field
strength is also a 2×2 matrix in the Lie algebra. Now the Lagrangian density includes the term
−1

4
tr FµνF

µν just as in E & M, except that we need to take the trace to get a gauge-invariant
real function of x .

• The quartic interaction vertices among gauge bosons arise from the product of a pair of
commutators, one from each field strength. For example, for the SU(2)×U(1) theory, we have
4 gauge fields W+,W−, Z, A leading to quartic terms such as g2[W+,W−][W+,W−] and
g2[W−, Z][W+, A] etc. However, the [A,Z] commutator vanishes since the third component
of weak isospin commutes with the generator of hypercharge as well as with itself (recall that
Z,A are both linear combinations of W 3

µ and Bµ ), which explains the absence of an AZAZ
vertex.

• The cubic interaction vertices AWW and ZWW come from the terms (∂A)[W+,W−] and
(∂Z)[W+,W−] in the Lagrangian. In fact, it is via the AWW (i.e., γ → W+W− ) coupling
that the W bosons were produced copiously at CERN and SLAC beginning in the 1990s (They
had been discovered earlier in 1983 at CERN via proton anti-proton collisions). e+e− annihi-
lation via head on collisions resulted in e+e− → γ → W+W− or e+e− → Z0 → W+W− . If
one plots the total cross section for e+e− annihilation as a function of center of mass energy of
the colliding electrons and positrons, there is a peak (called the Z -pole) around mZ = 91 GeV.
Such peaks in cross section are interpreted as due to the production of resonances, short-lived
particles. In this case, the short-lived particle is the ‘intermediate’ Z boson. This is analogous
to what happens in quantum mechanical potential scattering. If a particle scatters against an at-
tractive potential well, then one finds a peak in the cross section associated to each of the bound
states that the potential supports. However, this does not mean that Z0 is a bound state of e+

and e− , that would have to be the case in non-relativistic qm, but relativistic QFT allows for the
production of new particles which are not simply bound states of the colliding particles. Note
that there is no W boson peak in the e+e− scattering cross section since there is no e+e− → W
vertex. On the other hand, the W bosons were originally discovered in 1983 at CERN in pp̄
collisions, where a quark and anti-quark collided to form a W , ud̄ → W+ → e+νe . So one
expects a peak in the ud̄ collision cross section at a CM energy equal to the mass of the W
boson. The Z boson was also discovered in the same pp̄ experiments at CERN via processes
such as uū→ Z0 → e+e− and dd̄→ Z0 → e+e− .

• Gauge invariance alone would permit terms in the Lagrangian such as tr FµνF
µνFρσF

ρσ .
However, the corresponding quantum theory is not renormalizable. Renormalizability precludes
vertices where more than 4 gauge bosons meet.
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• Matter particles aren’t the only ones that can be detected as real particles. Photons too can be
detected and counted. Conversely, the force carriers (gauge bosons) are not the only possible
particles that can mediate processes. Matter particles too can feature as virtual intermediaries
with real gauge bosons in initial/final states. E.g. The leading order FD for e+e− annihilation
to produce two real photons is shown.

• Another example: at sufficiently high energies, the collision of an electron and positron can
produce a real W+W− pair, the process being mediated by photon or Z exchange. A W
boson, though it typically decays in less than 10−24 s, weighs nearly as much as a Rubidium
Rb85

37 nucleus (80 GeV/c2 ), yet it seems to be point-like. On the other hand, a lepton or quark
could occur as an intermediary. Indeed the same process e+e− → W+W− could proceed
through the exchange of a virtual neutrino.

• Since gluons carry color quantum numbers, they feel the strong force both among themselves
via the 3 and 4 gluon vertices ggg, gggg and while interacting with quarks q̄gq . But gluons do
not participate in electroweak interactions directly.

• The basic quark gluon vertex q̄gq is a tri-linear vertex just like the photon-electron vertex.
Gluons carry color, so they could change the color of a quark. But gluons do not carry flavor and
strong interactions do not convert d to u or c to d etc (only charge changing weak interactions
can do this). If we label the three colors r, g, b , then a red up quark could convert to a green up
quark by emitting a red-anti-green gluon. Similarly we could have ub → ug + gbḡ etc. For a
given quark flavor, there are 8 different types of quark-gluon vertices, which are the independent
terms in the double sum over colors ūaAbaub . They correspond to the 8 types of gluons which
form a basis for the space of traceless 3× 3 hermitian matrices in color space. The gluon field
being a matrix in color space has a row and a column index (Aµ)ab , which may be regarded
as a color and anti-color index. There are also two diagonal gluons, say grr̄ and gbb̄ (with
ggḡ = −grr̄ − gbb̄ being a linear combination due to tracelessness.) Gluon legs/propagators in
Feynman diagrams are drawn either in the form of a coil/spring or with a double-line, one each
for the color and anti-color index. In the FD shown, quarks have a color index (e.g. ur ) while
anti-quarks (e.g., the down anti-quark dr̄ ) have an anti-color index. The direction of arrows
distinguishes between quarks and anti-quarks.
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• Due to their strong self-interactions, gluons alone (i.e. without any quark ‘matter’), can
combine to form color and charge neutral baryon number zero bound states (glueballs) that can
even be heavier than a proton! However, glueballs have not yet been unambiguously identified
in experimental data possibly due to mixing with mesons having the same quantum numbers,
though there are several candidates.

• In addition, there is a spin zero massive Higgs particle (mH = 125 GeV/c2 , discovered at
CERN in 2012) associated to the Higgs field. In the SM, the Higgs field is responsible for the
masses of the weak gauge bosons W±, Z0 , the quarks and charged leptons. The Higgs particle
couples to all these massive particles with a strength proportional to the corresponding masses.

• At present, there is no quantum theory of the gravitational force (though there are efforts to
understand the issues involved) nor any experimental detection of quantum gravitational effects.
The graviton is hypothesized to be the massless spin-2 quantum of the gravitational field.

1.3.4 General remarks on QCD and the Electroweak standard model

• The standard model is sub-divided into a gauge theory of the strong interactions based on
the SU(3) group (Quantum Chromodynamics - QCD) and the SU(2)L× U(1)Y electro-weak
theory, sometimes called the Glashow-Weinberg-Salam model5 which governs the electromag-
netic and weak interactions. Sometimes this is called electroweak unification. Though the elec-
troweak theory involves a unified treatment, it is not a unification in the technical sense since
there are two independent coupling constants, one for SU(2)L and one for U(1)Y (in addition to
the strong coupling constant for color SU(3))6. However, it involves quantum mechanical mix-
ing between the weak isospin and hypercharge generators to result in gauge bosons with definite
masses: the photon and Z0 . While the weak hypercharge group is abelian, the weak isospin
and color groups are non-abelian. The electroweak theory includes Quantum Electrodynamics
(QED).

• Electrons are familiar constituents of matter while muons are detected in cosmic ray showers

5Occasionally called Quantum Flavordynamics (QFD), though this can be confusing. Charge changing weak
interactions can change the flavor of quarks, say from strange to up, which is the reason for the name. However,
the gauge bosons do not carry flavor quantum numbers and flavor is not a gauge symmetry like color or electric
charge. The gauge symmetries of the GWS model are weak isospin and weak hypercharge.

6There is one independent coupling constant for each simple group or U(1) that appears as a factor in the
gauge group. It appears as g in formulae such as Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] as well as at vertices (like
electric charge in eψ̄Aψ ). Grand unified theories seek to embed the SM gauge group in a single simple group
resulting in a theory with a single coupling constant. The simplest GUT predicted proton decay with an estimated
half-life of order 1031 years, but the experimental lower bound on proton half life is now about 1034y.
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and from particle (pion, kaon) decays in accelerators, τ leptons have been produced (briefly)
in accelerator collisions. Neutrinos come to us from nuclear reactors, nuclear beta decay, ther-
monuclear fusion in the sun, cosmic ray showers etc. On the other hand, quarks and gluons
have never been detected or isolated. For the first time in physics we have a situation where
some of the fundamental constituents of matter (quarks and gluons) seem to be hidden from
detection, permanently confined inside other particles (the hadrons)! The mechanism for this
confinement is not well understood, though it is likely to be a consequence of QCD7. As men-
tioned, nuclei too are held together by strong forces between nucleons. Thus both hadronic and
nuclear structure are, in principle, described by QCD.

• Knowing the atomic hamiltonian is only a small step along the way to understanding the
structure and interactions of atoms. Similarly, and especially due to confinement, knowing
the Lagrangian of the standard model is but a small step towards understanding the structure,
properties and phenomena associated with the particles of the sub-atomic world. Moreover, to
appreciate why the standard model is as it is and to develop an intuition for subatomic phenom-
ena, one benefits from a study of the evolution of the subject since the 19th century. What is
more, one does not need to know either QCD or the electroweak theory to understand much of
the physics of beta decay or pion nucleon interactions, since there are quantitative (low energy)
effective theories for these phenomena. On the other hand, the consequences that follow from
the Lagrangian of the standard model are only partly understood, especially in relation to the
low energy behavior of the strong interactions and the high energy behavior of the electroweak
interactions (since perturbation theory breaks down in these regimes). In particular, we do not
know how to calculate the masses of pions or nucleons from QCD, nor the ‘wave function’ of
the quarks inside. What is more, it is quite possible that the description of strong interactions
in terms of (unisolated) quarks and gluons, may not be the only possible one. There may be
other ‘dual’ formulations that are better suited to deriving the physical properties of the ob-
served hadrons. Finally, there are many unexplained features and 17 input parameters (quark
and lepton masses, mixing angles, coupling constants) that enter the standard model, which
await a deeper understanding. Are the strong and electroweak interactions unified at some
higher energy? Do quarks and leptons have sub-structure? Quite apart from all of this, there is
a lot of new and deep mathematics and physics involved in understanding the standard model
and related theories. Just as understanding atomic physics was stimulated and accompanied
by many technological developments (semiconductors, lasers, microwave technology etc) there
are numerous technological developments that are associated with particle physics (detector
and accelerator technology, superconducting magnets, use of accelerators for condensed mat-
ter/materials research, medical diagnosis and treatment). All these features make the physics of
particles and fields a very rich, deep and active subject.

1.4 Orders of magnitude and natural units

• In atomic physics the typical energies of radiative transitions are electron volts or tens of eV,
as are ionization energies. Binding energies (energy required to dissociate an atom into electrons

7However, it is possible that at high temperatures and densities present in the early universe, quarks and gluons
were in a different quark-gluon plasma phase, and not confined in hadrons.
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and nucleus) range from 10-1000 eV with increasing atomic number Z . Atomic dimensions
are of order Angstroms (10−8 cm) or tens of angstroms. Lifetimes of atoms in excited states are
typically of order nanoseconds (for electric dipole ‘E1’ transitions), though they can be longer
if forbidden by a selection rule for E1. At these energies and dimensions, nuclei (and electrons)
may be treated as ‘elementary’ point particles, they are in their ground states since the energy is
not adequate to excite nuclei. The electron is point-like to current precision (10−18− 10−19 m).

• When energy exchanges are of order .1−10 MeV nuclei may be excited and show a spectrum
of excited states just like atoms. The energies encountered in particle physics range from eV to
TeV at present. The lightest charged particle, the electron, has a mass of 511 keV/c2 . Protons
and neutrons have a size of order of a fermi (femtometer, 1 fm = 10−15 m). Photons can have a
variety of energies depending on their wavelength. For example, 800-1500 MHz photons from
a mobile phone antenna have an energy of hν ≈ micro eV, substantially less than that of UV
or visible light (eV) and insufficient to cause radiation damage by ionizing atoms in our body.
[Recall that h = 6.6.×10−34 Js while ~ = 10−34 Js = 6.6×10−16 eV s]. Photons in the Balmer
emission series (nf = 2) have eV energy corresponding to electronic transitions in hydrogen,
and lie in the visible region of the spectrum (that is why Balmer discovered them first, before
the nf = 1 UV Lyman series). X-ray photons (discovered as radiation emitted by accelerated
Cathode ray electrons) have energies of order keV or 10s of keV. Primary X-rays can ionize
atoms, which then relax producing secondary X-rays. The name gamma rays is often used for
photons of MeV energy and above, initially discovered in gamma radioactive decays of nuclei.

• The SI system takes as basic units a length (meter), a mass (kg) and a time (second). CGS
works with cm, gram and second8. In particle physics, both relativity and quantum mechanics
are relevant and ~ = 6.6 × 10−22 MeV s and c = 3 × 108 m/s are universal constants. So it
is convenient to take the basic units to be a speed (in units of c), an action (in units of ~) and
a mass (or energy). In these units the speed of light c = 1 and ~ = 1 . Measuring speeds in
units of c is like Mach units in aerodynamics, where speeds are quoted in units of the sound
speed. The unit of mass (or energy) could be the rest mass (or rest energy) of a particle playing
an important role in the discussion or quite often GeV/c2 (or GeV) which is quite close to the
rest mass (energy) of a nucleon.

• In natural units (c, ~ , mass), all physical quantities are expressed as a numerical factor times
cα~βMp . The powers are all determined by dimensional analysis, there is no ambiguity. In
natural mass units, we say that all quantities (denoted by primed variables below) have dimen-
sions of mass to some power Mp in units of c and ~ to some other powers. E.g., momenta
have dimensions of mass in units of c , p = p′c . Energies have dimensions of mass in units
of c2 , E = E ′c2 . Lengths have dimensions of inverse mass in units of ~/c , l = l′~/c as is
seen from the de Broglie wavelength λ = h/p . Times also have dimensions of M−1 in units of
~/c2 , t = t′~/c2 . Velocities are dimensionless (i.e. M0 ) when measured in units of c , v = v′c .
Action and angular momenta are dimensionless (i.e. M0 ) in units of ~: L = L′~ . Force has
dimensions of M2 in units of c3/~ .

• If instead we use the basic units c, ~ and an energy, then all physical quantities (denoted

8The CGS unit of force is a dyne (1 Newton = 105 dyne) and energy is an erg (1 Joule = 107 ergs) since 1m
= 100 cm and 1 kg = 1000 g.
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by tilde variables here) have dimensions of a power of energy in units of appropriate powers
of ~ and c . E.g. E = Ẽ . Masses have dimensions of energy in units of c−2 , m = m̃/c2 .
Momenta have dimensions of energy in units of 1/c , p = p̃/c . Lengths have dimensions of
inverse energy in units of ~c: l = l̃~c . Time has dimensions of inverse energy in units of ~ ,
t = t̃~ , etc. So quantities in natural energy units may be converted to natural mass units by
multiplying by an appropriate power of c2 , e.g., t̃c2 = t′ . Most often we talk in energy units
where masses, momenta and energies are all quoted in GeV, lengths and times in inverse GeV.

• What is a fermi in energy units? Ans: 5 GeV−1 . To see this note that l̃ = 1 fm
~c . Moreover,

~c = 6.6× 10−22MeV s× 3× 108m/s = 197 MeV fm (8)

Thus l̃ = 1/(197 MeV) ≈ 1/.2 GeV−1 ≈ 5 GeV−1 .

• In natural units, the reduced Compton wavelength of a particle is the reciprocal of its mass
λ
2π

= ~
mc

= 1
m

in units of ~/c or equivalently the reciprocal of its rest energy in units of ~c .
A particle of mass 100 GeV/c2 (the Higgs particle has a rest mass energy of 125 GeV) has a
reduced Compton wavelength of ~

100GeV/c2c
= ~c

100GeV
which is 2 × 10−3 fm, which is about

a thousandth the size of a proton. Equivalently, a reduced Compton wavelength of 10−18 m is
(1/200) GeV−1 corresponding to a particle of mass 200 GeV/c2 .

• If τ is the mean life-time of an unstable particle or state, its energy width is defined as
Γ = ~/τ or Γ = τ−1 in natural units. So an energy width of 1 MeV (or a life-time of 1
MeV−1 ) corresponds to a mean life of 6.6× 10−22 s. Indeed many hadronic resonances which
decay via the strong interactions have a life-time of order 10−23 s.

• A kilogram is a huge mass of 5.6 × 1026 GeV/c2 . A Joule is 6.24 × 109 GeV. A meter is
5×1015 (GeV)−1 . A second is 1.5×1024 GeV−1 . Or a time of an inverse GeV is 6.7×10−25 s.

• The physical parameters defining the hydrogen atom are the electron mass and charge, treating
the proton as infinitely massive. The mean speed of an electron in the g.s. of hydrogen is α
in units of c , v = αc . The fine structure constant α = e2

4π~c (in rationalized units) will be
discussed shortly. The binding energy of the g.s. of the hydrogen atom (one Rydberg) is Ry
1
2
mv2 = 1

2
mc2α2 or 1

2
mα2 in units of c2 . Being a length, the Bohr radius is an inverse mass

in natural units, so it must be inversely proportional to the only mass in the problem, that of
the electron, the proportionality factor can be calculated, it is 1/α . So a′0 = 1/(αm) in natural
units i.e., in units of ~/c . So the Bohr radius is a0 = a′0

~
c

= 4π~2
me2

. a0 → 0 as ~ → 0 ,
indicating classical collapse of electron into nucleus. Also a0 decreases with growing electric
charge which increases the electrostatic attraction to the nucleus.

• In atomic physics, the binding energies of atoms (of order 10s or 100s of eV) are a very
small fraction of the mass energies of constituents (GeV for the proton and half an MeV for
the electron). So one talks of the energy of the ground state of hydrogen relative to the energy
of far separated proton and electron. In particle physics, binding energies can be comparable
or even more than mass energies of constituents (essentially because we deal with relativistic
rather than non-relativistic bound states). So energies of states in particle physics are usually
total energies E , including both binding BE and mass energies ME of constituents.

• Using dimensional analysis, factors of ~ and c can be re-introduced into formulas obtained
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in natural units. E.g. any length l′ given as an inverse mass must simply be multiplied by the
numerical value of ~/c to get its SI or cgs value. Similarly, a time t̃ given as an inverse energy
must be multiplied by ~ .

• Prefixes for powers of 10 include (for small numbers, small letter) micro 10−6 , nano 10−9 ,
pico 10−12 , femto 10−15 , atto 10−18 and for large numbers (capital prefix) mega (million 106 ),
giga (billion 109 ), tera 1012 , peta 1015 , exa 1018 . For example, PCs with a terabyte of hard disk
storage are common. Collisions at the LHC produce peta bytes of data per year. The global
internet traffic was of order 21 exabytes per month in 2010. The LHC is designed to collide
protons of energy 7 tera eV. The fastest super computers reached 10-20 petaflops (floating point
operations per second) in 2012. ISRO plans to make a 133 exaflops super computer by 2017.
Electrons, photons etc seem to be point-like down to attometer precision. Pulses of light of
femto (and even atto-second) duration have been produced and used to observe chemical reac-
tions. Femtosecond lasers are used in eye surgery. Other small numbers arise as differences.
Experimental tests of the equivalence principle show that the difference between inertial and
gravitational masses is less than one part in 1012 . The difference between the measured value
and QED prediction for the electron anomalous magnetic moment (g − 2)/2 is less than one
part in 108 .

• In quantum field theory and particle physics, it is convenient to use rationalized Heaviside-
Lorentz units for charge, In Gaussian units, factors of 4π appear in Maxwell’s equations rather
than in Coulomb’s law, making them convenient in charged particle mechanics and atomic
physics. In HL units (like SI), factors of 4π appear in Coulomb/Biot Savart laws rather than in
Maxwell equations, which makes them convenient in field theory. HL and Gaussian units are
both CGS systems, they only differ in the treatment of factors of 4π for charge. In HL units,
Maxwell’s equations are written as

∇ ·B = 0, ∇× E = −1

c

∂B

∂t
, ∇ · E = ρ and ∇×B =

j

c
+

1

c

∂E

∂t
. (9)

In HLU, charges are normalized so that Coulomb’s law takes the form F = q1q2r̂
4πr2

. The electric
field of a point charge is E = q

4πr2
r̂ and the Biot-Savart law reads B = 1

4πc

∮
Idl×r
r3

. Charges
in HLU are related to Gaussian (electrostatic units esu or statcouloumb) units via qhl =

√
4πqg

while the fields and potentials are Ehl = Eg√
4π

, Bhl = Bg√
4π

and Ahl = Ag√
4π

. It follows that
the expression for the conjugate momentum π = p − eA/c and the Lorentz force law F =
q(E + v

c
×B) and fields in terms of potentials E = −∇φ− 1

c
∂A
∂t

, B = ∇×A take the same
form in both Gaussian and HL rationalized units. The magnitude of the charge of the electron
in Gaussian units is eg = 4.8 × 10−10 statcoul. In going from formulae in SI units to HLU,
ε0, µ0 are put equal to one, since they have been absorbed into the definition of charge, and
all times come with a factor of c . Sommerfeld’s dimensionless fine structure constant in HLU
is α = e2

4π~c . Putting in the values c = 3 × 1010 cm/s and ~ = 1.05 × 10−27 erg.s we find
α = 4.82×10−20

1.05×3×10−17 = 7.3 × 10−3 ≈ 1/137 . So in these units, electric charge has dimensions of
M0 in units of

√
~c : e = e′

√
~c where e′ =

√
4πα .
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• In Gaussian and HL units, E,B and A have different dimensions than in SI. Check that

[q] =
√
~c =

√
ML3/T, [E] = [B] = [F/q] =

M2c5/2

~3/2
=

M
1
2

TL
1
2

and [A] = [φ] =
Mc3/2

~
1
2

=

√
ML

T
.

So for instance, eA/c has dimensions of momentum as needed in π = p− eA/c . In HLU and
Gaussian natural units, charge and current density have the dimensions

[ρ] =
M3c7/2

~5/2
=

√
ML

T 3
and [j] = [ρc] =

M3c9/2

~5/2
=

√
M

T 2
√
L

(10)

Check that these are the dimensions of charge per unit volume and charge per unit area per
unit time. A useful ‘take away’ is that in natural units, charges have dimensions of M0 , gauge
potentials have dimensions of M , while electric and magnetic fields (or field strengths Fµν )
have dimensions of M2 and charge and current densities have dimensions of M3 .

• In Gaussian & HL units, the 4-vector gauge potential is Aµ = (φ,A) . Introduction of
the gauge potential automatically solves the homogeneous Maxwell equations. Faraday’s field
strength is F µν = ∂µAν − ∂νAµ while the 4-current is jµ = (cρ, j) . The inhomogeneous
Maxwell equations take the form ∂µF

µν = 1
c
jν along with the consistency condition (since

F µν is anti-symmetric) ∂µjµ = ∂ρ
∂t

+∇ · j = 0 for local charge conservation.

• Cross sections have dimensions of area. A barn = 10−28 m2 = 100 fm2 is a unit of area used
in particle physics, it is a rather large area. The cross sectional area over which the charge of
the proton (charge radius .8fm) is distributed is about 2 fm2 = 20 mb (millibarns). The word
barn is based on a joke/code from the WW2 days of atom bomb research: the uranium nucleus
looked as big as a barn to incoming neutrons. A uranium nucleus has a cross sectional area of
about 200 fm2 or 2 barns. Since 1 fm is 5 GeV−1 a cross section of 1 GeV−2 is 0.4 millibarns.

• When examining a process such as e+e− → Z0 at a collider experiment or Higgs production
in pp collisions, one is interested in the expected number of interesting events (per unit time).
Suppose the cross section for the specific process is predicted to be σ . Then the luminosity
L of the collider is a quantity with dimensions of L−2T−1 in terms of which the event rate
is given by Lσ . In the case of a collider, we have two counter rotating beams. The particles
usually go round f times per unit time in nb bunches, each of which consists of np particles
and has a cross sectional area A . The beams intersect at detector locations where collisions
occur. Now the number of clockwise rotating particles (say protons) that arrive at the detector
per unit time per unit area normal to the beam is given by fnbnp/A , this is the beam intensity
or flux. Now each of these particles could collide with any of the np particles (say protons) in
a counter rotating bunch. So the maximum number of collisions per unit area per unit time is
roughly L = fnbn

2
p/A , which is called the luminosity. Not all these collisions are expected

to produce a Higgs, only a fraction determined by the cross section σ , so the expected rate of
Higgs events is Lσ .

• For example, the design luminosity of the LHC is 1034 cm−2 s−1 , with 2808 bunches, each
containing 1.15 × 1011 protons going round the ring at a frequency of 40 MHz. One can then
estimate the beam cross sectional area. The cross section for Higgs production in pp collisions
at a center of mass energy of 7 TeV at CERN is about 15 picobarns. How many Higgs events
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are expected per year? The integrated luminosity of an accelerator is the time integral of the
luminosity it delivers to the detectors, this is what really matters, accounting for down-time. It
has dimensions of an inverse cross section and is usually quoted in inverse femtobarns.

1.5 Comparison of strong, weak, electromagnetic and gravitational interactions

• We have already mentioned that among the matter particles of the standard model, only
the quarks feel the strong force, which binds them into hadrons like the proton. Quarks and
charged leptons feel the electromagnetic force. All quarks and leptons participate in the weak
interactions. All particles feel the gravitational force. Let us get an idea of the relative strengths,
ranges and time scales associated with these four forces. The forces cause scattering between
particles, decays of unstable particles as well as formation of bound states.

1.5.1 Comparison of ranges of the 4 interactions

• In the quantum field theoretic description, a force between particles can be modeled as due
to the exchange of a mediating particle (typically a boson), the quantum of the force. Photons
mediate the EM force while pions mediate the strong force between nucleons and W± mediate
the weak force responsible for beta decay. Heuristically, the range of the force transmitted by
a carrier of mass m is of order the reduced Compton wavelength λ̄ = ~/mc of the carrier
(setting aside surprises like confinement). This may be familiar from the form of the Yukawa
potential − g2

4πr
e−r/λ̄ between a pair of nucleons, which we will derive later (g is a strong

analogue of electric charge, assigned to each of the nucleons). Roughly, a heavier intermediary
exists for a shorter duration and can travel less distance. According to the energy-time relation,
the intermediate state exists for a duration of order (~/mc2)9. In that time it can travel at most
a distance c × ~/mc2 . If there is more than one possible intermediary, then exchange of the
lightest one dominates with growing separation.

• The gravitational force between masses has an infinite range (there is no characteristic dis-
tance over which it decays exponentially), as does the electromagnetic force between charges,
both decreasing inversely with the square of separation V (r) = −GM1M2/r and V = q1q2/4πr .
This is associated with both being mediated by massless quanta, the graviton and the photon,
with infinite Compton wavelengths.

• The strong force between nucleons (within nuclei or when scattered), has a range of about
1-2 fermi. Based on this, Yukawa predicted the existence of π -mesons with a mass in the 100-
200 MeV range which would mediate the inter-nucleon force. Just such pions with masses
mπ± = 140 MeV were discovered in 1947. The range of the strong inter-nucleon force is of
order the Compton wavelength of the pions (about 1.5 Fermi).

• Weak interactions (like those responsible for n → p+e−ν̄e ) have the shortest range corre-
sponding to the very massive weak gauge bosons mW = 81 GeV, mZ = 90 GeV (their Comp-

9Our estimate for the energy difference between initial and intermediate state as the rest energy mc2 of the
mediator is valid when the scattering particles have an energy small compared to the rest energy mc2 of the
intermediary and the momentum of the intermediary is small compared to its rest energy.
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ton wavelengths are about 2 × 10−18 m). Weak interactions may be regarded as point/contact
interactions at momentum transfers significantly lower than 80 GeV. As in an optical micro-
scope, the momentum transfer is a measure of the reciprocal of wave length of the probe, as we
will show. So when incoming and outgoing particles have low energies, the momentum transfer
is small and we are probing the interaction at low resolution. Indeed, Fermi’s original 1934 the-
ory of beta decay involved a 4-fermion vertex GF√

2
p̄nēνe without mention of any intermediate

W boson. The Fermi coupling GF ∼ 1/M2
w .

• The strong force between quarks is due to exchange of gluons, which are massless. So one
might expect it to correspond to a long range 1/r potential, like in EM and gravity. First, the
idea of a potential or force is an idea from non-relativistic classical and quantum mechanics.
The interactions between particles in relativistic QFT cannot always be exactly specified by a
potential, though it is often a useful concept. Now consider a meson composed of a heavy quark
and anti-quark, such as J/ψ = cc̄ or Υ = bb̄ . Such heavy quark mesons display a tower of
excited energy levels, just as an e−p+ bound state does (hydrogen levels). What is more, the
binding energy of these bound states is somewhat less than the rest energies of the constituents,
unlike in hadrons composed of light quarks (e.g. proton or pion), so a non-relativistic treatment
of the quarks is a reasonable first approximation. One finds that the observed spectrum of
excited states can be theoretically obtained by assuming an inter-quark potential of the form
V (r) = −4αs

3r
+ kr where αs = g2s

4π~c is the strong version of the EM fine structure constant10.
The attractive −αs/r potential dominates at short distances, and is the strong analogue of the
Coulomb potential energy between charges. It is due to 1-gluon exchange between quarks, just
as the Coulomb law comes from 1-photon exchange in EM. But there is a surprise at larger
separations, the potential grows linearly, corresponding to a constant force F = −∇V . In
other words, it would cost a linearly increasing energy to pull a pair of heavy quarks apart.
This is a symptom of the phenomenon of confinement, quarks have not been isolated from
hadrons. When one tries to pull the quarks apart by supplying energy, at some point, it becomes
energetically favorable for a quark-antiquark pair to form in between and the meson to break up
into a pair of mesons as depicted in this cartoon

q̄ggq → q̄ggggggq → q̄gggggqq̄gggggq → (q̄gggggq) (q̄gggggq) (11)

There is a further surprise as we probe a hadron at higher resolution (higher momentum trans-
fers q , or loosely, higher energies E ). First, the non-relativistic approximation breaks down
and one cannot describe the situation in terms of the above potential, though the concept of
coupling αs continues to make sense. One finds that the strong coupling constant αs decreases
with increasing energy as αs ∼ 1/ log(E/ΛQCD) where ΛQCD ≈ 200 MeV is a constant ‘scale
parameter’ of the strong interactions. So for momentum transfers much more than 200 MeV,
(i.e. at short distances) the αs vanishes logarithmically. Asymptotically (at high momentum
transfers), quarks behave as free particles. This is the famous phenomenon of asymptotic free-
dom.

• Despite the quarks being confined within hadrons, it is possible to ‘see’ them using weak and
electromagnetic probes and measure their (fractional) electric charges, spin and weak isospin

10 gs appears at the quark gluon vertex gsq̄Aq , in the covariant derivative and in Fµν = ∂µAν − ∂νAµ +
ig[Aµ, Aν ] etc.

24



quantum numbers. This is achieved for instance via e−p+ scattering or νp+ scattering. ep →
ep elastic scattering proceeds through exchange of a photon between the electron and say an
up quark. Draw a Feynman diagram. The quark vertex is proportional to the charge of the up
quark, which can be inferred from measurements of the scattering cross section. The exchanged
photon plays the same role as light in a microscope to used to peer into an amoeba. Similarly,
we have the deep inelastic scattering process νµp+(uud) → µ−p+(uud)π+(ud̄) . Draw the
leading order FD for this process, it involves both W exchange and gluon exchange. It must
involve the W boson since neutrinos only interact weakly and can convert to a muon only via a
W .

1.5.2 Comparison of decay rates due to the three interactions

• It has not been possible to predict when a given particle will decay, statements about decay
are statistical statements about large populations. The decay of a particle refers to spontaneous
decay of an isolated particle at rest (it does not refer to conversion of the particle to different
particle(s) as a result of a collision). Decays of particles are found to follow the exponential de-
pletion law N(t) = N(0)e−t/τ . The mean life-time τ is the time it takes for a large population
of N particles to reduce to N/e particles.

• The same particle when it is in a bound state may or may not decay. Free neutrons decay with
a mean lifetime of 15 minutes but neutrons bound in a stable nucleus or a neutron star can live
essentially for ever. A free neutron moving at speed v relative to the lab lives on average a time
of γτ where γ = (1− v2/c2)1/2 as viewed from the lab.

• Weak interactions are responsible for nuclear beta decay (decay of a neutron n→ p+e−ν̄e ). It
is a very slow process compared to electromagnetic radiative decay (through photon emission)
or decay of unstable hadrons through strong interactions. The shortest nuclear β decay mean-
lives are of the order of milli-seconds though they can stretch to millions or even billions of
years. The muon also decays weakly via µ− → e−νµν̄e in 2.2 µs11. The large variation in weak
decay life-times is because of the mass difference between parent particle and decay products.
If the mass difference is larger (relative to the parent mass), then the decay can proceed faster, it
is like sliding down a steeper gradient12 On the other hand, electromagnetic radiative decays of
atoms typically take a few nano-seconds. This is one reason beta decay is referred to as a weak
interaction, compared to electromagnetism. In fact, weak interactions are manifested primarily
in decay or scattering processes forbidden by conservation laws to occur through the strong or
EM interactions.

11The EM decay µ− → e−γ has not been seen so far, it violates electron Le and muon Lµ lepton number
conservation.

12This is a general rule, not special to weak interactions. A nice illustration is the Geiger-Nuttal law found
empirically in 1911 (and explained in 1928 by Condon and Gurney and independently by Gamow using tunneling)
which states that α decay (which proceeds through strong interactions!) half lives of nuclei satisfy t 1

2
∝ eaZ/

√
E

where E is the energy of the α particle emitted and Z is the atomic number. So short-lived nuclei emit more
energetic alpha particles as they ‘slide down a steeper slope’! The exponential dependence on energy also explains
how small differences in mass defects between parent and daughter nuclei can lead to huge differences in decay
half lives. For example, Thorium 232 alpha decay has a half life of 14 billion years while Radium has an alpha
decay half life of 1590y.
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• All hadrons (baryons and mesons) other than the proton are unstable in isolation. Hadrons
that decay through the strong interactions typically do so with a life time of 10−23 s (e.g.
∆++(uuu)→ p+(uud) + π+(ud̄) , a quark-level Feynman diagram is shown) or

Σ0∗(uds)→ Λ0(uds)π0(uū), τΣ0∗ = 10−23s, (strong decay) (12)

Sometimes, hadrons that do not decay strongly (e.g. because gluon interactions cannot change
quark flavor) are called ‘stable hadrons’.

• Electromagnetic decays of hadrons occur more slowly, the neutral pion, which primarily
decays to 2 photons has a mean life of 10−16 s. The spin half neutral Σ baryon decays electro-
magnetically to a photon and the Lambda baryon in 10−19 s.

Σ0(uds)→ Λ0(uds) γ with τΣ0 = 10−19s, (EM decay). (13)

• Weak decays of hadrons tend to take a lot longer. For instance π+ → µ+ν̄µ has a life-time
of 26 ns13 (another weak decay mode is π+ → π0e+νe ). Free neutrons beta decay via the weak
interaction n → p+e−ν̄ with a mean life of about 15 minutes. And the spin half Σ+ baryon
decays weakly via

Σ+(uus)→ p+(uud)π0(uū) with τΣ+ = 10−10s (weak decay) (14)

• The upshot is that decay rates generally increase as we go from weak through electromagnetic
to strong interactions. Analogously, the production rates, or cross sections increase from weak
through EM to strong interactions. For example, Halzen and Martin quote the following typical
cross sections. Weak cross sections are ∼ 10−11 mb (e.g. neutrino proton elastic scattering
νp → νp or muon production in neutrino proton inelastic scattering νp+ → µ−p+π+ ). In
general, neutrino cross sections are roughly of order σν ∼ E × 10−11 mb where E is the
neutrino energy in GeV. On the other hand, electromagnetic scattering processes such as γp→
pπ0 have cross sections of order 10−3 mb. And typical strong interaction cross sections (e.g.
πp→ πp) are of order 20-40 mb.

13Cosmic ray protons in collisions with molecules in the upper atmosphere produce particle showers which
include pions. These pions decay to muons, many of which live long enough to reach the Earth’s surface.
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1.5.3 Comparison of strengths of forces

• We have seen that decay rates generally increase as we go from weak through electromagnetic
to strong interactions. This reflects the increasing strength of the interactions. In fact, we can
get a very rough estimate (ignoring the significant effects of kinematic factors etc.) of the
relative strengths of the three interactions by comparing the decay rates of π+, π0,∆++ , which
decay via the weak, em and strong interactions respectively with life times τwπ+ = 2.6× 10−8 s,
τ emπ0 = 10−16 s and τ s∆++ = 10−23 seconds. Draw the leading order FD for each decay. Each
is a second order process14 (involving one W , one γ and one u-quark exchange at leading
order) with decay rate proportional to the square of the corresponding ‘fine structure’ constant
αw, αem, αs . Thus we find

αs
αem
≈
√

10−16

10−23
≈ 3000 and

αem
αw
≈
√

10−8

10−16
≈ 104. (15)

These are very crude estimates, even their orders of magnitude cannot be trusted. But they do
indicate that strong interactions are significantly stronger than EM which are in turn stronger
than the weak interactions at the energy scales relevant to these decays.

• To compare the strength of gravity with other forces between particles, consider a pair of
protons (treated as point particles) separated by a distance given by a natural length associated
with the proton, its reduced Compton wavelength λ̄p = ~

mpc
= 1.32 Fermi. The gravitational

potential energy is of magnitude GNm
2
p/λp where GN = 6.67 × 10−11 Nm2 /kg2 (or 6.71 ×

10−39 GeV−2 in natural units). To get a dimensionless measure of the gravitational potential
energy, let us consider it in units of the rest energy of the proton (use ~c ≈ 10−34× 3× 108 Jm)

grav. potn. egy
rest energy

=
GNm

2
p

~c
=

6.7× 10−11 × (1.6× 10−27)2

3× 10−26
= 5.4× 10−39. (16)

So the gravitational potential energy is 39 orders of magnitude less than the rest energy of the
proton and can be ignored at energies of order the rest energy of the proton (1 GeV). On the
other hand, we may ask at what energy E the gravitational force becomes comparable to the
rest energy of the proton. To find out, we note that gravity couples to energy, not just mass,
so the ratio of gravitational to rest energy is of order GNE

2 in natural units. For this to be of
order one, we need energies of order EP ∼ G

−1/2
N ∼ 1.2× 1019 GeV. This is called the Planck

energy and is significantly higher than the center of mass energy available at the most energetic
accelerator (LHC, 7000 GeV) or even the most energetic cosmic ray particles detected (1012

GeV). So gravitational forces are negligible in present day particle physics.

• Alternatively, we may ask what the mass of a point particle MPl must be so that the gravita-
tional potential energy between two such particles separated by their reduced Compton wave-
length equals the rest energy of either. So GNM

2
Pl/~c = 1 or MPl =

√
~c
GN

= 1.22 × 1019

GeV/c2 , this is the Planck mass. The Planck length is defined as the reduced Compton wave-
length of a Planck mass particle, i.e., lp = ~

MPlc
= 1.6× 10−35 m. The Planck energy is the rest

14For e.g., at each of the two EM vertices of π0 → 2γ , there is a factor of u-quark charge 2e/3 . So the
amplitude is proportional to α = e2/4π and the decay rate (∝ square of amplitude) is proportional to α2 .
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energy of a Planck mass particle, EPl = MPlc
2 which is seen to be the same as the gravita-

tional potential energy of a pair of point-like Planck mass objects separated by a Planck length
Ep =

GNM
2
p

lp
.

• To compare gravity with EM, let us find the electrostatic energy between idealized point-like
protons separated by their Compton wavelength, in units of the proton rest energy

elec. potn. egy.
rest energy

=
e2

4π ~
mc
mc2

=
e2

4π~c
= α. (17)

We notice that this ratio is independent of the proton mass and is in fact the fine structure
constant α . It turns out that α is not quite a constant, but increases very slowly (logarithmically)
from 1/137 = 7.3 × 10−3 at eV energies relevant to atomic physics to about 1/129 at the rest
energy 90 GeV of the Z0 . In any case, the electric force at current energies is about 1036 times
as strong as the gravitational force.

• The ordering of strengths of the three forces can be seen from other phenomena too. The
existence of stable nuclei implies that the attractive strong force among nucleons outweighs the
electric repulsion between protons in a nucleus. So though strong interactions operate only on
nuclear and sub-nuclear scales, they must be much stronger than electric forces at lengths of a
fermi. This is borne out by measurements.

• The most familiar manifestations of the weak interactions are in beta decay and muon decay
n → peν̄e and µ → eν̄eνµ . These are charge changing weak interactions, mediated by W±

exchange. They also lead to a small parity violating inter-nucleon force (say ud→ ud via W+

exchange), which has been measured, but is vastly smaller than the inter-nucleon strong force.
There is also the charge preserving (‘neutral current’) weak interaction mediated by the Z0 ,
which leads to small parity violating effects in atomic spectra. Again, these effects are much
smaller than those due to the electric forces, as is clear from the success of non-relativistic QM
in the Coulomb potential in reproducing the hydrogen spectrum.

• As found earlier, weak interactions are very short ranged. In 1934, Fermi developed a 4-
fermion (n, p, e, ν ) contact interaction to describe beta decay (it is a low-energy approximation
to the electroweak theory that took shape in the 1960s and 1970s).

S =

∫ [
p̄(i/∂ −m)p+ n̄(i/∂ −m)n+ ē(i/∂ −m)e+ ν̄e(i/∂ −m)νe +GF p̄nēνe + h.c.

]
d4x (18)

From the kinetic terms, we infer that the fermion fields have dimensions M3/2 in natural units,
to ensure the action have dimensions of ~ . Unlike αem , Fermi’s coupling constant GF is not
dimensionless, but (like GN of gravity) has dimensions of inverse mass-squared. From beta
decay rates, one finds GF ≈ 10−5 GeV−2 . Fermi’s theory (at tree level) was very successful
in explaining beta decays of all nuclei, muon decay and other (low energy) weak processes
known at the time. However, the effective strength of the weak interaction GFE

2 increases
quadratically with energy of particles involved and becomes comparable to the electromagnetic
coupling at energies of tens of GeV. By then, Fermi’s theory ceases to be valid. In fact, it is
not renormalizable and loses predictive power when one tries to calculate quantum corrections
perturbatively beyond tree level. A similar problem afflicts perturbative quantum gravity. In
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the case of weak interactions, Fermi’s theory was replaced with the Glashow-Weinberg-Salam
standard model, in which weak and electromagnetic interactions get mixed and the contact 4-
fermi interaction is replaced by exchange of W bosons.

• Let us briefly consider the coupling constants in the standard model with gauge group SU(3)c×
SU(2)L×U(1)Y . There are three coupling constants one for each simple group15 or U(1) fac-
tor in the gauge group: g1 for weak hypercharge U(1)Y , g2 for weak isospin SU(2) and g3

for color SU(3) . Corresponding to these three coupling constants are three ‘fine structure’ con-
stants αi =

g2i
4π~c . α3 = αs is the strong one. But there is mixing among the weak isospin and

weak hypercharge generators. The weak mixing angle is given by tan θw = g1/g2 and the fine
structure constant of QED is αem = α2 sin2 θw . The charged weak gw = gem

sin θw
and neutral

weak gz = gem
sin θw cos θw

couplings can be expressed in terms of the EM coupling gem and weak
mixing angle.

• It turns out that αem as well as the other αi are not constant, but change with energy scale
(or distance scale) associated to the probe. They are called ‘running’ coupling constants. The
charge of an electron (which measures the strength of its coupling to photons or the strength
of its scattering from other electrons) increases as one probes it more closely (smaller wave-
length or higher energy/momentum carried by the photon probe). At large distances, the charge
is screened due to ‘polarization of the vacuum’. Analogous effects are familiar from atomic
physics (screening of nuclear charge by inner shell electrons) and electrostatics in a polariz-
able medium (dielectric like a plasma). The vacuum itself behaves as a polarizable medium
due to the effects of virtual electron positron pairs. It is found that the fine structure constant
increases logarithmically with the energy scale (or reciprocal of distance scale). On the other
hand the coupling constants for the color and weak isospin groups decrease with energy scale.
This anti-screening of color and weak isospin is due to the non-abelian gauge groups involved.
For example, in QCD, there is competition between the screening due to virtual qq̄ pairs and
anti-screening due to virtual gluons (see figure) and the latter dominate in practice, so αs = α3

decreases (logarithmically) with energy.

• The running of coupling constants (when they are small) is given to leading order in per-
turbation theory by a renormalization group equation (RGE) for α(µ) . µ is called the sliding

15If a group G has a non-trivial normal subgroup H , then we can form the quotient group G/H . If the subgroup
H is not normal in G , then G/H does not have the structure of a group, it is just a coset space (cosets cannot
be multiplied to get cosets in general). So if H is normal, G may be ‘broken down’ to H and G/H . The same
process can be applied to H and G/H , thus breaking a group into smaller groups. The process terminates at
simple groups, which are those that do not have any non-trivial normal subgroups. U(1) is not simple, since N th

roots of unity form normal subgroups for every N . But SU(n) is simple for n = 2, 3, . . .
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energy/momentum scale.

µ
dα(µ)

dµ
= β(α) (19)

The β function is evaluated by using Feynman diagrams of the sort shown. One finds for small
α that β(α) = β0α

2 + O(α3) . We say that the beta function has a double zero at the origin
(α = 0), this means α = 0 is a fixed point of the RG flow. The sign of β0 determines whether
the coupling grows (β0 > 0) or decreases (β0 < 0) with energy µ . Indeed, the solution of this
ODE is

α(µ)−1 = α(µ0)−1 − β0 log
µ

µ0

or α(µ) =
α(µ0)

1− β0α(µ0) log(µ/µ0)
(20)

The value of α at a reference scale µ0 needs to be fixed experimentally. Once this is done,
the theory predicts the values of the running couplings at other energy scales (where α is still
small). In particular, the formula for α(µ) can only be trusted when α is small. The parameter
β0 = 1

12π
(4Ng − 11Nc) where Nc is the number of colors in the case of QCD (or the N in an

SU(N) gauge group) and Ng is the number of fermion generations (3 generations of quarks
in the case of QCD). The first term 4Ng in β0 arises from fermion loops16 while the second
term 11Nc comes from gauge boson loops17. In QED, there are no gauge boson (photon) self-
couplings and no gauge boson loops, so in effect, Nc = 0 . So in QED β0 > 0 and Sommerfeld’s
fine structure constant grows logarithmically with energy: α = 1/137 = 7.3× 10−3 at energies
relevant to atomic physics to about 1/129 at the rest energy 90 GeV of the Z0 . QCD displays
the opposite behavior since β0 < 0 for sufficiently many colors Nc

Ng
> 4

11
, which is the case in

nature Nc = 3 and Ng = 3 . So αs → 0 at high energies and quarks become asymptotically
free. At an energy of 3 GeV αs is about .2 − .3 while at 90 GeV it decreases to about 0.12 .
Over this entire range of energies, the strong force between quarks is significantly stronger than
electric forces between quarks. QCD becomes strongly coupled at relatively low energies, i.e.,
µ . 1 GeV and QED becomes strongly coupled at high energies. In these regimes, perturbation
theory cannot be trusted. A naive application of the above formula for αem would suggest that
it has a simple pole (blows up) at an energy of µ = µ0e

1/β0α(µ0) ∼ e137π eV. This is called
the Landau pole and led to a temporary loss of confidence in the validity of QED and QFT
in the 1950s. However, this energy is way above the Planck energy and there is no reason to
trust perturbative QED when α grows big, other methods to study the theory are called for.
On the other hand, the largeness of αs at low energies (sometimes dubbed infrared slavery in
contrast to asymptotic freedom), necessitates the development of non-perturbative methods to
study QCD in the infra-red, quarks are strongly bound together by gluons leading to phenomena
like confinement when one tries to extract them from hadrons. The UV behavior of QCD is
perturbative due to asymptotic freedom.

• Using the above RGE, the scale dependence of the three running couplings α1, α2, α3 can be
found. At leading order in perturbation theory, they only differ in the values of β0 , which is

16It is proportional to the number of fermion-anti-fermion flavors that could circulate in the loop, i.e,
u, d, s, c, b, t

17If we use the double-line notation for gluon lines and fix the colors of the asymptotic quark states, there
remains a color loop whose possible colors we must sum over in computing the Feynman amplitude.
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negative for α2 and α3 and positive for α1 . In a plot of αi(µ)−1 against log(µ/µ0) , we will get
straight lines, with positive slopes for the color and weak isospin groups and negative slope for
the weak hypercharge group. The predicted running of these three couplings has been measured
carefully and confirmed upto µ over a 100 GeV. Interestingly the three straight lines seem to
get rather close at an energy of 1014 GeV. The 3 gauge couplings seem to meet at this scale
dubbed the scale of grand unification (GUT scale). Attempts have been made to find a grand
unified simple gauge group which would govern interactions at the GUT scale. The simplest
grand unified models predict the correct weak mixing angle (which is a free parameter in the
SM), they also predict proton decay, which has not yet been seen.

2 Concepts from mechanics, quantum theory and relativity

2.1 Rutherford scattering cross section

• Scattering of alpha particles against gold atoms (by Geiger, Marsden and Rutherford in 1909-
1911) was instrumental in identifying the nuclear model of the atom where a heavy positive
charge is concentrated at a point-like nucleus with light electrons surrounding it.

• Suppose the beam of incoming particles has an intensity/flux of F particles per unit time per
unit area normal to the beam. After scattering, we want to find dN , the number of particles
entering solid angle dΩ per unit time. dN is the rate at which particles should be detected
by a detector covering solid angle dΩ . This should be proportional to the incoming flux, so
dN = Fdσ where dσ is an area. dσ may be interpreted as the area normal to the beam through
which the particles must pass so that they are scattered into dΩ . The ratio dσ

dΩ
is called the

differential scattering cross section.

• Suppose charge q1 of mass m and energy E scatters off point charge q2 fixed at the origin
with repulsive Coulomb potential V = q1q2

4πr
. Rutherford’s differential scattering cross section is

dσ

dΩ
=

(
q1q2

16πE sin2 θ
2

)2

(21)

where θ is the (polar) scattering angle θ = 0, π for forward/back scattering.

• Let us recall how this formula is obtained. Consider particles coming in through an annulus
with impact parameters between b and b+db and any azimuthal angle φ . They will be scattered
by angles between θ and θ + dθ and therefore correspond to dΩ = 2π sin θdθ . Now dN =
2πbdbF is the product of the area of the annulus and the incident flux. Divide by F to get dσ
and divide by dΩ to get dσ

dΩ
= − b

sin θ
db
dθ

. The minus sign is because larger impact parameters
imply smaller scattering angles.

• By integrating the energy equation E = 1
2
mv2 = 1

2
mṙ2 + L2

2mr2
+ V (r) in a repulsive

Coulomb potential, one obtains the following relation between impact parameter and scattering
angle 1 + 4b2

a2
= cosec2(θ/2) . Differentiate to get the Rutherford differential cross section

8b

a2
db = −2 sin−3(θ/2) cos(θ/2)

1

2
dθ ⇒ −db

dθ
=

cos(θ/2)

sin3(θ/2)

a2

8b
. (22)
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• To derive the relation between b and θ we use Newton’s 2nd law. In fact we only need to
integrate once if we use conservation of energy E = 1

2
mṙ2 + l2

2mr2
+ q1q2

4πr
. If v is the initial

speed of the projectile (say coming in from the left), then its (conserved) angular momentum
and energy are l = mvb and E = 1

2
mv2 . So we may eliminate l in favor of b: l2/2m = Eb2 .

Since we are interested in the angular deviation of the orbit rather than its time dependence, we
parametrize the orbit by r(φ) instead of r(t) , where φ is the polar angle in the plane of the
trajectory measured with respect to the direction of the projectile source. The orbit equation
simplifies if we use u = 1/r in place of r . Thus ṙ = r′(φ)φ̇ and l = mr2φ̇ give

ṙ = −u′(φ)
l

m
⇒ 1

2
mṙ2 =

l2

2m
u′(φ)2 = Eb2u′(φ)2. (23)

and the conservation of energy becomes Eb2u′(φ)2 = E −Eb2u2 − q1q2
4π
u . Defining the length

a = q1q2
4πE

which is the (hypothetical) radial distance at which the Coulomb energy equals the
total projectile energy18

dφ =
bdu√

1− b2u2 − au
(24)

Now the projectile comes in from r = ∞ with φ = 0 , reaches a point of closest approach
where r = rmin = 1/umax [ ṙ = 0 , the mid-point of the trajectory, with φ = φ0 . umax is
the positive root of the quadratic under the square-root sign, umax =

(√
a2 + 4b2 − a

)
/2b2 ]

and eventually scatters off to r = ∞ reaching an asymptotic φ = 2φ0 . Draw a diagram! The
scattering angle is θ = π − 2φ0 . The integral can be done by completing the square and a
trigonometric substitution using

∫
dx√
1−x2 = arcsinx ,

φ0 =

∫ umax

0

b du√
1− au− b2u2

=
π

2
− arcsin

1√
1 + 4b2/a2

⇒ sin2(θ/2) =
1

1 + 4b2/a2
. (25)

This is the advertised relation between impact parameter and scattering angle for Coulomb
scattering, which leads to the Rutherford cross section.

• Physical remarks on Rutherford cross section formula.

• (1) The Coulomb field has a long range (though the scatterer is point-like). Particles with
large impact parameters (small scattering angles) contribute significantly to the total cross sec-
tion σ =

∫
(dσ/dΩ)2π sin θdθ . In fact, strictly speaking, the total cross section for Coulomb

scattering is infinite due to a divergence at θ = 0 . This means there is scattering even for large
impact parameters b , though the scattering angle decreases with b .

• (2) The charges need not have the same sign, the potential could be attractive or repulsive,
since the cross section only depends on the square of each of the charges.

• (3) The cross section falls off as 1/E2 with increase in energy. This is a characteristic fea-
ture of scattering of point charges at high energies, since the energy is the only dimensional
parameter in the problem19 with which to construct a quantity with dimensions of area (par-
ticle masses are small compared to sufficiently large E and there is no length scale from the

18Except in the case of zero impact parameter, the projectile does not actually get as close as a since it never
comes to rest if the angular momentum is non-zero

19A ‘scale invariant’ potential like the Coulomb potential q1q2/4πr does not introduce any length scale of
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dimensions of the point particles). For instance, the cross section for e+e− annihilation to
any final state has been measured from MeV to 100s of GeV center of mass energies (see
fig. 5.3, p.145 in Perkins 4th Ed.). It shows an overall 1/E2 fall off with localized peaks
corresponding to resonances (e.g. the qq̄ vector mesons) like ρ(dd̄ − uū, 776MeV ), ω(dd̄ +
uū, 783MeV ), φ(ss̄, 1019MeV ), J/ψ(cc̄, 3.1GeV ),Υ(bb̄, 9.5GeV ) and the weak gauge bosons
Z0(91GeV ),W+W−(160GeV ) etc. The scalar mesons π0 and η0 can also appear as reso-
nances in e+e− annihilation, but they are suppressed due to the need for two photon processes
unlike the single photon intermediary which is adequate in the above cases.

• (4) Rutherford scattering cross section depends on θ , it is not isotropic. There is non-trivial
scattering for large impart parameters. In other words, different incoming angular momenta
L = mvb of the projectile scatter differently but non-trivially. This is to be contrasted with a
very short range potential (like a delta function or a Yukawa potential e−r/ξ/r with ξ much less
than the impact parameter or de Broglie wavelength of incoming matter waves), where S-wave
(L = 0) scattering dominates, and there is no scattering for larger impact parameters b � ξ ,
and dσ/dΩ is independent of θ .

• (5) Though the differential cross section decays monotonically as θ goes from 0 to π (back
scatter), there is still significant scattering through large angles. The fall-off would be much
faster if the repulsive charge isn’t concentrated at a point, but spread all over the atom. This was
the experimental signal favoring Rutherford’s nuclear model of the atom over J J Thomson’s
‘plum pudding’ model.

• (6) The same Rutherford formula arises in non-relativistic QM in the first Born approximation
(which is valid at high (non-relativistic) energies). If E = ~2k2/2m is the initial and final
kinetic energy (elastic scattering, the electron just changes direction), then the magnitude of
transferred momentum q = ~kf − ~ki = kr̂ − kẑ is q = 2k sin(θ/2) since

q2 = (kr̂ − kẑ)2 = 2k2(1− cos θ) = 4k2 sin2(θ/2) (26)

The Born scattering amplitude f(θ, φ) is proportional to the Fourier transform20 of the potential,
f(θ, φ) ≈ − 2m

4π~2 Ṽ (q) where

Ṽ (q) =

∫
V (r)e−iq·rdr and V (r) =

q1q2

4πr
⇒ Ṽ (q) =

q1q2

q2
(27)

And the cross section is the square of the scattering amplitude

f(θ, φ) ≈ − 2m

4π~2
Ṽ (q) ≈ − 2m

4π~2

q1q2

q2
= − q1q2

16πE

1

sin2 θ/2
⇒ dσ

dΩ
= |f |2 ≈

(
q1q2

16πE sin2 θ/2

)2

.

(28)

its own. Other potentials may have a length scale ξ associated with them, in which case the formula for the
cross section could depend on both E and ξ . An example of non-point-like particle scattering is hadron-hadron
scattering, hadrons have a size a of order a Fermi and at high energies, the cross section approaches a constant,
roughly the classically expected value of π(2a)2 .

20The FT can be got from knowledge that the electrostatic potential for a point charge e , φ = e/4πr sat-
isfies Poisson’s equation −∇2φ = ρ = eδ3(r) since E = −∇φ and ∇ · E = ρ . Fourier expanding
φ(r) =

∫
φ̃(q)eiq·r[dq] and ∇2φ(r) = −

∫
q2φ̃(q)eiq·r[dq] . Using δ3(r) =

∫
eiq·r[dq] Poison’s theorem gives

φ̃(q) = −e/q2 if φ(r) = −e/4πr .
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• (7) In a relativistic treatment using Feynman diagrams in QED, scattering between a pair
of charges is (at leading order) due to exchange of a virtual photon. For example, one may
consider electron muon scattering or electron proton scattering (so that one of the particles is
much heavier than the other and we may ignore its recoil, just as in the α-gold nucleus case.)
The calculation is more involved (dealing with Dirac spinors), but the answer, Mott’s formula
(see for e.g. Griffiths 2nd ed., p.255 ), bears a resemblance to Rutherford’s formula (and reduces
to it in the non-relativistic limit p � mc). Assuming both particles have charge of magnitude
e , [

dσ

dΩ

]
Mott

=

(
e2

16π(p2/2m) sin2(θ/2)

)2 [
1 +

p2

m2c2
cos2(θ/2)

]
. (29)

p is the magnitude of the lab frame momentum of the electron, m its mass and θ the scatter-
ing angle. In the non-relativistic approximation p2/2m is simply the kinetic energy E of the
incoming electron.

2.2 Need for quantum treatment and high momentum transfers

• Quantum effects become important when we are interested in phenomena at a length scale
comparable to or smaller than the typical de Broglie wavelength λ = h/p of the particles in-
volved. Atoms are about an angstrom in size. The typical electron kinetic energies KE (by
kinetic energy we mean

√
p2c2 +m2c4 −mc2 , which reduces to p2/2m in the non-relativistic

limit) are of order eV or 10 eV (binding energy is 13.6 eV, and kinetic and potential ener-
gies are comparable) and the electron mass is half an MeV, so a non-relativistic treatment suf-
fices, though relativistic effects are manifested in the fine structure of atomic spectra. Typical
atomic electron momenta are p =

√
2mKE ∼ 1 keV/c implying de Broglie wavelengths

λ̄ = ~c
pc

= 200MeV fm
1keV

≈ 2 Angstroms, comparable to the size of atoms. Atomic electrons
require a quantum mechanical treatment.

• Nuclei are of size 1-10 fm as we go from deuterium to uranium. The binding energy of
a helium nucleus is 28 MeV while the rest energy of its constituents is 3755.67 MeV. More
generally, the binding energy per nucleon in a nucleus ranges from 1-2 MeV to 10 MeV, which
is much smaller than the rest mass 938 MeV/c2 of nucleons. So nuclear structure may be treated
non-relativistically. The momentum of a proton with kinetic energy 2 MeV is about 60 MeV/c.
It follows that the reduced de Broglie wave length is about λ̄ = ~c

pc
∼ 200 MeV fm

60MeV
∼ 3.3 fm which

is comparable to nuclear dimensions. So like in atomic structure, non-relativistic qm provides
a good first approximation to nuclear structure.

• In most of sub-nuclear particle physics, we require both quantum mechanics and special
relativity since particle kinetic energies often significantly exceed their rest energies (10 GeV
electrons or 1 TeV protons!) and we probe subnuclear dimensions comparable or smaller than
relevant de Broglie wavelengths. Moreover, number of particles is typically not conserved (e.g.
due to pair production), which is forbidden in non-relativistic qm.

• To resolve structures at small length scales we need probes with high energy (or momentum
transfer). To see why, note that the diffraction limit of resolution d of an optical microscope is
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given by Abbe’s formula

d ≈ λ

2n sinα
(30)

where α = θ is the aperture angle of the objective lens (half the opening angle of the cone of
light it receives from the source via the specimen) and λ the wavelength of light used and n
the refractive index of the medium between specimen and objective. So shorter wavelengths
of light (or higher energies E = hc/λ) resolve better. For a general probe (including matter
particles), we have by de Broglie’s relation λ = h/p

d ≈ h

2p sin θ
(31)

Now θ is the maximum angle through which the incoming particles have been scattered from
initial momentum pi = pẑ to final momentum pf = pr̂ , assuming elastic scattering so that
|pi| = |pf | = p . It follows that the momentum transfer q = pf − pi has magnitude q2 =
2p2 − 2p2 cos θ or q = 2p sin(θ/2) . So d ≈ h

2q cos(θ/2)
and we need large momentum transfers

to probe short distances by scattering through any particular angle. By using virtual photons and
weak gauge bosons with large momentum transfers in ep and νp scattering, the deep inelastic
scattering experiments of the late 1960s and early 1970s discovered the quark structure of the
proton.

• By 2014, momentum transfers of order q = 200 GeV/c and more are available. This cor-
responds to a resolution of d = ~c/(200 GeV ) ≈ 10−18 m. Quarks, (and leptons and gauge
bosons) behave like point-like particles down to this resolution.

• High energies are also needed to produce the particles encountered in particle physics, since
they have high masses like mHiggs = 125 or mtop = 175 GeV/c2 . In an e+e− colliding beam
experiment, the cm energy is available for production of new particles.

2.3 Resonances and Breit-Wigner line shape

• Most of the particles discovered are unstable, they decay to other particles through one or
more ‘decay channels’. E.g. Z0 → νν̄ or Z0 → e+e− or Z0 → qq̄ . They often do not live long
enough to leave tracks in detectors, but are manifested as peaks (resonances) in scattering cross
sections. Resonances are real (‘on-shell’) particles, they are not virtual particles (of course,
a Z can also appear as a virtual intermediary in a calculation). Hadrons are bound states of
quarks and gluons held together by the QCD interactions. However, some hadrons (like the ∆)
can decay via the strong interactions to lighter hadrons. Hadrons that decay through the strong
interactions are called hadronic resonances, typically they decay in 10−23 s. Those hadrons that
do not decay strongly may decay weakly or electromagnetically, and typically live much longer,
so they are called stable hadrons (e.g., nucleons, Σ , Λ0 , Ξ among baryons (and their anti-
particles) and pions, kaons and η0 among mesons – they are usually not called resonances). The
neutron is a stable hadron, it decays weakly with a mean life of about 15 minutes. The proton is
the only hadron that has not been seen to decay. The first baryonic resonance identified was the
∆ resonance, which decays strongly to a pion and a nucleon (it comes in 4 charge states, which
form an isospin 3/2 quartet ∆− ∆0 , ∆+ ∆++ ). Conversely, it is found that the cross section
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for π -N scattering goes through a local maximum (‘resonance’) when the invariant mass21 of
the π − N colliding system crosses the ‘mass’ of the ∆ (1232 MeV). Hadronic resonances
typically decay to the stable hadrons mentioned above via the strong interactions. Some of the
initially discovered hadronic resonances were denoted with an asterisk, e.g. K∗ , σ∗,Ξ∗ N∗ ,
∆∗ etc. In more recent notation, different resonances with the same isospin are denoted with
the same letter and mass in parentheses (e.g. N(1440), N(1520) etc. and ∆(1232),∆(1600)
etc., see the particle data booklet).

• The scattering cross section in the neighborhood of a resonance has a characteristic shape
called the Breit-Wigner resonance curve. It is a Lorentzian line shape characterized by an
energy width Γ and a peak value σpeak . A heuristic derivation follows.

• As in radioactive decay, the rate of depletion of a sample of N unstable particles A is pro-
portional to the number of particles present

dN

dt
= −WN (32)

where W is the total decay rate. It is the sum of partial decay rates for the various channels
(labelled by i , A → a + b, A → c + d etc.) W =

∑
iWi . Thus N(t) = N(0)e−Wt . The

time τ = 1/W is called the mean life time of the particle, the time after which on average
N(0)/e particles survive. Γ = ~W is called the energy width of the resonance (~Wi = Γi are
the partial widths). By the energy-time relation, we would expect Γ = ~/τ to be the spread
in (rest) energies of the unstable state. The point is that an unstable state does not have a well-
defined (real) energy since it does not correspond to a stationary state (a stationary state has
wave function with purely harmonic time depenedance ψ(0)e−iEt/~ ). Suppose a population of
resonances are produced at t = 0 or observed to exist at t = 0 . Then for t ≥ 0 , we could
model the amplitude (whose square should be the number of surviving particles) as,

ψ(t) = ψ(0)e−iMc2t/~e−t/2τ where M is the central value of the rest mass of the resonance,
(33)

so that N(t) = |ψ(t)|2 = |ψ(0)|2e−t/τ where N(0) = |ψ(0)|2 . In natural units, the amplitude
in the energy basis is given by the Fourier transform of ψ :

χ(E) =

∫ ∞
0

ψ(t)eiEt =
iψ(0)

E −M + iΓ
2

⇒ |χ(E)|2 =
|ψ(0)|2

(E −M)2 + Γ2

4

. (34)

In a collision of the decay products a, b at a center of momentum energy E , the cross section
for producing the resonant state A would be expected to be proportional to |χ(E)|2 . Thus the
Breit-Wigner resonance curve is

σ(E) = σpeak
Γ2/4

(E −M)2 + Γ2/4
where σpeak = 4|ψ(0)|2/Γ2. (35)

21The invariant mass is the Lorentz invariant length of the total initial 4-momentum
√

(pπ + pN )2 . It equals
the total energy of the colliding particles in the center of momentum frame, which is the frame in which the total
3-momentum is zero.
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This is a bell-shaped curve (‘Lorentzian’) centered at E = M . Γ is the full width of the
resonance curve at half maximum (σ = 1

2
σpeak when E = M ± Γ/2) where σpeak is the peak

value of the cross-section. This is of course a simple model, but it does remarkably well in
fitting resonance cross sections. In practice cross sections may not quite be symmetric about
E = M and this can be understood using scattering theory. Moreover, the Breit-Wigner cross
section decreases only quadratically and the tail of one resonance can affect the cross section
due to a neighboring resonance.

• The first hadronic resonance to be discovered (by Fermi and Anderson in 1952 using the
Chicago cyclotron; the idea that they were seeing a resonance was suggested by K Brueckner)
was p+π+ → ∆++ → p+π+ . ∆++ = uuu is an isospin 3/2 baryon, an excited state of a
nucleon (nucleons have angular momentum half, while ∆ has J = 3/2 , the quarks are going
round with more angular momentum, a little like the difference between the 1S and 2P states
of hydrogen). It is a broad resonance with a width of Γ = 120 MeV around a central mass of
1232 MeV. Being a broad resonance, ∆++ typically decays very quickly with a mean life time
τ = ~

Γ
≈ 10−23 s.

• The Z0 boson arises as a resonance in e+e− annihilation (to any final state), at MZ = 91
GeV with a full-width Γ = 2.5 GeV. What is its life time? Since Γ is the sum of partial widths
for the various decay modes, the more the number of contributing decay channels, the wider
the resonance. Z can decay to any ff̄ pair where f is a quark or lepton whose mass is less
than half that of the Z0 (so Z0 cannot decay to tt̄ or W+W− , though a virtual (far off-shell)
Z can produce a real W+W− pair in high energy e+e− collisions). In fact, this can be used to
bound the number of neutrinos to which the Z0 could decay. The experimentally determined
Z-width (Γ = 2.5 GeV) can be used to show that there can be at most 3 types of neutrinos of
mass less than MZ/2 that the Z couples to, indeed one finds Nν = 2.99 ± 0.01 . In particular,
there cannot be a 4th generation of leptons with a light neutrino that couples in the same way as
the first 3 generations.

• The Hoyle state is a narrow long-lived (Γ = 10eV) resonance of the Carbon nucleus with
a mass 7.654 MeV above the C12

6 ground state. It was predicted to exist by F Hoyle in 1953
and experimentally found subsequently by W Fowler. This resonance is the key to carbon
synthesis in helium burning stars via the so-called triple alpha process. The existence of this
resonance allows (by increasing the cross section to a level that is adequate to explain the ob-
served abundance of Carbon in the universe) three alpha particles to fuse (first two αs fuse to
form beryllium-8, which can capture a third α particle.). The C12

6 resonance then decays by
photon emission to arrive at the carbon ground state.

• The lowest lying baryons (spin half baryon octet (n, p ,Σ±,Σ0 , Ξ−,Ξ0 )) and lowest lying
mesons (spin zero meson nonet (π±, π0, K±, K0, K̄0, η, η′ )) are the stable hadrons built from
light quarks (u, d, s). They are all stable against strong decays. With the exception of the
proton, all of them decay via the weak or EM interactions, which makes them quite long lived
on the 10−23 s time scale of the strong interactions. Above these (in mass) we have baryonic and
mesonic resonances with spin more than half and more than zero respectively. These resonances
decay through the strong interactions. The lightest resonances are the spin 3/2 baryon decuplet
(10 of them the ∆,Σ∗,Ξ∗,Ω quartet, triplet, doublet and singlet) and the spin one meson nonet
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(ρ,K∗, φ, ω ). Look up the quark content of the baryon decuplet and arrange them in an I3

vs S plot. Baryonic resonances with higher spin (5/2, 7/2,9/2,11/2) have been found, as have
mesonic resonances with spin 2, 3, 4 .

• When the squares of the masses M2 of hadronic resonances are plotted against their spin
(total angular momentum J ) one often finds collections of resonances with a linear relation
between M2 and L . These collections are called Regge ‘trajectories’. For example, we have
the Regge trajectory of rotational excitations of the spin 1 ρ meson, spin 2 A2 meson, spin 3
g meson and spin 4 δ meson. Similarly there is a Regge trajectory of rotational excitations of
the J = 3/2 ∆ . The trajectories seem to have roughly the same slope but different intercepts.
We will discuss Regge trajectories later.

2.4 Size and binding energy of non-relativistic bound states

A non-relativistic bound state system is one where the speeds v of constituents (in the rest
frame of the system) are small compared to c . Examples include atoms, the solar system,
molecules, nuclei (with more than one nucleon) and mesons with two heavy quarks (J/ψ = cc̄
and Υ = bb̄). We may use the uncertainty principle to argue that the size R of such a system
is large compared to the Compton wavelengths λ = h

mc
of the constituents. Let us estimate

∆x ∼ R,∆p ∼ mv . Then Rmv ∼ ~ if we take the uncertainty bound as a reasonable
estimate, which is usually reasonable for low lying states. It follows that v

c
∼ ~

mc
1
R

= λ
2πR

. So
v � c implies λ � R , i.e. the Compton wavelengths of constituents are small compared to
the spatial extent of the bound state. An atom is a good example (electron Compton wavelength
2.4×10−12 m is less than the Bohr radius). Such a non-relativistic system also has small binding
energies compared to rest masses of constituents. Indeed, typically mean kinetic and potential
energies are of the same order (the virial theorem relates them), so we may take the binding
energy BE ∼ mv2 . Then BE

mc2
∼ v2

c2
� 1 .

• Estimate the binding energy of the earth in its bound orbit around the sun. How does it
compare with the sum of rest mass energies of the sun and earth? Compare with the situation
in the Hydrogen atom.

• Relativistic bound states include protons, pions and indeed any hadron made from the light
quarks. They have binding energies comparable to or exceeding the rest energies of constituents,
which move at speeds comparable to that of light. Typically, they do not consist of a definite
number of particles. Relativistic bound states are poorly understood.

2.5 Angular momentum

2.5.1 Representations of angular momentum Lie algebra

• In non-relativistic QM, angular momentum observables, irrespective of whether they are or-
bital, spin or combinations of both satisfy the same angular momentum (SU(2)) Lie algebra
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commutation relations22

[Ji, Jj] = i~εijkJk (36)

Check that J2 = J2
1 + J2

2 + J2
3 commutes with all three, it is the only independent Casimir

of the algebra and spans its center. In qm, angular momentum observables are represented as
hermitian operators. Irreducible representations are labelled by the eigenvalues of J2 , which is
a multiple (~2j(j + 1)) of the identity in any such representation. It is conventional to choose a
basis for a representation where J2 and Jz are diagonal, there are at most two such independent
operators that are simultaneously diagonalizable. An angular momentum j irreducible unitary
representation is 2j+1 dimensional, the representation space is C2j+1 . The 2j+1 simultaneous
eigenstates of J2 and Jz are |jm〉 with eigenvalues ~j(j + 1) and ~m respectively. Here
m = −j,−j + 1, . . . , j − 1, j and j is either a non-negative integer or half an odd positive
integer. This is obtained by defining the raising and lowering operators J± = Jx ± J− which
satisfy the commutators [J2, J±] = 0 and [Jz, J±] = ±~J± . These imply that J± raise and
lower the value of m without affecting j . The boundedness (above) of J2

z = J2 − J2
x − J2

y

can be used to argue that J− and J+ cannot indefinitely lower and raise the value of m in a
given irreducible representation. One finds that there are states of highest and lowest angular
momentum projection J+|jj〉 = J−|j,−j〉 = 0 . Moreover,

J±|jm〉 = ~
√
j(j + 1)−m(m± 1)|j,m± 1〉. (37)

The factor on the right is obtained from the identities J2 = J+J−+J2
z−~Jz = J−J++J2

z +~Jz .
It gives us the matrix elements of J± (in this basis) in the representation labelled j .

• For j = 0 we get a 1d irreducible representation with Ji represented by the 1×1 zero matrix
for all components i . This is the ‘trivial’ representation, but nature has chosen it for all the spin
zero particles including the Higgs, pions, kaons, η, η′ . The spin state of any such particle is
given by a single complex number, the corresponding field is just a 1-component function of
location (scalar field).

• By contrast, in the j = 1
2

representation, the spin wave function is a 2 component complex
vector (‘spinor’). All quarks and leptons have spin half as do the octet of spin half baryons
(including the nucleons). For j = 1

2
, in the basis in which Jz is diagonal, Ji = 1

2
~σi in terms

of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
; σ+ =

(
0 2
0 0

)
, σ− =

(
0 0
2 0

)
(38)

σi span the space of 2 × 2 hermitian traceless matrices and satisfy the Lie algebra [σi, σj] =
2iεijkσk . They also satisfy the identity (special to j = 1

2
) σiσj = δijI + iεijkσk which implies

the anti-commutation relation σiσj + σjσi = 2δij .

• For j = 1 the matrix elements in the |11〉, |10〉, |1− 1〉 ordered basis are

J+ =
√

2~

0 1 0
0 0 1
0 0 0

 , J− =
√

2~

0 0 0
1 0 0
0 1 0

 , and Jz = ~

1 0 0
0 0 0
0 0 −1

 . (39)

22The same SU(2) Lie algebra applies to the spin of relativistic particles, as long as they are not massless. Spin
of a massless particle is not described by SU(2) , and will be discussed later.
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Massive spin one particles include the W± , Z0 weak gauge bosons and vector mesons ρ,K∗, φ, ω .
The spin of a massless particle is not described by the SU(2) Lie algebra. So the photon and
gluon, which have spin 1, are not described by the above states, in particular, they have only
two, not three spin states (‘polarizations’).

• The next possibility is j = 3/2 . The ∆ baryons (∆++(uuu),∆+(uud),∆0(udd),∆−(ddd))
have angular momentum (spin) 3/2 and their spin wave functions can be thought of as 4-
component vectors with angular momenta represented by 4× 4 matrices.

• An infinite dimensional (reducible) representation of the angular momentum algebra is pro-
vided by the orbital angular momentum differential operators Li = (r× p)i = εijkrj(−i~ ∂

∂rk
)

acting on wavefunctions ψ(r, θ, φ) . Despite appearances, Li don’t involve the radial coordinate
r (check that Lif(r) = 0). In fact,

Lz = −i~ ∂

∂φ
, Lx = i~

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, Ly = i~

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
.

(40)
So they take functions on the unit sphere f(θ, φ) to functions on the unit sphere. A conve-
nient basis for square-integrable complex-valued functions on S2 is provided by the spherical
harmonics Ylm(θ, φ) . We may expand any such function uniquely as

ψ(θ, φ) =
∞∑
l=0

l∑
m=−l

clmYlm(θ, φ), clm ∈ C. (41)

Each angular momentum l representation for l = 0, 1, 2 . . . , appears as a sub-representation of
this infinite dimensional representation. Each eigen-space (with eigenvalue ~2l(l + 1)) of the
Casimir

L2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (42)

is an invariant subspace and carries the irreducible angular momentum l representation.

2.5.2 Angular momentum and rotations

• Angular momenta are known to generate rotations in classical mechanics (infinitesimal canon-
ical transformations, say via the Poisson bracket). In qm, orbital angular momentum compo-
nents Li = εijkrj(−i~ ∂

∂rk
) generate rotations in the sense that the action of the infinite di-

mensional unitary operator U(n̂, θ) = exp(iθL · n̂/~) on the coordinate space wave function
gives

eiθL·n̂/~ψ(r) = ψ(Rr). (43)

where R = eiθL·n̂/~ is the 3× 3 SO(3) rotation matrix (obtained using the j = 1 representation
of Li ) corresponding to the rotation of Euclidean space by angle θ counterclockwise about n̂ .
For an infinitesimal rotation, Rr = r + (δθ)n̂ × r . An infinitesimal rotation corresponds to
U ≈ I + iδθ

~ (nxLx + nyLy + nzLz) where n̂ = (nx, ny, nz) .

• If ψ(r) is the coordinate space wave function with respect to a coordinate frame F , then ψ′ =
U(n̂, θ)ψ is the wave function with respect to a rotated frame F ′ . In general, the expectation
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values and matrix elements of observables (〈φ|A|ψ〉) depend on the coordinate frame used,
they are related by 〈φ′|A|ψ′〉 = 〈φ|U †AU |ψ〉 . A scalar observable is one that has the same
matrix elements in all frames related by rotations. Applying the condition to an infinitesimal
rotation we find that a scalar operator must commute with the angular momentum generators
[A,Li] = 0 . The hamiltonian H = p2/2m − e2/4πr of the hydrogen atom is an example of a
scalar observable, as is the Casimir L2 .

Transformation of a j = 1 triplet under rotations: vectors
• The states of a j = 1 multiplet transform like an ordinary three vector under rotations. To
see this, consider a j = 1 triplet |m〉,m = 1, 0,−1 . Under an infinitesimal rotation U(ẑ, θ) ≈
I + i~−1θLz about the z axis, we find

δ|m〉 = i~−1θLz|m〉 = iθm|m〉. (44)

So |0〉 is unchanged while the | ± 1〉 states transform into multiples of themselves,

δ| ± 1〉 = ±iθ| ± 1〉. (45)

Moreover, check that a rotation by θ = 2π leaves the state unchanged, U(ẑ, 2π) = I .

• To see the connection to rotation of a vector, recall that under an infinitesimal counter-
clockwise rotation of axes by angle θ , the components of a vector v1, v2, v3 transform intov′1v′2

v′3

 =

 1 − sin θ 0
sin θ 1 0

0 0 1

v1

v2

v3

 ≈
1 −θ 0
θ 1 0
0 0 1

v1

v2

v3

 (46)

So δv1 = −θv2 , δv2 = θv1 and δv3 = 0 . In this basis, v1 and v2 are mixed under a rotation.
To ‘disentangle’ them we can go to the ‘helicity basis’ by defining the complex combinations
v± = (v1± iv2) so that (upper signs are read together and lower signs give a separate equation)

δv± = δv1 ± iδv2 = −θv2 ± iθv1 = ±iθv±, δv3 = 0. (47)

This is precisely how the states of an angular momentum j = 1 triplet transform under rotations.
Partly for this reason, a massive spin-1 particle is called a vector particle. Taking the z direction
along its momentum, the m = ±1, 0 spin-projection states are called the positive, negative and
zero helicity states. This explains the use of the term ‘helicity basis’ above. As shown, they
transform under rotations in the same way as components of a 3-vector. The W and Z weak
gauge bosons are examples of spin-1 vector bosons. Photons and gluons are also spin-1 vector
bosons, but they are massless and lack the zero helicity state, they only come in positive and
negative helicity versions. We are aware of this from the purely transverse polarization of EM
waves. W and Z particles can have longitudinal as well as transverse polarizations. Spin for a
massless particle is not described in terms of the SU(2) Lie algebra commutation relations, it
is more subtle, we will study it later.

Transformation of a j = 1
2

doublet under rotations: spinors
• Transformation of j = 1

2
spinors under rotations. C2 is the space of states of a spin half

system. Any such state (spinor |ψ〉) is a linear combination of m = ±1 eigenstates of σ3 ,
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| ↑〉 =

(
1
0

)
and | ↓〉 =

(
0
1

)
, |ψ〉 = c↑| ↑〉+ c↓| ↓〉 with |c↑|2 + |c↓|2 = 1 . Under a rotation, a

spinor transforms by the unitary matrix U(n̂, θ) = exp 1
2
iθ~σ · n̂ . Using σ2

i = I we get

U(n̂, θ)|ψ〉 = e
1
2
iθ~σ·n̂|ψ〉 = cos(θ/2)I|ψ〉+ iσ · n̂ sin(θ/2)|ψ〉 (48)

For example,

U | ↑〉 = cos(θ/2)| ↑〉+ i sin(θ/2)(nx| ↓〉+ iny| ↓〉+ nz| ↑〉)
= [cos(θ/2) + inz sin(θ/2)] | ↑〉+ [sin(θ/2)(inx − ny)] | ↓〉. (49)

Starting from, say, the | ↑〉 spinor, by suitable choice of n̂ and θ , U | ↑〉 can be made equal
to any |ψ〉 ∈ C2 . Indeed the set of such unitary transformations is a three parameter family
(parametrized by the direction n̂ and angle θ ) as is the space of unit spinors in C2 . So there is
always a rotated coordinate frame in which a given spinor is just | ↑〉 . The analogous statement
is not true for j > 1

2
since rotations are still a 3 parameter family but the unit vectors in C2j+1

are a larger (4j+1 real parameter) family. So not every unit vector in a j = 1 multiplet (C3 ) can
be rotated to the |j = 1,m = 1〉 state. (Rotations of 3d Euclidean space, which are represented
by the unitary operators U(n̂, θ) on C2j+1 do not exhaust all unitary transformations of the
Hilbert space for j > 1

2
.) An interesting physical consequence (according to T D Lee, as I

learned from H S Mani) is that spin half particles cannot have a quadrupole moment while
higher spin particles can.

• Moreover, to any unitary transformation of C2 , there corresponds a rotation of 3d Euclidean
space R3 , this is not true for j > 1

2
. If the C2 is the space of states of a spin half system,

then the corresponding Euclidean space is just ordinary coordinate space. But C2 could also be
the space of isospin states, then the corresponding R3 is not ordinary coordinate space but an
‘internal’ isospin space.

• The observables of any two state system (hermitian 2× 2 matrices) can be written as a linear
combination of Pauli matrices and the identity matrix A = a0I + aiσi . And the states of a 2
state system can always be written as a linear combination of | ↑〉 and | ↓〉 , where ↑, ↓ are the
eigenstates of σ3 . This analogy between two state systems and the spin j = 1

2
system is often

exploited in the treatment of two level systems (atoms, particles etc).

• Interestingly, a rotation by 2π does not return a non-zero spinor to its initial state since
U(n̂, 2π) = −I . But a rotation by 4π does, U(n̂, 4π) = I . We say that a spinor (state vector
of a spin half system) is double valued in ordinary 3d coordinate space. This double-valued
nature has been experimentally detected through interference of beams of spin-half particles
(neutrons) whose spins have been rotated using magnetic fields.

2.5.3 Comment on helicity and spin

• For a massive particle, its intrinsic angular momentum (spin) could be defined as its angular
momentum in its rest frame. More generally, spin can be defined via the helicity h = J·p̂ , which
is the projection of total angular momentum on the momentum of the particle. The advantage of
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this concept is that it applies to massless particles like the photon, that cannot be brought to rest.
A massive particle can viewed in a frame in which it is going slowly, where non-relativistic QM
applies, and then by taking ẑ along ~p , it is clear that h = −s, s+ 1, . . . , s− 1, s where s is its
spin. More generally, we can define the spin of a particle to be the maximum value of helicity.
We will find that h = ±1 for a photon, so it is a spin one particle. For an electron h = ±1

2
, it is

a spin half particle. W± and Z0 have h = 0,±1 , they are spin one particles. Unlike a massive
particle, a massless particle of spin s has only two possible helicities h = ±s . This is familiar
to us from the lack of longitudinal polarisation for EM waves.

• The Higgs is the only spin zero (i.e. scalar) elementary particle in the SM. Quarks and leptons
have spin half. Photons, gluons, W± and Z0 have spin one (i.e. vector particles). Gravitons
would have spin 2. Composite particles like hadrons, nuclei and atoms too can be characterized
by an angular momentum J . This angular momentum is due to a combination of the spins of
the constituents as well as the orbital angular momenta of the constituents. When we speak of
the spin of a hadron or nucleus or atom, we mean its total angular momentum J .

• Nature seems not to have used elementary particles of spin higher than two. However, there
are composite particles with higher spin. Hadrons furnish many examples. Pions and kaons,
η, η′ have spin zero. The baryons p, n,Σ,Λ,Ξ have spin half. The vector meson resonances
ρ, ω, φ,K∗ have spin one. The baryon resonances ∆,Σ∗,Ξ∗,Ω have spin 3/2 . Meson reso-
nances with spin as high as 2, 3 and 4 have been found. Baryon resonances with spins as high
as 11/2 have been found. For example, among the excited states of the nucleon, the isospin
3/2 ∆(2400) and ∆(1920) baryons have spin 11/2 and 7/2 respectively, while the isospin
half baryons N(2190) and N(1688) have spin 7/2 and 5/2 respectively.

• The hydrogen atom (in any state) has integer angular momentum. Indeed, any bound state
of an even number of spin half particles (e.g. proton and electron) must have integer spin since
1
2
⊗ 1

2
= 0⊕ 1 , and the orbital angular momentum of any state of hydrogen is always an integer

l = 0, 1, 2 . . . . Thus the total angular momentum J = L+ S of an H-atom must correspond to
integer j . The deuteron has total angular momentum one, it is a spin one particle.

• The concept of helicity originally arose as a conserved quantity in inviscid fluid flow. h =
w · v where v is the velocity vector field and w = ∇ × v is the vorticity field. So spin of a
particle is a bit like vorticity of a fluid element.

2.5.4 Clebsch Gordan coefficients

• Consider a combination of two systems described by the angular momentum observables ~J1 ,
~J2 which commute with each other. Moreover suppose the individual systems have fixed an-
gular momentum quantum numbers j = j1 and j = j2 respectively (corresponding to their
individual Hilbert spaces C2ji+1 carrying the relevant irreducible representations). Their re-
spective Hilbert spaces have bases |j1,m1〉 and |j2,m2〉 with appropriate ranges of m1,m2 .
E.g., we may be combining the spin and orbital angular momenta of an e− in an atom, or the
spins of the two e− s in a He-atom, the isospins of a π and a nucleon or p and n in a deuteron.
The combined Hilbert space is the tensor product C2ji+1⊗C2ji+1 , which is the span of the tensor
products of the basis vectors of the individual Hilbert spaces {|j1m1〉⊗ |j2m2〉} . Its dimension
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is the product of dimensions. The total angular momentum ~J = ~J1 ⊗ I + I ⊗ ~J2 ≡ J1 + J2

again satisfies the angular momentum algebra and the eigenvalues of J2 are ~2j(j + 1) where
the possible values of j are (recall angular momentum addition or see below)

|j1 − j2|, |j1 − j2|+ 1, · · · , |j1 − j2| − 1, |j1 + j2|. (50)

In other words, the combined system does not (in general) carry an irreducible representation
of angular momentum due to the presence of more than one highest weight state (annihilated
by J+ = J1+ +J2+ ). Instead we have a direct sum decomposition of the tensor product Hilbert
space into irreducible multiplets

C2j1+1⊗C2j2+1 ≡ j1⊗ j2 = |j1− j2| ⊕ (|j1− j2|+ 1)⊕ . . .⊕ (|j1− j2| − 1)⊕ |j1 + j2|. (51)

The total state space C2j1+1⊗C2j2+1 has the uncoupled basis of tensor product states |j1m1〉|j2m2〉
in which J2

1 , J1z, J
2
2 , J2z are all diagonal. It also has a coupled basis labelled by |jmj1j2〉 ab-

breviated |jm〉 (where ~2j(j+ 1), ~m are the eigenvalues of the total J and total Jz ) in which
J2, Jz, J

2
1 , J

2
2 are diagonal. Both the uncoupled and coupled bases are orthonormal bases for

the total state space, so one may write

|jm〉 =
∑

m1+m2=m

Cjm;m1m2|m1〉|m2〉 (52)

with the restriction of the range of summation arising from Jz = J1z+J2z . The CG coefficients
C·;· are the matrix elements of a square (2j1 + 1) × (2j2 + 1) dimensional orthogonal matrix.
Let us find them in some important examples.

• Clebsch-Gordan coefficients for addition of j1 = 1
2

and j2 = 1
2

is important in a 2-electron
system like the He-atom or a 2 nucleon system like the deuteron. Here j = 1, 0 so 1

2
⊗ 1

2

decomposes into the direct sum of a triplet {|jm〉 = |11〉, |10〉, |1 − 1〉} and a singlet |jm〉 =
|00〉 . Now |1

2
〉|1

2
〉 =↑↑ is the only tensor product state with m = m1 + m2 = 1 , so we must

have (with suitable choice of phase)

|11〉 = |1
2
〉|1

2
〉 and similarly |1− 1〉 = | − 1

2
〉| − 1

2
〉. (53)

To find the CG coefficients for |10〉 we apply J− to |11〉 or J+ to |1 − 1〉 and recall that
J±|jm〉 =

√
j(j + 1)−m(m± 1)~|j,m ± 1〉 . In natural units (~ doesn’t appear in the CG

coefficients anyway),

J−|11〉 =
√

2|10〉 = J1−| ↑〉| ↑〉+ J2−| ↑〉| ↑〉 = | ↓〉| ↑〉+ | ↑〉| ↓〉. (54)

Thus |10〉 = 2−
1
2 (↑↑ + ↓↓) . The singlet state |00〉 has m = 0 and so must be a linear

combination a ↑↓ +b ↓↑ . The coefficients must be determined (up to normalization) by the
condition that |00〉 must be annihilated by J± , or equivalently that it must be orthogonal to
|10〉 . The latter gives |00〉 = 2−

1
2 (↑↑ − ↓↓) . The CG coefficients may be summarized in a

4× 4 matrix

C =


1 0 0 0

0
√

1
2

√
1
2

0

0
√

1
2
−
√

1
2

0

0 0 0 1

 . (55)
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with columns labelled by the ordered uncoupled basis states | ↑〉| ↑〉, | ↑〉| ↓〉, | ↓〉| ↑〉, | ↓〉| ↓〉
and the rows labelled by the ordered coupled basis states |11〉, |10〉, |00〉, |1− 1〉 in decreasing
order of m . The CG coefficient Cjm;m1m2 is given by the entry in the jm row and the m1m2

column. Check that CCt = I . Our choice of ordered bases and phases ensures that C is both
orthogonal and symmetric as a matrix.

• Find the Clebsch-Gordan coefficients for addition of j = 1 and j = 1
2

. The combination
decomposes as 3

2
⊕ 1

2
. The uncoupled basis is ordered as

|1〉| ↑〉, |1〉| ↓〉, |0〉| ↑〉, |0〉| ↓〉, | − 1〉| ↑〉, | − 1〉| ↓〉. (56)

and the coupled basis is ordered with decreasing m = m1 +m2

|3/2, 3/2〉, |3/2, 1/2〉, |1/2, 1/2〉, |3/2,−1/2〉, |1/2,−1/2〉, |3/2,−3/2〉. (57)

• The matrix of CG coefficients for 1⊗ 1
2

= 3
2
⊕ 1

2
with rows and columns labelled by uncoupled

and coupled bases (in the order given above) is (by choosing phases in a suitable way so that it
is a symmetric matrix)

C =



1 0 0 0 0 0

0 1√
3

√
2
3

0 0 0

0
√

2
3
− 1√

3
0 0 0

0 0 0
√

2
3

1√
3

0

0 0 0 1√
3
−
√

2
3

0

0 0 0 0 0 1


(58)

2.6 Resonant scattering from partial wave expansion

• As an application of angular momentum and potential scattering theory, we re-derive the
Breit-Wigner formula for the elastic cross section a + b → c → a + b (in the vicinity of a
resonance c) using the expansion in angular momentum partial cross sections. Suppose the
resonant sate c occurs for center of momentum energies E in the neighborhood of the central
mass M then the Breit-Wigner formula is

σelastic ≈ σpeak
Γ2/4

(E −M)2 + Γ2/4
. (59)

We will relate the energy width Γ and the peak cross section σpeak to the phase shift and
incoming wave number k appearing in the partial wave expansion of potential scattering. Now
the Breit-Wigner formula for the cross section must be considered as a local addition (around
E = M ) to the background cross section when the particles are off resonance. For example,
the πN cross section is typically around 20-30 mb, but near the resonance (i.e. around a centre
of momentum energy 1232 MeV of the πN system -or- pion kinetic energy 195 MeV in the
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rest frame of the nucleon), the cross section goes up to 200 millibarns! Similarly, the e+e−

annihilation cross section which is around 1 nb at a CM energy of 86 GeV, suddenly goes up to
30 nb at E = 91 GeV around the Z0 resonance.

• Recall that the differential x-section dσ
dΩ

is the absolute square |f(θ, φ)|2 of the scattering
amplitude. For a spherically symmetric scattering potential V (r) f is independent of the az-
imuthal angle φ . Legendre polynomials

(∫ 1

−1
Pl(x)Pl′(x)dx = 2

2l+1
δll′
)

provide a basis for
functions of x = cos θ , so the scattering amplitude may be expressed as a sum of partial wave
amplitudes

f(θ) =
∑
l

(2l + 1) al Pl(cos θ). (60)

The partial wave amplitudes may be expressed in terms of the phase shifts δl (one uses unitarity
to get this formula)

al =
e2iδl − 1

2ik
=
eiδl sin δl

k
, (61)

where k is the angular wave number (~k is the momentum) of the incoming particles. The
incoming particles have kinetic energy KE = ~2k2/2m . Note that this kinetic energy is not
the same as the energy E that appears in the Breit-Wigner formula. The latter is the centre
of momentum energy of the colliding particles a and b , or equivalently, the Lorentz invariant
quantity E =

√
(pµa + pµb )2 . Using the orthogonality of Legendre polynomials, the total elastic

cross section is expressed as a sum of partial cross sections

σ = 4π
∞∑
l=0

(2l + 1)|al|2 or σ =
∑
l

σl where σl =
4π

k2
(2l + 1) sin2 δl. (62)

The incoming plane wave

eikz = eikr cos θ =
∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ) (63)

may be resolved into spherical waves of definite angular momentum l . Each scatters with a
partial cross section σl . Off resonance, various angular momentum channels contribute. But
near a resonance, a particular angular momentum channel tends to dominate the cross section
σl0 � σl for l 6= l0 . This may be visible in the angular distribution of scattered particles: near
a resonance, they would be distributed roughly like Pl0(cos θ)2 (over and above a non-resonant
background cross section). Based on this experimental finding, we will say that if |al|2 passes
through a maximum at some value of l = l0 for some particular wave number k (or CM energy
E ), then the partial x-section σl0 will pass through a maximum and the two colliding particles
are said to resonate. The resonant state is characterized by the the angular momentum l0 and
mass M corresponding to the center of momentum energy of the two particles at resonance.
For hadronic resonances, one may also assign an isospin and parity to the resonant state. Our
treatment here assumes the scattering particles are spin-less. More generally, the spin of the
scattering particles also contribute, and the resonant state is characterized by a total angular
momentum J which receives contribution both from l0 and from the spins sa and sb . For the
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J = 3/2 ∆ resonance, since sp = 1
2

and sπ = 0 , we would expect that the resonance is in the
l = 1 channel.

• The condition for a resonance in the angular momentum l channel is that δl(k) = π/2 . In the
neighborhood of a resonance, we will assume that σtot (after subtracting the non-resonant back-
ground cross section) is well approximated by the partial cross section σl , which has reached a
maximum. Then

σ ≈ σl = 4π(2l + 1)|al|2 (64)

Now let us write the partial wave amplitude in a manner suggestive of the Breit-Wigner formula
which involves a quotient,

kal =
sin δl
e−iδl

=
1

cot δ − i
(65)

The resonant energy E = M is defined as the one at which δl = π/2 or cot δl = 0 . Expanding
in a Taylor series around E = M we have

cot δl(E) = (E −M)
d

dE
cot δl(E)|E=M +O(E −M)2. (66)

The derivative has dimensions of inverse energy, and we define Γ by

d

dE
cot δl(E)|E=M = − 2

Γ
(67)

The factors are chosen so that Γ coincides with the full width at half maximum appearing in
the Breit-Wigner line shape. Then near the resonance, the partial wave amplitude is

kal ≈
1

2
Γ
(M − E)− i

=
Γ/2

(M − E)− iΓ/2
. (68)

Thus the partial cross section becomes

σelastic ≈ σl ≈
4π

k2
(2l + 1)

∣∣∣∣ Γ/2

(M − E)− iΓ/2

∣∣∣∣2 =
4π

k2
(2l + 1)

Γ2/4

(E −M)2 + Γ2/4
. (69)

This is the Breit-Wigner formula with σpeak = 4π(2l + 1)/k2 where l = J is the angular
momentum of the resonant state. This applies to collision of spin-less particles a + b → c →
a + b . More generally, if the colliding particles have spins sa, sb , then the Breit-Wigner cross
section, averaged over the spin states of a and b is

σelastic ≈
4π

k2

(2J + 1)

(2sa + 1)(2sb + 1)

Γ2/4

(E −M)2 + Γ2/4
. (70)

2.7 Introduction to concept of parity

• Parity or reflection through the origin Π(x, y, z) = (−x,−y,−z) is a discrete transformation
of Euclidean space. In spherical polar coordinates Π(r, θ, φ) = (r, π−θ, π+φ) . Π may also be
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regarded as a composition of reflection in the x− y plane (for instance) (x, y, z)→ (x, y,−z)
followed by rotation by π about the z -axis. So in 3 spatial dimensions, reflection through the
origin and in a plane are both discrete transformations which cannot be continuously deformed
to the identity23. If rotations are a symmetry of the system, then both definitions of parity may
be used. Parity is often called mirror reflection and satisfies Π2 = I .

• It has been found experimentally that parity is a symmetry of gravitational, EM and strong in-
teractions, but not the weak interactions. As with other symmetries, if a Hamiltonian/Lagrangian
or law of nature is parity-invariant, then parity transforms solutions of the eq. of motion or al-
lowed phenomena into other solutions or allowed phenomena. EM and strong interactions are
parity invariant in the sense that the probability for any EM/strong process is equal to the prob-
ability for the mirror-reflected process. Gottfried and Weisskopf give an example from atomic
physics. Consider the angular distribution of radiation emitted by an ensemble of hydrogen
atoms in a definite excited state. If the laws of atomic physics and atom-radiation interaction
are parity invariant, then the angular distribution should be unchanged upon reflection in any
plane that leaves the initial sate probability distribution |ψ(r)|2 invariant.

• Parity is a discrete transformation. When it is a symmetry, it leads to a conserved quantity,
though not via Noether’s theorem. Dynamics specified by a hamiltonian H is parity invariant
if [Π, H] = 0 . It follows that the expectation value of Π in any state is conserved in time and
an eigenstate of parity remains one of the same parity. In a scattering or decay that does not
involve the weak interactions, the parity of the initial state (assuming it is one of definite parity)
must equal the parity of the final state. Moreover, eigenstates of the hamiltonian H|E〉 = E|E〉
can be chosen to have definite parity (even or odd, if necessary by forming the combinations
|E〉 ±Π|E〉) and the parity of a stationary state is constant in time. For example, spherical har-
monics Ylm(θ, φ) have parity (−1)l , as may be seen from the Rodriguez formula for associated
Legendre polynomials Ylm ∝ Plm(cos θ)eimφ where

Plm(x) = (1− x2)|m|/2d|m|x

1

(2l)!!
dlx(x2 − 1)l and x = cos θ, Π(θ, φ) = (π − θ, π + φ). (71)

• Parity of a system composed of two sub-systems is multiplicative, provided their interactions
are parity invariant. If the two sub-systems are far separated, the wave function Ψ = ψ1ψ2 is
a product and Π = Π1Π2 . Processes that bring the sub-systems closer will preserve parity by
assumption.

2.7.1 Transformation of scalars, vectors and tensors under reflection

• A vector is a quantity that transforms like position under rotations. Among vectors we distin-
guish between polar vectors that change sign under reflections, and axial vectors that are parity
even. For example, position r , momentum p , velocity v , acceleration a , force F , electric field
E , current density j and polarization ~ε are polar vectors. A cross product of polar vectors is an

23By contrast, in two spatial dimensions, reflection in the origin (x, y) → (−x,−y) is simply rotation by π
in the x − y plane and cannot be used to define parity. Instead define parity in 2D as reflection in a line through
the origin, say the y-axis: (x, y) → (−x, y) . The choice of the line does not matter as long as rotations are a
symmetry of the system
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axial vector. For example angular momentum L = r× p , torque r×F , and the magnetic field
B (dB ∝ dl × r) are axial vectors. It follows that the vector potential (A in B = ∇×A) is
a polar vector. The cross product of polar and axial vectors is a polar vector, an example is the
Poynting vector S ∝ E × B . A linear combination of polar and axial vectors does not have
definite parity, though it transforms as a vector under rotations. Such a quantity appears in the
parity violating V − A theory of weak interactions where the difference between a vector and
an axial vector current appears in the ineteraction.

• A scalar (under rotations) is a quantity that is independent of the orientation of the coordinate
frame. Examples include constants like the rest mass or charge of a particle and the speed of
light or fields like density, pressure, energy and temperature of a fluid. In fact, we identify
two types of scalars. True scalars (simply called scalars) are invariant under reflections while
pseudoscalars are odd under reflections. All the quantities mentioned above are true scalars.
The dot product of two polar vectors or two axial vectors is a scalar. For example, power
= F ·v is a scalar, as is electromagnetic energy density 1

2
(E ·E + B ·B) . The dot product of a

polar and axial vector (e.g., E ·B) is a pseudo scalar. The triple product of three polar vectors
is a pseudo scalar. Check that Maxwell’s equations are invariant under parity. Show that the
magnetic dipole energy ∝ L · B and electric dipole energy ∝ r · E (or ∝ p · A in radiation
gauge) are scalars.

• While strong and EM processes have been found to conserve parity, weak interactions violate
parity (maximally, in a sense). Angular momentum (both orbital and spin), being an axial
vector, does not change sign under parity, while momentum is a polar vector and does change
sign. It follows that helicity h = J · p̂ is a pseudo-scalar. So parity reverses the helicity of a
particle. In particular, parity takes a h = −1 (negative helicity or left handed) neutrino to a
h = 1 (positive helicity or right handed) neutrino (draw a figure). RH neutrinos have not been
observed and are not included in the SM. This indicates that parity is not a symmetry of the
structure of neutrinos. We will discuss parity violation in the weak interactions later.

• Under an orthogonal transformation, the Levi-Civita symbol transforms as ε′ijk = Rii′Rjj′Rkk′εi′j′k′ .
It follows that ε′123 = R1iR2jR3kεijk = detR etc. For a reflection detR = −1: the ε symbol
changes sign under parity, it is a pseudo-tensor.

2.7.2 Intrinsic parity

• In addition to the parity of the wavefunction of a system of particles, we may assign an intrin-
sic parity to the constituent particles. Gottfried & Weisskopf give a nice motivating example.
Consider two J = 0 states |ψs〉 and |ψp〉 of a He atom. In |ψs〉 , the electron spins are in a sin-
glet state and both electrons are in S-wave states of zero angular momentum, so Π|ψs〉 = |ψs〉
and ψs has even parity, it is called a scalar. In |ψp〉 , one electron is in a P-wave state, the
other in an S-wave state, giving L = 1 and Πp = −1 . The electron spins are in one of the
triplet states with S = 1 . Orbital and spin angular momentum are combined in such a way
that J = L + S = 0 . Since ψp is has odd parity, it is called a pseudo-scalar. Now, each of
these Helium states ψs, ψp may be considered as particles in their own right and perhaps even
with the same center of mass wave function χ(R) . Nevertheless, they behave differently under
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mirror reflection, and are assigned even and odd ‘intrinsic’ parities. Of course, we could assign
these parities because we knew the substructure of these He states.

• Parity in atomic physics. In atomic processes, the number of electrons and nucleons is con-
served, while the number of photons may change. Consider 1-photon emission. The parity of
initial or final state is the product of (1) the intrinsic parities of the electrons and nucleons (2) the
parity of the orbital wave function of the electrons Πi,Πf (sometimes called extrinsic parity)
and (3) the parity of the emitted photon state Πγ . Since the numbers of nucleons and electrons
are conserved, the intrinsic parities of electrons and nucleons drop out and conservation of par-
ity implies Πi = ΠfΠγ . It is possible to assign a parity to the emitted photon state. 1-photon
states of definite angular momentum and parity are in 1-1 correspondence with certain solutions
of Maxwell’s equations, the electric and magnetic multipole fields. For instance Πγ = −1 in
electric dipole radiation while Πγ = 1 for magnetic dipole radiation In particular, the parity of
the electron wave function must change in an electric dipole transition. So an electric dipole
transition from 2S to 1S is forbidden by parity conservation while 2P to 1S is allowed. The
possibility of emitting single photons makes it possible to measure the parity of photon states,
something that is not possible for nucleons or electrons. In strong and EM interactions, elec-
trons or nucleons cannot be produced singly (unlike photons). An electron can only be produced
in association with a positron. It is possible to find the parity of the e+e− pair, but not of an
electron. It is possible to produce electrons singly, as in a beta decay, but then such a process is
parity violating and cannot be used to find the parity of the electron.

• In strong interactions pions (and other mesons like kaons) play a similar role to that played
by photons in EM. An accelerated charge radiates photons while an accelerated neutron can
radiate pions. An excited hadron may decay by pion emission just as an excited atom may
decay by photon emission. In strong interactions, such as p + p → d + π+ or p + p →
π++p+n , pions can be produced or annihilated singly, and the parity of pions can be measured.
Pions have negative intrinsic parity, they are called pseudo-scalars since they have zero spin in
addition. Since isospin (which is a symmetry of the strong interactions) transforms pions into
each other, they must all have the same negative parity, as must the kaons and η, η′ , using the
SU(3) transformations among u, d, s quarks.

• The negative parity of π− was experimentally established by studying the decay of an ‘atom’
made of a deuteron d+ = np and a π− . It was in its ground state (l=0) and it decayed to two
neutrons via the strong force. The outgoing neutrons were found to be in an l = 1 state. In the
reaction npπ− → nn , the intrinsic parities of the nucleons cancel out. So the parity of the π−

should equal the extrinsic parity of the final state, Ππ− = (−1)l = −1 . The negative parity of
pion can also be explained using the quark model.

• While the intrinsic parity of a fermion is a matter of convention, fermion-anti-fermion pairs
such as e+e− can be produced singly, and their parity measured (the π0 = d̄d − ūu is another
example). From the theory of the Dirac field (to be discussed later) one can show that spin-half
fermion and anti-fermion have opposite intrinsic parities. By convention, electrons, muons and
tau leptons and all quarks are assigned even parity. It follows that a qq̄ bound state with zero
orbital angular momentum must have negative parity, as is the case for pions and kaons, they are
pseudoscalars (zero spin and odd parity). On the other hand, the ρ meson resonances (and the
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rest of the spin 1 meson nonet K∗, ω, φ) are quark-anti-quark bound states with orbital angular
momentum l = 0, j = 1 . They have odd parity and are called vector mesons (states of a j = 1
multiplet transform as a 3d vector as shown previously). Unlike a fermion and its anti-particle,
a boson and its anti-particle are not required to have opposite parities, for example, π± both
have odd parity and the odd parity π0 is its own anti-particle.

• The number of nucleons is conserved in strong interactions, so their intrinsic parities cancel
out in reactions. By convention, nucleons are assigned positive parity. Since the spin-half
baryons n, p,Λ,Σ,Ξ transform into each other under flavor SU(3) symmetry of the light u, d, s
quarks, all these baryons have the same even parity. This is consistent with the assignment of
even parities to all the quarks and the fact that the quarks are in an l = 0 state in these lowest
lying stable baryons. Strange particles may be produced in pairs (of opposite strangeness, in
collisions of non-strange hadrons) in strong interactions, e.g. p + p → K+ + Λ0 + p . So the
parity of the Λ0K+ pair can be measured relative to that of the proton, it is negative. Since
kaons transform into pions under flavour SU(3) symmetry, they are assigned negative parity
while ΠΛ0 = +1 consistent with what we said about the spin half baryon octet. The spin 3/2
baryons ∆,Σ∗,Ξ∗,Ω are composed of quarks which are again in orbital angular momentum
l = 0 state, they too have even parity.

• It is possible to assign negative intrinsic parity to photons (this is different from the parities of
the multipole radiation fields) and gluons, essentially because the vector potential A is a polar
vector. As we will see, parity is not conserved in the weak interactions, so we cannot consis-
tently assign parities to particles undergoing weak interactions (in particular we do not assign
intrinsic parities to W±, Z0, ν, ν̄ ). To summarize, some even parity particles are e−, µ−, τ− ,
quarks (by convention), octet of spin-half baryons, decuplet of spin-3/2 baryons, nonet of vec-
tor mesons and Higgs scalar. Some odd parity particles are the nonet of spin zero pseudoscalar
mesons, photons, gluons, e+, µ+, τ+ and the anti-quarks.

2.7.3 Parity violation in the weak interaction

• To explain some puzzling features of weak decays of strange mesons, Lee and Yang in 1956
suggested that parity may not be conserved in the weak interactions. During 1954-56 a co-
nundrum called the τ − θ puzzle unfolded. Strange mesons decaying (weakly) to 2 and 3
pions θ+ → π+π0 and τ+ → π+π+π− were observed. However τ and θ were found to
have the same masses and mean lifetimes and they seemed to be identical in all other respects
(strangeness, isospin). However, they would have to have positive and negative parities if parity
were conserved in the above reactions (pions have negative parity). So it was reasoned that they
could not be the same particle. Lee and Yang studied the data available and pointed out that
parity conservation had simply been assumed, and had not been experimentally established in
the weak interactions (while it had been tested in EM and strong processes). They suggested
that τ and θ were simply two different decay modes of the same particle (now called the K+ )
and that the weak interactions did not conserve parity.

• Recall that if parity is a symmetry, then a mirror reflected process must have the same fre-
quency of occurrence as the original process. To test this, one may set up two experiments

51



which are mirror images of each other (and not identical) and see whether they give the same
output. In 1956, C S Wu and collaborators (of Columbia Univ, though the experiment was done
at the National Bureau of Standards (now NIST), Maryland due to the need for very low temper-
atures) prepared a sample of Co-60 nuclei with their spins (total angular momenta) J polarized
in a common direction (say ẑ ). The direction of out-going beta electrons was measured. Let
us consider the effect of reflections in the x − y plane, under which the position polar vector
(x, y, z) → (x, y,−z) . The e− momentum p is also a polar vector. Under a reflection in the
xy plane, p = (px, py, pz) 7→ (px, py,−pz) . On the other hand, the nuclear angular momentum
J is an axial vector, so under a mirror reflection Jz → Jz . So the mirror reflected version of
a beta decay process would have the Cobalt nucleus polarized along ẑ but with beta particle
emerging with momentum reflected in the x − y plane. If parity were a symmetry, these two
processes must have equal probability. In other words, the angular distribution of electrons must
be up-down symmetric or Prob(θ) = Prob(π − θ) where θ is the polar angle between ẑ and
the direction of electron momentum. However, the experimental measurements were signifi-
cantly up-down asymmetric. This showed that parity is not conserved in the weak interactions.
If the Cobalt nuclei weren’t spin polarized (by maintaining low thermal fluctuations), then the
up-down symmetry would be hidden. The reaction was 60Co→60 Ni∗∗ + e− + ν̄e . The spin of
Cobalt is 5 while that of the excited Nickel nucleus is 4 . Using the fact that anti-neutrinos are
exclusively RH, we can understand why most of the electrons came out in the direction oppo-
site to the spin of the Cobalt nuclei. To first approximation we ignore the recoil of the Nickel
nucleus so that the electron and anti-neutrino moment must be back to back and the Ni spin is
is in the same direction as the Co spin (i.e. along ẑ ). The spins of the e and ν̄e must add to one
and point upwards to make up for the difference between Co and Ni angular momenta. Thus
the electron momentum must be along −ẑ and the ν̄e must travel upwards. We also see that the
electron emerges with negative helicity in this example. This is generally the case, relativistic
charged leptons that participate in the charge changing weak interactions predominantly have
negative helicity (see below).

• At the same time, L Lederman and R L Garvin (at Columbia) found evidence for parity vio-
lation in the π → µ → e decay chain. Another group of V. Telegdi et. al. also experimentally
demonstrated parity violation.

2.7.4 Helicity of ultra-relativistic fermions in charged weak processes and π± decay

• Another interesting experimental fact about weak interactions concerns the helicity of the
fermions and anti-fermions (leptons or quarks and their anti-particles) produced in charged
weak processes. Charged weak processes involve the W± , e.g. W− → µ−ν̄µ , W− → e−ν̄e ,
W+ → e+νe etc. All neutrinos produced are found to have negative helicity while all anti-
neutrinos have positive helicity. But it is not just the neutrinos that obey this helicity selection
rule, so do ultra-relativistic (i.e. produced with energy much more than rest mass) quarks and
leptons. It is found that ultra-relativistic fermions (e−, µ−, τ− and the quarks) are produced
predominantly with negative helicity in charged weak interactions. A small fraction (∼ m/E )
of the fermions come out with positive helicity, also called the ‘wrong’ helicity. On the other
hand, the anti-fermions (e+, µ+, τ+ and anti-quarks) are predominantly produced with positive
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helicity.

• Let us apply this helicity selection rule to understand the peculiar case of charged pion decay.
Based on the 140 MeV pion mass, two weak decay modes are allowed π− → e−ν̄e and π− →
µ−ν̄µ . One might expect the former to be the dominant decay mode since mπ−me � mπ−mµ

and it would be like sliding down a steeper slope. However, the decay to an electron is greatly
suppressed due to the helicity selection rule and charged pions predominantly decay to muons.
To see this, consider the π− decay in its rest frame where e− and ν̄e would emerge ‘back-to-
back’ with zero total momentum, to conserve momentum. Since the ν̄e has positive helicity, its
spin must point away from the π− decay vertex. The electron (which typically emerges with
a speed close to c due to mπ >> me ) must have negative helicity, and so its spin must point
towards the interaction vertex. So the total angular momentum of the final state is non-zero and
points in the direction of the momentum of the ν̄e . However, the initial state has zero angular
momentum since pions have spin zero. So this decay is forbidden by the conservation of angular
momentum. The same decay with muons replacing electrons would also be forbidden, except
that the muons are typically not ultra-relativistic since mπ−mµ < mµ . It is through the ‘wrong’
helicity (h = +1) µ− that π− decay proceeds to a large extent.

2.8 Identical particles: Fermions and Bosons

• All electrons (protons, photons, hydrogen atoms in their ground state etc) have been found
to be identical in their intrinsic physical characteristics (mass, charge, spin, magnetic moment).
Moreover, electrons cannot be unambiguously distinguished by their trajectories due to Heisen-
berg uncertainty. This experimental fact is implemented in non-relativistic QM by requiring (1)
that the hamiltonian (which specifies the dynamics) is invariant under a permutation of identical
particles and (2) that the permutation of identical particles results in a wave function that repre-
sents the same physical state Pabψ(. . . qa . . . qb . . .) = eiθψ(. . . qb . . . qa . . .) where q denotes all
the degrees of freedom of each particle (position, spin etc). The permutation/exchange operator
is hermitian, P 2 = I , so its eigenvalues are ±1 and it commutes with the hamiltonian. Thus
energy eigenstates may be chosen to be simultaneously eigenstates of the permutation opera-
tors. So the phases eiθ = ±1 and the corresponding eigenspaces are the bosonic and fermionic
multi-particle states. [There are other possibilities. For instance, particles moving on a plane
may in a sense be attached to magnetic flux tubes extending into the third dimension. Then the
particles are no longer strictly localized around a point and require a different treatment, leading
to ‘anyonic’ statistics.]

• In a second quantized framework the symmetry and anti-symmetry of state functions is a
consequence of the corresponding creation and annihilation operators satisfying commutation
or anti-commutation relations. It is a remarkable experimental fact that all fermions have half
odd integer spin and all bosons have integer spin. This is called the spin-statistics connection.
It can be shown to hold in relativistic quantum field theory using causality.

• Anti-symmetry and Pauli principle: Suppose the number of identical fermions is approxi-
mately constant and the multi-particle wave function can be approximately built from single
particle wave functions by anti-symmetrization (say, when each moves almost independently
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of the others). Then the requirement of anti-symmetry implies that no more than one iden-
tical fermion can occupy the same single particle state. This is Pauli’s principle. It can be
usefully applied to multi-electron atoms, nuclei and even to the valence quarks in baryons. In
particular, two electrons with the same spin cannot occupy the same spatial location or same
atomic orbital. This leads to the ‘degeneracy pressure’ of fermions responsible for the stability
of ordinary matter and white dwarfs. When the gravitational attraction can no longer be with-
stood, the electrons in a white dwarf may be captured by the protons via the weak interaction
e− + p → n + νe . There is a transition to a neutron star (Pauli’s principle is not violated). On
the other hand, identical bosons can occupy the same single particle state and indeed tend to
condense to the lowest such state at low temperatures.

• A composite particle that is a bound state of n identical fermions behaves as a fermion or bo-
son according as n is odd or even. To understand this, note that the addition of an even number
of half-odd integer spins always gives an integer spin while addition of an odd number always
gives a half-odd integer spin (and orbital angular momentum is always an integer multiple of
~). For example, a system of identical (say, all in their ground state) nuclei of baryon number
B behaves as a system of fermions or bosons according as B is odd or even. This statement
assumes that the neutron and proton can be treated as different isospin states of the same particle
(nucleon). This is a good approximation if their mass difference and electromagnetic effects can
be ignored. The fermionic and bosonic nature of baryons and mesons (3 and 2 valence quark
bound states) is another illustration of this.

• For a two body system, the spatial part of the wave function ψ(r) of a state of definite L2

and Lz is the product of a radial part and a spherical harmonic Ylm . Here r is the relative
coordinate, it changes sign under exchange of particles r → −r . From our study of parity
we may conclude that under particle exchange, this orbital wave function is symmetric or anti-
symmetric, according as l is even or odd. This fact is often quite useful.

• Let us apply the ideas of identical particles and angular momentum conservation to the dom-
inant decay of the neutral pion π0 → 2γ , to argue (the original argument is due to L D Landau
Doklady Akad. Nauk (USSR) 60, 207 (1948) and C N Yang Phys Rev 77, 242 (1950)) that the
spin of the π0 cannot be one. Working in the π0 rest frame, the final state depends on three
vectors, the relative momentum k of the two photons and their polarizations ~ε1,~ε2 . ±k are the
directions in which the photons emerge. The final state must be symmetric under exchange of
photons on account of their Bose statistics. It must be linear in each of the polarizations (as it
lies in the tensor product Hilbert space) and must transform as a vector under rotations if the
pion has J = 1 and angular momentum is conserved. In momentum space, the wave function
would then be some scalar function of k · k times this vector. There are several vectors that
one can construct. ε1 × ε2 is inadmissible since it is anti-symmetric under exchange. (ε1 · ε2)k
is also anti-symmetric since k → −k under exchange of the photons. The only symmetric
vector is proportional to k× (ε1 × ε2) = ε1(k · ε2)− ε2(k · ε1) , but it is identically zero since
photons are transversely polarized. Thus the amplitude for two photon emission by a spin-1 π0

vanishes. Since the process does occur, π0 must have spin 0 or 2, 3 . . . . Additional arguments
show that pions are spin less. [Note also that if the π0 spin were non-zero, then the angular
distribution of photons emitted by a polarized π0 sample would be anisotropic, which would be
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another way to investigate their spin.]

2.9 Lorentz symmetry and relativistic mechanics

2.9.1 Introduction

• The idea of an inertial frame arose in Newtonian mechanics, i.e., one in which Newton’s law
of inertia (1st law) holds. Newton thought there was an absolute rest frame and his laws held
in frames in uniform motion with respect to this absolute frame. Maxwell thought light travels
in an ether medium and that his equations held in a frame at rest relative to the ether. It was
assumed that the ether is at rest in Newton’s absolute frame. However, the Michelson-Morley
experiment failed to detect any relative motion between the earth and the ether. The speed of
light was the same in the direction of Earth’s motion around the sun and opposite to it as well
as in other directions. Due to the apparent absence of any preferred frame, Einstein concluded
that there is no absolute rest frame or ether medium and that the speed of light in vacuum c
is the same for all observers. He also postulated that the laws of physics in special relativity
(as in Galilean relativity), are the same in all inertial frames (i.e., frames related by rotation or
uniform motion [‘boosts’] (and translations)): this is Lorentz invariance (Poincare invariance, if
we include translations). A difference between Galilean and Lorentz invariance is the formula
relating space-time coordinates under a boost.

• The space-time coordinates of an event (r′, t′) in frame S ′ which moves at vx̂ relative to
frame S are

x′ = γ(x−vt), y′ = y, z′ = z, ct′ = γ(ct−xv/c), with γ =

(
1− v2

c2

)−1/2

, (72)

where the two frames coincide at t = 0 . This formula for a Lorentz boost is a symmetry of
Maxwell’s equations but not of Newton’s equations of mechanics. Maxwell’s equations are
valid in all frames in uniform relative motion with the same constant speed of light c . Einstein
modified Newton’s equations so that they respect the constancy of the speed of light, and are
invariant under Lorentz transformations.

• In particular, simultaneity is frame-dependent in general. Two simultaneous events in S with
coordinates (xa, t) and (xb, t) occur at different times t′a,b = γ(t−xa,bv/c2) in a boosted frame.

• Moving rods are Lorentz contracted. A rod of length l′ lying along the x′ -axis in frame S ′

has a length l = l′/γ when viewed from from S . To see this suppose the rod extends from the
origin of S ′ to x′ so that l′ = x′ − 0 . Then x′ = γ(x − vt) and 0 = γ(x0 − vt) where x0(t)
is the coordinate of the origin of S ′ (or left end of rod) when viewed from S and x(t) is the
coordinate of the right end of the rod when viewed from S , so that l = x − x0 . Subtracting,
l′ = γ(x− x0) = γl .

• Time dilation: ‘moving clocks run slower’. A time interval τ ′ according to a clock in S ′ is
assigned a time interval τ = γτ ′ by an observer in S . To see this, suppose τ is the time interval
between when the origins of S and S ′ coincide and when the origin of S ′ is at location x0
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viewed from S . Then t1 = t′1 = 0 while t2 = x0/v and ct′2 = γ(ct2−x0v/c) = γx0(β−1−β) .
With τ = t2 − t1 and τ ′ = t′2 − t′1 we find cτ ′ = γτ(c2 − v2)/c or τ ′ = τ/γ .

• Time dilation implies that moving unstable particles viewed from the lab will appear on
average to live longer than their (rest-frame) mean life time. E.g. muons produced in cosmic
ray showers in the upper atmosphere (several km above sea level) have a mean life time of
τ = 2.2µs in their rest frame. They would be expected to cover at most cτ = 660m at ultra-
relativistic energies, but in fact some make it well below the Earth’s surface! On the other hand,
if a particle does not decay at rest, it cannot be made to decay by moving it at speed v .

• Velocity transformation formula. Let u = dr
dt

and u′ = dr′

dt′
be the velocities of a particle

according to two observers S and S ′ (boosted by velocity vx̂ relative to S ). How are they
related. To find out we write the Lorentz boost in infinitesimal form

dx′ = γ(dx− vdt), dy′ = dy, dz′ = dz, cdt′ = γ(cdt− βdx) (73)

Then we find

u′x =
dx′

dt′
=

dx− vdt
dt− βdx/c

=
ux − v

1− vux/c2
, u′y =

uy
γ(1− uxv/c2)

, u′z =
uz

γ(1− uux/c2)
. (74)

Inverting, ux = u′x+v
1+vu′x/c

2 is the x-component of the velocity of the particle as viewed from
S when it has velocity component u′x in S ′ while S ′ moves with velocity vx̂ relative to S .
In particular, if the velocity of the particle is in the same direction as the boost (i.e. x), then
uy = u′y = uz = u′z = 0 and we get the velocity composition law for two collinear velocities:
if βi = vi/c then β = β1+β2

1+β1β2
. In other words, the composition of two Lorentz boosts with

parameters β1,2 is a boost with parameter β . This is also the rule for addition of hyperbolic
tangents tanh(θ1 +θ2) = tanh θ1+tanh θ2

1+tanh θ1 tanh θ2
. We define the rapidities θi by βi = tanh θi . Speed or

v/c is sometimes an awkward variable in relativity since it is ≈ 1 for all relativistic particles.
Rapidity is more convenient since it stretches the interval 0 ≤ v/c ≤ 1 to the infinite range
0 ≤ θ ≤ ∞ . Rapidity is particularly natural since rapidities simply add under composition
θ = θ1 + θ2 while velocities ‘add’ in the more complicated manner given above. Check that
c composed with any velocity v is again c , ensuring the constancy of the speed of light in all
inertial frames. In particular, the wave fronts of light emitted from a point are spherical in all
such frames, unlike the wave fronts of sound which look flattened in the direction of motion of
an observer. If light is emitted from r = 0 at t = 0 in frame S , the wave front at time t is
the sphere r(t)2 = c2t2 . The graph of an expanding spherical wavefront takes the shape of a
light-cone in a space-time diagram.

• In terms of rapidity θ = arctanh(v/c) we have sinh θ = γv/c and cosh θ = γ . Thus the
above Lorentz boost takes the form of a hyperbolic rotation

x′ = x cosh θ − ct sinh θ, y′ = y, z′ = z, ct′ = −x sinh θ + ct cosh θ. (75)

• When a particle’s speed |v| approaches that of light, relativistic effects become significant.
Acceleration of a massive particle can (in principle) increase its momentum or kinetic energy
without bound, but it would take an infinite amount of energy to reach the speed of light. The
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Newtonian relations E = p2/2m and p = mv between energy or momentum and velocity are
modified (as explained later) to E = γmc2 and p = γmv where γ = (1 − v2/c2)−1/2 . The
relativistic expression includes the rest energy E0 = mc2 of the particle whose (rest) mass is
m (sometimes γm is called the relativistically increased mass). Conservation of energy holds
in relativistic processes only if we include the rest energy. For example, a neutron at rest can
beta decay producing a proton, and fast moving ν̄e and electron. Estimate the average distance
(viewed from the Earth) that a 1.057 GeV (= 10mµ ) muon travels before decaying.

• It follows that E = pc2

v
. So as the speed v → c , energy becomes linear in momentum E &

pc . For a massless particle like the photon, E = pc . So for ultra-relativistic particles, energy
and momentum are equal in natural units (GeV). More generally, the formulae for E and p
imply the ‘mass-shell’ relation E2 = p2c2 +m2c4 , which defines a two-sheeted hyperboloid in
the 4d energy-momentum space with coordinates (E/c, p1, p2, p3) . Real massive particles have
an energy-momentum 4-vector that lies on the positive energy sheet/shell. When viewed from
different reference frames, a particle can have different energy-momentum 4-vectors (though
all observers agree on the sign of E and the value of m). The totality of the tips of all these 4-
vectors is the mass shell, it is a Lorentz-invariant construct. ‘Virtual’ particles (which appear in
intermediate stages of calculations) can be off mass-shell. For massless particles (like photons,
gluons and gravitons) the mass shell becomes the positive energy part of the light cone E2 =
p2c2 .

• E or p are more convenient ways of specifying the motion than speed. For example a 1.022
MeV (twice the rest energy) electron has speed v = (

√
3/2)c = 0.87c . A 10.22 MeV electron

has speed v = .9987c while a 1.022 GeV electron has speed v = 0.99999987c. While the
speeds may not seem very different, the energies are vastly different and can be used in e+e−

collisions to produce new particles with higher masses. Annihilation of 1 GeV electrons and
positrons is capable of producing (say) charged pions or kaons with masses of 140 and 494
MeV/c2 while 10 MeV electrons which have a similar speed, would be incapable of doing so.

2.9.2 Minkowski space and Lorentz group

• Space-time coordinates of an event in frame S are specified by (contravaraint) position 4-
vector xµ = (x0, x1, x2, x3) = (ct, x, y, z) (regarded as a column vector below). Coordinates
x′ in a Lorentz boosted or rotated frame S ′ are given by x

′µ = Λµ
νx

ν . If S ′ moves at speed v

in x direction relative to S , then Λ is block diagonal
(

γ −γβ
−γβ γ

)
in the 0-1 subspace and

identity in the 2-3 subspace. If S, S ′ are related by a rotation/reflection, then Λ =

(
1 0
0 R

)
is

block diagonal where RtR = I is an O(3) matrix.

• Minkowski introduced his inner product so that boosts could be regarded as hyperbolic/imaginary
rotations. The Minkowski inner product between 4-vectors is

x · y = (x, y) = x0y0−x1y1−x2y2−x3y3 = xµηµνy
ν = xtηy where ηµν = diag(1,−1,−1,−1),

(76)
ηµνx

ν are called the covariant components of the position 4-vector, so x · y = xµyµ . The
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metric and its inverse ηµν (ηµνηνρ = δµρ ) may be used to lower and raise indices and define new
tensors.

• Boosts and orthogonal transformations leave the Minkowski inner product invariant in the
sense (x′, y′) = (x, y) since ΛtηΛ = η . So the inner products of 4-vectors x · y and the
(length)2 of a 4-vector x2 are Lorentz invariant, same for all inertial observers.

• The set of all Λ leaving η invariant form the homogeneous Lorentz group O(1, 3) (they are
the linear transformations of Minkowski space that preserve the inner products of 4-vectors, in
particular, they must preserve the origin and not involve translations). Since it preserves the
inner product, a Lorentz transformation (LT) necessarily takes time-like vectors to time-like
vectors, space-like vectors to space-like vectors and null vectors to null vectors. The Lorentz
group is a 6 dimensional group. In other words, the constraints ΛtηΛ = η admit a 6 parameter
family of solutions Λ . The Lie algebra of the Lorentz group has 6 independent generators,
which can be taken as three infinitesimal rotations (Lx, Ly, Lz ) and three infinitesimal boosts
(Kx, Ky, Kz) .

• In addition to boosts and rotations (and compositions thereof) the Lorentz group includes dis-
crete transformations: parity (reflections such as x→ −x, y → y, z → z, t→ t , a reflection in
any other plane or through the origin can be got from this one by a suitable rotation) and time-
reversal t → −t (and compositions of all these). In fact, the Lorentz group has 4 connected
components: the connected component of the identity is the group of proper orthochronous
Lorentz transformations SO(3, 1) . Proper means determinant 1 , e.g., not involving reflection
in an odd number of spatial directions if the sense of time is not reversed. Orthochronous
means maintaining the sense of time. The others are proper non-orthochronous, improper or-
thochronous and improper non-orthochronous. They are labelled by the sign of det Λ and Λ0

0 .
Indeed, from ΛtηΛ = η we see that det Λ = ±1 . If det Λ = 1 we call it a proper LT and
improper otherwise. From the (0, 0) component of ΛtηΛ = η , we find that the first column
parametrizes a 2-sheeted hyperboloid (Λ0

0)2 − (Λ1
0)2 − (Λ2

0)2 − (Λ3
0)2 = 1 , with sheets labelled

by the sign of Λ0
0 . Though parity and time reversal are symmetries of the EM and strong in-

teractions, it was found in 1956 and 1964 (indirectly) that neither parity nor time reversal is a
symmetry of weak interactions. In the standard model, the time reversal invariance is broken
by a phase in the CKM mass matrix for quarks and parity is violated by the vector minus axial
vector structure of weak interactions. Only the proper orthochronous Lorentz transformations
(i.e. the connected component of the identity) seem to be symmetries of all the interactions.

• Minkowski space is the disjoint union of time-like x2 > 0 , space like x2 < 0 and light-like
x2 = 0 (null) 4-vectors. The separation vector between the ends of a rod is space-like. Tangent
vectors to the trajectory of a massive particle are time-like, as we will see. Tangent vectors to a
light ray are null vectors. The Lorentz group acts on Minkowski space via x 7→ Λx . The orbit
of a point x in Minkwoski space is the set of all 4- vectors Λx as Λ ranges over the group. The
orbit of the origin x = 0 is the origin. The orbit of a light-like vector is the light cone. The
orbit of a time-like vector is the two sheeted hyperboloid on which it lies. The orbit of a space
like vector is the 1-sheeted hyperboloid that it lies on. We say that Minkowski space is foliated
by the orbits of the Lorentz group. Each orbit other than the origin is a 3-dimensional manifold
(i.e. a ‘hypersurface’).
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2.9.3 Relativistic momentum, energy and particle motion

• Consider the trajectory of a massive particle moving around the lab. It is a curve xµ(τ)
in Minkowski space. τ is proper-time, time as measured by a clock attached to the particle.
τ is the arc length along the curve in units of c . If dτ is a proper-time interval around an
instant when the particle’s speed is v , then the corresponding time interval measured by a
stationary observer in the lab is dt = γdτ . The proper-time interval when the position vector
of a particle is incremented by dxµ is the Minkowski-length of the tangent vector in units of c:
c2(dτ)2 = ηµνdx

µdxν = c2dt2 − dr2 ; it is Lorentz invariant. The Newtonian velocity vi = dxi

dt

of the particle, where xi are its lab frame coordinates and t lab time does not transform as
the spatial components of a 4-vector since t transforms as the zeroth component of a 4-vector.
On the other hand, the 4-velocity uµ = dxµ

dτ
transforms as a contravariant 4-vector just like the

position 4-vector since dτ is Lorentz invariant. The Newtonian and proper velocities are related:
ui = dxi

dτ
= γ dx

i

dt
= γvi and the zeroth component u0 = γc . So uµ = γ(c, dr

dt
) = γ(c,v) . The

4-velocity is a time-like vector of constant length: u2 = γ2(c2 − v2) = c2 .

• The contravariant components of the momentum 4-vector of a massive particle are defined
as pµ = muµ = mγ(c,v) = (E/c,p) . This serves as the relativistic definition of energy E .
We see that E = γmc2 while p = γmv as mentioned earlier. Like position xµ , pµ transforms
as a 4-vector under Lorentz boosts, E ′ = γ(E − pxv) and p′x = γ(px − vE

c2
) . Its covariant

components are pµ = ηµνp
ν = (E/c,−p) . It is time-like p2 = m2c2 . The possible 4-momenta

of a massive particle lie on the 2 sheeted hyperboloid E2/c2 − p2c2 = m2c2 .

• The relativistic energy E includes the rest energy (mc2) , non-relativistic kinetic energy
p2/2m and further corrections, but not any potential energy:

E =
√

p2c2 +m2c4 = mc2 +
p2

2m
+

3

8

p4

m3c2
+ · · · (77)

Sometimes E is called relativistic kinetic energy to distinguish it from potential energy. More
often, E −mc2 is referred to as relativistic kinetic energy.

• The above considerations do not apply to massless particles. They travel at the speed of light
and follow trajectories whose tangent vectors are always null dτ 2 = 0 . For a massless particle
E = |p|c . The 4-momentum of a massless particle (|p|,p) is a null vector. The possible 4-
momenta of a massless particle lie on a light cone. For a photon, the energy is determined by
its frequency E = hν .

• Tachyons, particles with space-like momenta p2 < 0 do not exist. Note that for a tachyon,
there would be observers who would disagree as to the sign of its energy, its energy can be
made arbitrarily negative in a suitable frame since its 4-momentum lies on a 1-sheeted hyper-
boloid. However, there are ‘virtual’ (off mass shell) particles with space-like momenta that
are exchanged between real (onshell) particles. A famous example of this is the space-like
(qµqµ < 0) virtual photon exchanged between an electron and a quark in deep inelastic scatter-
ing, the experiment in which quarks were discovered. However, such virtual particles are not
detected, they only enter into calculations, though in an essential way.
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2.9.4 Relativistic Lorentz force equation

• Newton’s law of inertia (1st law) continues to hold in special relativity. A particle travels in
a straight line with respect to the Minkowski metric when it is not acted on by any force. The
relativistically covariant generalization of Newton’s second law is

dpµ

dτ
= (force)µ. (78)

For example, a particle of charge e in an electromagnetic field feels the Lorentz force

dpµ

dτ
= eF µν uν

c
. (79)

where uµ is the 4-velocity and Fµν = ∂µAν − ∂νAµ is Faraday’s anti-symmetric covariant
electromagnetic field strength tensor. Here ∂µ = (1

c
∂t,∇) . The gauge potential Aµ = (φ,A)

includes the scalar and vector potentials. The electric and magnetic fields B = ∇ × A and
E = −1

c
∂A
∂t
− ∇φ with cartesian components Ei, Bi = εijk∂jA

k are then the components of
the field strength F 0i = ∂0Ai − ∂iA0 = −Ei and

F ij = ∂iAj − ∂jAi = −∂iAj + ∂jA
i = −εijkBk ⇒ F µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 .

(80)
The covariant components are given by Fµν = ηµρηνσF

ρσ . So F0i = −F 0i and Fij = F ij .

• If the speed of the charge v � c , then show that the spatial components of the above equation
reduces to the non-relativistic Lorentz force equation in the lab frame

dp

dt
= e

(
E +

v

c
×B

)
(81)

Show that the time component reduces to the equation for evolution of energy dE
dt

= eE ·v , the
rhs is the rate at which the Lorentz force does work on the particle, the magnetic field does not
contribute.

2.9.5 Momentum conservation, (in)elastic collisions and forbidden processes

• 4-momentum is conserved in particle interactions. So the initial energy (sum of rest and ki-
netic energy) and 3-momentum must equal those in the final state in any collision/interaction/decay.
Rest energy and kinetic energy are typically not conserved, though the sum is. A collision is
elastic if kinetic energy (or equivalently rest energy) is conserved, e.g. A + B → C + D + E
where mA + mB = mC + mD + mE . Since there are very few such relations among masses
of distinct particles, an elastic collision usually implies that the particles in the initial state are
the same as the particles in the final state, e.g. Moller scattering e−e− → e−e− or Compton
scattering γe → γe or Rutherford scattering αN → αN . In the ‘charge exchange’ strong
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process π−p→ π0n kinetic energy is conserved (ignoring the mass splittings within an isospin
multiplet) even though the final state particles are not the same as those in the initial state. A fa-
mous inelastic scattering process is deep inelastic scattering (‘DIS’, first carried out at Stanford
by the MIT-SLAC team lead by J Friedman, H Kendall and R Taylor beginning 1967 (Nobel
prize 1990)), which was instrumental in the discovery of point-like quarks inside the proton,
e.g. ep→ eX uses the electromagnetic force to probe proton structure, X is a state containing
several hadrons with total baryon number one and electric charge one (there is a kinematic pa-
rameter that allows one to quantify the degree of inelasticity). Similarly, the weak interaction
was also used to probe the structure of the proton via neutrino nucleon deep inelastic scattering,
e.g., νep → e−X where X typically contains several hadrons with total baryon number one
and charge two.

• These DIS experiments succeeded the elastic ep → ep scattering experiments conducted at
Stanford by R Hofstadter (Nobel Prize 1961), as the electron beam energy was raised above
1 GeV. Elastic ep and electron-deuteron scattering gave a lot of information on nucleons, in-
cluding their charge distribution, magnetic moments (elastic electric and magnetic form factors)
and size (charge radius). These elastic scattering experiments indicated that the proton is a soft
sphere of charge. Thus, it came as a surprise when the DIS experiments observed ‘hard’ scat-
tering of electrons off protons by decreasing the wavelength of the exchanged virtual photon.
The charge inside the proton, when probed at short distances, was concentrated in point-like
‘partons’, later identified with quarks.

• As a consequence, spontaneous decay A → D1 + D2 + · · · is forbidden if the rest mass
mA is less than the sum of the rest masses of the daughter particles

∑
imi . This is because the

initial 4-momentum (in the center of momentum (CM) frame, where the 3 momentum is zero)
pµi = (mA,~0) must equal the final pµf = (

∑
mi + k.e.,

∑
i pi) , and the kinetic energy of decay

products is non-negative. MA =
∑

imi is called the threshold for the decay. For instance, the
hydrogen atom in its ground state (mH = me + mp − 13.6eV ) is stable against decay to an
electron and proton due to the binding energy. The hydrogen g.s. is also stable against decay
via K-electron capture H = e−p+ → nνe since the mass of the neutron is significantly (≈ 782
keV) more than that of the hydrogen atom. K-electron capture does happen in some proton-rich
nuclei which (due to the nuclear binding energy) can reduce their mass by replacing a proton
with a neutron. On the other hand, a free neutron (mN = 939.565 MeV) does decay to peν̄e
(mp = 938.272 MeV, me = .511 MeV, mν̄ < me ). The mass difference of ≈ 782 keV
(assuming mν < 1 keV) is manifested in the kinetic energy of decay products.

• Let us give some more applications of energy-momentum conservation. Radiation of a (real)
photon by an isolated (real) electron (or positron) e− → e− + γ is forbidden by energy conser-
vation. In the rest frame of the initial electron Ei = me < Ef ≥ me+Eγ . Electrons can radiate
photons when they are accelerated in the Coulomb field of a nucleus, the nucleus provides the
momentum balance.

• The reverse reaction of photon absorption by free electrons γe→ e is similarly forbidden by
energy conservation. On the other hand, photons do scatter off electrons via Compton scattering
eγ → eγ .

• Free photons cannot turn into e+e− pairs. We may always go to a frame where the photon’s
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energy is less than 2me , while the final state has energy at least 2me . On the other hand, a
photon in the Coulomb field of a nucleus can pair produce.

• Pair annihilation to a single photon e+e− → γ is forbidden by momentum conservation. In
the CM frame of the initial state ptot = 0 , but the final momentum cannot be zero as the photon
moves at the speed of light in all frames. Pair annihilation to two photons has been observed.

2.9.6 Conservation of energy-momentum in 2 body decay

• Two body decays (i.e. spontaneous decay of a parent to two decay products) are more com-
mon (e.g. α and γ decay of nuclei N(A,Z)→ N(A− 4, Z − 2) + α , N∗ → Nγ , Λ0 → pπ−

etc.) than 3 body decay (e.g. β decay). The π+ decays after coming to rest in photographic
emulsion. In the decay of a positive pion π+ (at rest) to µ+ the µ+ always emerges with the
same kinetic energy of 4.1 MeV and travels roughly the same distance of about 600 microns.
As we will show, a mono-energetic spectrum of energies of decay products is characteristic of
a 2-body decay. Indeed, we now know that π+ → µ+νµ .

• The kinematics of two body decay (as opposed to 3 body decay) is strongly constrained by
energy and momentum conservation. Consider the decay a→ b+ c in the rest frame of parent
a . Let the 4-momenta of a, b, c be p, q, r . Then in natural units, p = (ma,~0) and momentum
conservation implies q = (Eb, ~pb) and r = (Ec,−~pb) . We will show that the energies of the
daughter particles Eb, Ec are fixed by the masses! By 4-momentum conservation, pµ−rµ = qµ .
Squaring,

p2 + r2 − 2p · r = q2 or m2
a +m2

c − 2maEc = m2
b ⇒ Ec =

m2
a +m2

c −m2
b

2ma

. (82)

And by b ↔ c symmetry, Eb =
m2
a+m2

b−m
2
c

2ma
. In other words, the daughter particles are mono-

energetic, they do not come out with a range of energies. In 3 body decay, energy-momentum
conservation allows for a range of daughter particle energies, as was found in beta decay. Ini-
tially, it was mistakenly thought that beta decay must also be a 2 body decay, by analogy with
alpha and gamma decays of radioactive nuclei. But the continuous spectrum of beta particles
from a given radionuclide invalidated this hypothesis.

• Furthermore, since the energy of a particle is bounded below by its rest energy, Eb ≥ mb

which means m2
a + m2

b − m2
c ≥ 2mamb or (ma − mb)

2 ≥ m2
c . From p = q + r , it is clear

that ma ≥ Eb ≥ mb , so we must have ma ≥ mb + mc . As one would expect, the daughters
must be less massive than the parent for the decay to conserve energy. In particular, a proton
cannot decay to a neutron and anything else. And a photon cannot decay to massive particles. In
particular, for a photon to produce a real e+e− pair, there must be some other particle (usually
a nucleus) to conserve energy-momentum.

• Remark: The Q-value of a decay is the energy released as kinetic energy of the decay prod-
ucts, e.g. in the beta decay of a nucleus, N(A,Z)→ N(A,Z+1)+e−+ ν̄e . The huge range in
beta decay lifetimes (or alpha decay lifetimes) is due to the differences in Q-values, despite all
beta decays being governed by an interaction of the same strength (Fermi’s 4 fermion coupling).
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The term Q-value is also used in other areas of chemistry and physics to quantify the energy re-
leased in a reaction and perhaps traces its origin to the energy released as heat in an exothermic
reaction. It is to be distinguished from the Q-factor (quality factor) of a resonance which is the
ratio of the energy of the resonant state divided by the energy width of the resonance. A narrow
resonance has a high Q-factor, it is more stable and lasts longer since dissipative effects that
lead to its decay are weaker. One speaks of the Q-factor of a resonant cavity or LCR circuit.

• The Geiger-Nuttal law found empirically in 1911 states that α decay half lives of nuclei
satisfy t 1

2
∝ eaZ/

√
E where E is the energy of the α particle emitted and Z is the atomic

number. So short-lived nuclei emit more energetic alpha particles as they ‘slide down a steeper
slope’! The exponential dependence on energy also explains how small differences in mass
defects between parent and daughter nuclei can lead to large differences in decay half lives.
For example, Thorium 232 alpha decay has a half life of 14 billion years while Radium has an
alpha decay half life of 1590 years. The Geiger-Nuttal law was explained in 1928 by Condon
and Gurney and independently by Gamow. The alpha particle tunnels across a barrier between
an attractive nuclear potential well (due to the strong interactions) and the outside of a nucleus
where there is electrostatic repulsion.

2.9.7 Threshold energy for particle production via scattering on a fixed target

When two particles scatter at sufficient energies, the scattering may not be elastic, and the final
state may involve one or more new particles, e.g. production of the ∆ resonance (π+p→ ∆++ )
when a pion beam is incident on a hydrogen target or strange baryon production when a pion or
kaon beam strikes a hydrogen target (π−p→ Λ0K0 , K−p→ Λ0π0 , K−p→ Σ−π+ etc., these
are strong interactions that conserve strangeness. The subsequent decay of a strange hadron
may proceed via a strangeness changing charged weak interaction). It is found that there is a
minimal (threshold) energy of the pion or kaon beam for the desired final state to be produced.
Moreover, this threshold energy must be more than the difference between the invariant mass
of the final state (Mfinal ) and the target, Mfinal −Mp . For, if the incident meson beam has just
so much energy, then the final state would have to be produced at rest, and then 3-momentum
would not be conserved.

• We can find the threshold energy using 4-momentum conservation. For definiteness, consider
a+ b→ c+ d where the 4-momenta are p, q, r, s and particle a (proton) is the target at rest in
the lab and Elab

b is the lab frame energy of the projectile beam (meson) b (q = (Elab
b ,plab

b )).
Then p+ q = r + s or squaring, in the lab frame

m2
a +m2

b + 2maE
lab
b = m2

c +m2
d + 2r · s (83)

So the projectile energy Elab
b is minimal when r · s is minimal. Since r · s is Lorentz invariant,

we may choose to evaluate it, say, in the CM frame of the c-d system. In this frame r · s =
Ecm
r Ecm

s − pr · ps = Ecm
r Ecm

s + |pcm
r |2 since the 3-momenta of c and d are opposite. This is

minimal when the final state particles are produced at rest in the CM frame, i.e., r · s ≥ mcmd .
Thus we find

Elab
b ≥ Ethreshold

b ≡ (mc +md)
2 −m2

a −m2
b

2ma

. (84)
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The threshold energy is the minimum energy of the incident b-particle beam needed to produce
the final state (with rest mass mc + md ) when incident on a stationary target of a . More
generally, if the final state is a single particle or one with three or more particles, then we would
replace mc + md above with the sum of the rest masses of the desired final state particles.
At threshold, the particles in the final state are produced at rest in the CM frame of the system.
Equivalently, in the lab frame (rest frame of target) at threshold, the out-going particles all move
(‘together’) in the same direction as the incoming b-particle beam; for them to fly in different
directions the beam energy must be above threshold.

• Find the threshold pion beam energy for production of the ∆ resonance and compare it with
the πN resonance cross section data. Find the threshold charged pion and kaon beam energies
for production of the Λ0,Σ− strange baryons in collisions with a stationary proton target.

• Note that the threshold energy is just a kinematic minimum to produce the desired final state.
The event rate depends on the probability of producing the final state (which depends on the
dynamics – forces of interaction between particles) as well as on the phase space available for
the final state, which are in general, energy dependent. Thus one may require higher energies
than the threshold to obtain a desired event rate.

• Instead of a fixed target, one may also consider a colliding beam set up where a and b collide
with equal and opposite 3-momenta. Find the threshold energy Emin, cm

b for production of a
final state with invariant mass M .

2.9.8 Mandelstam variables and s, t, u channel scattering

• Mandelstam variables (S Mandelstam 1958) s, t, u are Lorentz invariant variables associated
with 2 → 2 scattering a + b → c + d . They have dimensions of mass-squared and encode the
energy, momentum, and angles between particle momenta in a frame-independent manner. If
the 4-momenta are pa, pb, pc, pd then momentum conservation implies the relation pa + pb =
pc + pd while each incoming/outgoing particle is on mass shell p2

a = m2
a etc. We may construct

interesting Lorentz scalars by squaring the sums or differences of momenta. It is conventional
to define (in units where c = 1)

s = (pa+pb)
2 = (pc+pd)

2, t = (pa−pc)2 = (pb−pd)2, and u = (pa−pd)2 = (pb−pc)2.
(85)

s is called the square of center of mass energy. This is because in the center of momentum
frame, the 3-momenta of the incoming particles pa = −pb are equal and opposite so that
pa + pb = (Ea + Eb,0) . Thus ECM = Ea + Eb =

√
s . For example the highest energy pp̄

collisions at the Tevatron at Fermilab were at
√
s ≈ 1.8 TeV.

• One could construct other Lorentz invariants like the scalar products pa · pb , but they are not
independent, 2pa · pb = s−m2

a −m2
b etc. In fact, only two among s, t and u are independent.

One checks that
s+ t+ u = m2

a +m2
b +m2

c +m2
d. (86)

• An interpretation of s, t, u is that they are the squares of the 4-momenta carried by a single
particle that mediates the interaction among a, b, c and d . One speaks of s, t and u channel
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scattering as shown in these three Feynman diagrams (arrows indicate flow of momentum and
time runs to the right).

• For example, ν̄µe → ν̄µe elastic scattering via Z exchange proceeds through the t-channel
if we agree to label the particles ν̄µ = a, c and e− = b, d . With this convention, Z exchange
cannot occur in the s or u channels.

• What is the CM energy in head-on collisions of 9 GeV (total energy) electrons with 3.1 GeV
(total energy) positrons?

3 Acceleration of particles

3.1 Nature’s particle accelerators

• Natural radioactive decay of unstable nuclei (uranium salts, radium, polonium, radon etc.)
provided a reliable source of α , β and γ ray particles. This was the main source of particles in
the first third of the 20th century and was widely exploited by Rutherford, the Curies and others
leading to many discoveries including nuclei, proton, neutron, artificial radioactivity, fission
etc. The energy of α, β, γ rays from radioactive decay is limited to a few MeV by the nuclear
mass difference between parent and daughter nuclei. For example, one gets a mono-energetic
spectrum of 5 MeV alpha particles from Radon alpha decay (2 body decay), which was used
in the Geiger-Marsden gold foil experiment. Rutherford (1919) discovered that the proton is a
constituent of the nucleus by ejecting protons from a Nitrogen nucleus that was irradiated with
alpha particles from a radioactive source, α4

2 +N14
7 → O17

8 + p1
1 .

• Cosmic rays are another natural source of particles with a very wide range of energies (many
have energies of 100s of MeV and several GeV while the most energetic (but very rare) ones
detected so far have 1012 GeV). Primary cosmic rays are mostly protons (and some alpha parti-
cles, heavier nuclei and a few electrons) coming from largely unknown sources (perhaps some
astrophysical analogue particle accelerators are involved, in the 1950s, the Crab nebula was
identified as one possible source, other potential sources include supernovae, gamma ray bursts,
active galactic nuclei, quasars etc.). Neutral particles like photons and neutrinos also come to us,
but are usually not called cosmic rays. Collisions of primary cosmic ray particles with O2 , N2

gas molecules in the atmosphere produces showers of secondary cosmic rays which reach the
earth. The secondary particles include protons, photons, pions, kaons, muons, electrons, alpha
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particles, neutrinos and their anti-particles. Pions and kaons (via pions) decay in the atmosphere
to muons and neutrinos which reach ground level. Cosmic rays arrive at random, the flux is low
and they have not been controlled to form beams. The primary cosmic ray flux decreases with
energy, it is about a 1000 per m2 per second with GeV energies, about 1 per m2 per second
with TeV energies etc. Nevertheless, detection of cosmic rays using cloud chambers, photo-
graphic emulsions and scintillation counters led to the discovery of positrons (C D Anderson
(using cloud chambers in 1932 as a student of Millikan at Caltech) and Blackett & Occhialini at
Cambridge in 1932-33), muons (C D Anderson & graduate student S Neddermeyer, 1936-37),
pions (Powell, Occhialini, Muirhead & Lattes 1947 in Bristol using photographic emulsions)
and kaons (Rochester and Butler, 1947 at Manchester using cloud chambers) and the study of
particle interactions during the first half of the 20th century. They are still of much interest as
a free source of particles for detector testing/calibration, as the source of the most energetic
particles and as a window into astrophysics and cosmology.

• Nature also sends us neutrinos, mainly from fusion in the solar core (4p → α + 2e+ + 2νe
which releases 27 MeV of energy, the neutrinos alone can escape from the solar core) and
occasionally from super novae. Solar neutrino flux is very large, 1010 per square cm per second.
But neutrinos interact very weakly (cross sections roughly of order σν ∼ E × 10−11 mb where
E is the neutrino energy in GeV below the scale of electroweak mixing (100 GeV); the cross
section then decreases), and most pass through the Earth without interacting. Atmospheric
neutrinos are those produced in cosmic ray showers. Atmospheric neutrinos were first detected
in 1965 at the Kolar Gold Fields mine in India.

• Certain reactions do not require acceleration of particles. Grand unified theories which seek to
go beyond the standard model predict proton decay via reactions such as p → e+π0 → e+2γ .
The simplest such SU(5) model of Georgi and Glashow suggested a half life of order 1031

years. Experiments to check this (like Kamioka nucleon decay experiment begun in 1983 in
Japan - ‘Kamiokande’ the last three letters ‘nde’ stand for nucleon decay experiment) looked
for proton decay in a large tank of water, containing of order 1032 protons (3 kilotons of water
surrounded by 1000 photo multiplier tubes), so that one may expect to see a few events in a year.
No proton decay event has been seen so far, the current (2014) lower bound on the proton mean
life is of order 1034 years. But in a stroke of luck, the same experiment unexpectedly detected
neutrinos from supernova 1987a, a supernova that was visible to the naked eye and occurred in
a nearby galaxy, the large Magellanic cloud.

3.2 Artificial particle accelerators

• The need for controlled high flux beams of high energy particles to explore sub-atomic
physics led to the development of particle accelerators. The basic principle is to use an electric
field to accelerate charged particles. We have no direct way of accelerating neutral particles
(beams of neutral particles like neutrinos, K0, K̄0 and neutrons can be got indirectly through
decays of previously accelerated charged particles, or their production in high energy collisions
of charged particles with a target). Electrons and protons (and their anti-particles) are the ones
most frequently accelerated in accelerators.
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• To accelerate particles, one needs a high vacuum environment. Otherwise, there is a lot
of energy loss due to collisions and scattering off atoms in the gas. So the development of
acceleration technology went hand in hand with the development of vacuum technology, though
we do not discuss it here.

• The particle accelerator most of us are familiar with is the picture tube of an old TV or cathode
ray tube of an old computer monitor. Here electrons are boiled off a cathode by heating it and
then accelerated by applying an electric field of about 10 kilo volts. The 10 KeV electron beam
is then deflected as needed by applying a magnetic field generated by current carrying coils.
The electrons produce flashes of light when they strike the fluorescent screen which is coated
with a phosphor.

• Protons for acceleration are obtained by ionizing a gas of hydrogen. By applying large electric
fields, electric discharges are produced in the gas chamber, producing electrons and protons,
which are pulled towards oppositely charged electrodes and injected into the accelerator. The
same procedure is also used to obtain other ion beams.

3.3 Van de Graaff generator

Van de Graaf at Princeton and then MIT developed the static voltage generator named after him
beginning in 1929. By 1931 he had achieved a 150 kilo volt potential difference. This was done
by transferring charge from one electrode to another on a silk belt running between two pulleys.
It was like a water wheel that moves water up from a tank. Van de Graaf generators can reach
about 5 mega volt potential difference which can be used to accelerate electrons and protons
etc. By using a pair in tandem, it is possible to reach 10-25 Mega Volt potential differences.

3.4 Cockroft Walton generator

Cockroft and Walton (1932) working at the Cavendish Lab, Cambridge under Rutherford devel-
oped a voltage multiplier (‘cascade generator’) that bears their name. It converted 200 kilo volts
AC current from a transformer into a DC voltage of 700 kilo volts using capacitors and rectifiers
(AC to DC converter). They were motivated by Rutherford’s desire to have high energy beams
of electrons, atoms etc that could not be obtained from natural radioactive decay. By colliding
the 700 KeV proton beam with a Lithium target, they artificially split an atom (nucleus) for the
first time (p+ Li7

3 → 2α4 ), creating an international sensation. G. Gamow had told them that
protons of a few 100 KeV could penetrate the nuclear barrier (a sort of reverse alpha decay) and
induce nuclear reactions. Cockroft Walton generators are still used in the initial stage of larger
particle accelerators today. They are also used to generate the 10s of KeV voltages needed in
TV sets.

3.5 Linear particle accelerator

• The idea of particle accelerators go back to the Swede Gustav Ising (Stockholm 1924, differ-
ent from the German Ernst Ising who solved the 1d Ising model as a student of Wilhelm Lenz
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of the Runge-Lenz vector fame), Hungarain Leo Szilard (Berlin 1928, who also had the idea of
the nuclear chain reaction) and Norwegian Rolf Wideroe (Aachen, Germany 1928). The first
working model was constructed by R Wideroe who achieved ‘energy doubling’ in 1928.

• The basic idea of a linear particle accelerator is to accelerate charged particles (say electrons)
to a high energy by a succession of small accelerations while passing through an evacuated
cylindrical pipe. Traditionally, the electrons were initially produced by boiling them off a metal
filament or other cathode, as in a TV picture tube. Inside the pipe is a collinear sequence of
cylinders (metal electrodes) separated by gaps. When the particles are inside the tubes, they
feel no electric field. Each acceleration is due to a relatively small voltage difference across
the gap between two successive electrodes. If the voltage on each electrode was fixed, then
successive electrodes would have to be maintained at increasingly high voltages which would
not be feasible. Instead, the voltages on the electrodes are set using a radio frequency power
source. So a given electrode periodically switches from positive to negative voltage. The lengths
of the electrodes and radio frequency are adjusted so that when the electrons are between a pair
of electrodes, they always feel an accelerating, rather than decelerating voltage. In other words,
the voltage on a given electrode must switch sign between when the electron enters and exits
the electrode. This is called the method of resonance acceleration, patented and implemented
by Wideroe. Since the electrons are speeding up, the lengths of the electrodes must increase
along the length of the accelerator. Such an accelerator is called a linear accelerator or linac.
The longest linac (2 miles) is at the Stanford Linear Accelerator Center (SLAC), it accelerates
electrons to about 50 GeV. Linacs are also used in the initial stages of larger circular accelerators
like the Tevatron at Fermilab. The next big accelerator after the LHC is likely to be an e+e−

linear collider.

• Typically, the electron beam consists of bunches of electrons separated by gaps, rather than a
steady stream. Since electrons in the beam repel, the beam tends to spread out and periodically
needs to be focussed, as we shall describe soon.

3.6 The Cyclotron

• Upon reading about Wideroe’s resonance accelerator, E O Lawrence at Berkeley (1929 on-
wards) had the idea of bending the charged particle trajectories using a magnetic field, so that
the same accelerating voltage difference could be traversed several times. This led to a sequence
of increasingly energetic cyclotrons built by Lawrence, his student Livingstone and collabora-
tors. In a vacuum chamber, two hollow semicircular electrodes (called ‘dees’ for their D shape)
were aligned to form a disk with a gap in between. Charged particles (say from a radioactive
source) entered the cyclotron at its center. The disk (originally about 10 cm in diameter) was
placed between the poles of an electromagnet producing a roughly constant magnetic field (12.7
kilo Gauss, 1 Tesla = 104 Gauss) normal to the Ds. So charged particles would be bent in a
semi-circular path inside the Ds with an angular frequency of revolution ω .

mrω2 =
ev ×B

c
and v = rω ⇒ ω =

eB

mc
. (87)
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This formula for the Larmor or cyclotron frequency is valid for non-relativistic speeds. It has
the important consequence that the frequency is independent of the radius of the orbit. In the
presence of a voltage difference between the D’s, a charged particle would feel an electric force
when traversing the gap. The voltages on the two electrodes had to be switched periodically
(by way of an alternating voltage of frequency equalling ω from a radio frequency oscillator) to
ensure that particles were accelerated each time they crossed the gap. Thus the particles spiral
outwards, but the time between successive gap traversals remains fixed. The particle beam is
extracted from a hole in the rim of one of the Ds.

• By 1931 the Berkeley cyclotron could accelerate protons to 1.22 MeV using a 11 inch magnet.
By the end of the 1930s, cyclotrons had grown to 5 feet in diameter, accelerating protons to 8
MeV. By the late 1940s they had reached a few hundred MeV.

3.7 Synchro-cyclotron

• The constancy of the cyclotron frequency ω = eB
mc

with increasing charged particle speed is
violated by relativistic effects. As the speed of particles approach c a greater force is needed
to produce the same acceleration. The relativistic cyclotron frequency is ω = eB

γmc
where

γ = (1 − v2/c2)−1/2 . So as the electrons speed up, they take longer to reach the gap between
D’s during the accelerating part of the RF cycle, and go off resonance. This problem was ad-
dressed by decreasing the frequency of the RF voltage applied to the electrodes to keep them
in step with the faster particles going round larger spirals. However, the lower energy particles
in the center of the cyclotrons would then go off resonance. So a variable frequency RF volt-
age could not accelerate a continuous beam of particles. So the particles were sent in bunches
from the center. A new bunch was injected once the previous one had been accelerated and
ejected from the periphery. The resulting device is called the synchro-cyclotron (SC), patented
by E McMillan (1945) who worked with Lawrence at Berkeley and constructed the first elec-
tron synchro-cyclotron (the Russian V Veksler had published the idea a little earlier). It was
used to produce proton beams with kinetic energy of a few hundred MeV. Colliding protons
from the Berkeley cyclotron with nuclear targets resulted in production of pions, though these
went undetected. Lawrence and his group at Berkeley had a special expertise in building ac-
celerators, but had not devoted as much effort to develop the detectors needed to study particle
interactions. Pions were eventually discovered in cosmic ray showers in 1947 by Powell, Lattes,
Occhialini and Muirhead at Bristol. They were subsequently identified by the Berkeley group
when Lattes joined them. The Berkeley synchrocyclotron was 5m in diameter requiring a very
large, heavy and expensive magnet. It was impractical to make synchrocyclotrons with larger
magnets needed to go to higher energies.

3.8 Synchrotrons

• The successor to synchrocyclotrons are synchrotrons. The aim was to reach higher energies
without the need for magnets of ever increasing diameter. This was achieved by steadily increas-
ing the magnetic field as the particles were accelerated, so that the orbit radius remained fixed
with bunches of particles going round in circles rather than spiraling out. Instead of a single big
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magnet, a ring of magnets surrounded the evacuated beam pipe in a toroidal arrangement. In
essence, a synchrotron is a linear accelerator that is bent into a ring using a sequence of bending
magnets. An alternating RF voltage is applied at several places around the ring to accelerate the
particles. Among the early synchrotrons was the Berkeley Bevatron (1950) which produced 6.5
billion eV protons and the Cosmotron at Brookhaven, New York (3.3 GeV protons in 1952).
The first major synchrotron at CERN was the proton synchrotron (PS) which was contempo-
raneous with the Alternating Gradient Synchrotron at Brookhaven. These accelerated protons
to about 30 GeV by 1960 using rings of 200m diameter. In the mid 1970s the super proton
synchrotron at CERN and the machine at Fermilab could accelerate protons to 400-500 GeV.
The magnetic fields employed in the bending magnets (which produce a uniform vertical field
over the width of the beam pipe) are of the order of a Tesla or more, and in each gap between
RF cavities, the proton energy is increased by a few MeV. The Fermilab ‘Tevatron’ accelerated
protons to 800 GeV in 1984 and to 980 GeV in 2001.

• Synchrotrons have grown larger in diameter to achieve larger energies and remain the main
proton accelerators today. The synchrotron at the Large Hadron Collider in CERN has a 27 km
circumference and produced 4 TeV protons in 2012.

• Sometimes, the intensity of the beam produced by an accelerator is not sufficient though the
energy may be adequate. A storage ring is just like a synchrotron in that electrons or protons or
their anti-particles are kept circulating for several hours using bending and focusing magnets,
but with out accelerating them. However, RF accelerating cavities are used to replenish any
energy lost to synchrotron radiation. As more particles are fed into the storage ring, the intensity
goes up. When the beam flux is adequate, the particles are extracted for collisions. For example
at the ISR (Intersecting Storage Rings) at CERN (1971-84), very high flux beams of counter
rotating protons were brought to collide at specific locations at a CM energy of 62 GeV. The
two rings can contain different/same particles, they need not be anti-particles of each others.

3.9 Power radiated by an accelerated non-relativistic charged particle

• The Lorentz force law governs the non-relativistic motion of a particle of mass m and charge
e in an EM field. Let p = mv be its momentum, then (in cgs/Gaussian or HL units)

dp

dt
= e

(
E +

v

c
×B

)
(88)

We may determine the rate of change of kinetic energy T = p2

2m

Ṫ =
1

m
p · ṗ =

e

m
E · p = e v · E. (89)

Electric fields are used to speed up (accelerate) charged particles. The magnetic field does
no work, but it can bend the particle trajectory, which is very useful, though it too counts as
acceleration!

• A charged particle that is accelerated at a emits EM radiation. Larmor’s non-relativistic
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formula for the power radiated is (in rationalized HL units, check the dimensions!)

P =
2

3

e2

4π

a2

c3
=

2

3

e2

4π

ṗ2

m2c3
. (90)

where a is the acceleration and ṗ is the rate of change of momentum. For example, electrons
oscillate back and forth in an antenna and emit radio waves. There is no power loss in the
absence of acceleration. The relativistically covariant generalization is P = −2

3
e2

4πm2c3
dpµ

dτ

dpµ
dτ

where τ is the proper time along the trajectory of a massive particle whose 4-momentum is pµ .
We will work with the non-relativistic formula here.

• A charged particle moving in a circular orbit will lose energy due to ‘synchrotron’ radiation.
Let us find the energy loss for a given particle energy E and ring radius r . If the radius of the
orbit is r and speed is v , then a = v2

r
and E = 1

2
mv2

P =
8

3

e2

4π

E2

m2r2c3
(91)

The power lost in a ring of radius r for fixed particle energy decreases as the square of the
particle mass. So synchrotron radiation losses are much more for electrons than for protons of
the same energy and ring radius. This is why electron accelerators (e.g. Stanford Linear Accel-
erator Center, though LEP at CERN is an exception) tend to be linear while proton accelerators
are circular (e.g. CERN Proton Synchrotron, Alternating gradient synchrotron at Brookhaven,
Fermilab Tevatron and the LHC at CERN). As a consequence, the most advanced synchrotrons
built so far (2014) allow us to accelerate protons to 4 TeV (LHC), but electrons only to about
50 GeV (Large Electron Positron Collider, CERN).

• To reduce the losses for a given desired particle energy E , the ring must have as large a radius
as possible. The LHC tunnel has a circumference of 27 km. From these data, estimate the power
loss for 7 TeV protons at the LHC. Of course, the Larmor formula is only approximately valid
for relativistic protons.

• If the centripetal acceleration for circular motion is due to the Lorentz force in a constant
magnetic field B perpendicular to the plane of motion, then mv2/r = evB/c . The cyclotron
frequency ω = v

r
= eB

mc
a constant (within the non-relativistic approximation) though r de-

creases. Then the radiation energy loss is exponential

dE

dt
= −4

3

e2

4π

ω2E

mc3
. (92)

• The EM radiation produced by charged particles (especially electrons) going round a syn-
chrotron is called synchrotron radiation. Though it results in loss of beam energy, it can also be
used as an intense source of synchrotron radiation (X-rays) for further research. Applications
include use of the radiation to study the structure of materials and condensed matter as well
as medical imaging and X-ray crystallography. Old particle accelerators are often reincarnated
at synchrotron light sources. Storage rings also serve as synchrotron light sources. There are
several such synchrotron light sources around the world, such as the Australian Synchrotron
Facility, Melbourne, Advanced Photon Source at Argonne Lab near Chicago and the European
Synchrotron Radiation Facility at Grenoble in France.
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3.10 Colliding beam versus fixed-target experiments

• Suppose we wish to produce new particle C of mass mc through collisions of available par-
ticles such as electrons and protons (or secondary beams of neutrinos or pions). One possibility
is to collide a beam of particle A of mass mA and energy E (lab 4-momentum pµA = (EA,p))
with a stationary target of particles of mass mB (pµB = (mB,~0)). To what energy must A be
accelerated to be able to create the new particle (or set of particles including the new one) of
invariant mass mC ? Conservation of 4-momentum implies pµC = pµA + pµB = (EA + mB,p)
while p2

C = m2
C . Thus we must have

p2
A + p2

B + 2pA · pB = m2
C or m2

A +m2
B + 2EAmB = m2

C . (93)

which implies that the projectile energy must be at least

EA =
m2
C −m2

A −m2
B

2mB

(94)

So we see that the required energy grows quadratically with the mass of the new particle. Fur-
thermore, a significant portion of the kinetic energy of the projectile A is simply carried away
by C by conservation of momentum, and does not contribute to the mass-energy of C . Typi-
cally, C is a heavy new particle and we are limited by the energy EA to which we can accelerate
A . A more efficient use of the beam energy to create new particles is provided by a colliding
beam experiment to be described below.

• However, fixed target experiments have played a very important role. They were the only ex-
periments up to the 1960s since it is very difficult to aim two beams at each other and produce a
significant number of collisions, it is a lot easier to aim a beam at a large fixed target like a block
of iron or liquid hydrogen or heavywater! E.g. the p̄ was discovered (by O. Chamberlain and
E. Segre, Nobel prize 1959) via pair production at the Berkeley Bevatron in 1955 by colliding
6.5 GeV protons on a stationary liquid hydrogen target via the reaction p+ p→ p+ p+ p+ p̄ .
Let us find the minimal energy E of protons to create an antiproton of mass 938 MeV. At the
threshold energy E , in the center of momentum frame, the initial momentum is zero and the
four particles in the final state must be produced at rest, so that all the projectile energy is used
for particle production. So the total CM 4-momentum in the final state is pµcm = (4m,~0) , which
must equal the initial momentum by momentum conservation. The total lab frame 4-momentum
in the initial state is pµlab = (E + m,p) . The initial momenta in the two frames are related by
a Lorentz boost, but must have the same invariant length-squared (E + m)2 − p2 = 16m2 .
Moreover E2 − p2 = m2 . We find E = 7m ≈ 6.5 GeV. (Actually, the protons in the target
are not quite at rest, they have some so-called Fermi motion in the nuclear environment, so an
energy of slightly less than 7m is adequate for producing anti-protons. However, this is only
the minimum/threshold energy, one may require higher energies to achieve a desired event rate.)

• There are several reasons for the importance of fixed target experiments. Cosmic rays are
freely available highly energetic particles raining down on the Earth. Cosmic rays colliding
with a fixed target in a cloud or bubble chamber were used to discover the e+ , charged π,K
mesons and other strange particles in the 1950s. But we have no way of colliding cosmic rays
with each other. The Pierre Auger project is a ‘fixed target’ cosmic ray ‘observatory’ currently
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operating over 3000 square km in Argentina! Neutrinos interact only weakly, they have a very
low cross section for interacting with other particles. All neutrino experiments (e.g. Borexino
currently detecting solar neutrinos in Italy) have used large fixed targets of liquid, iron etc.

• The first colliders were built only in the 1960s, but they have largely replaced fixed target
experiments outside of cosmic ray and neutrino experiments. Rolf Wideroe who developed the
first linear accelerator also had the idea for a collider in 1943. His collaborator Bruno Touschek
(who survived being shot and left to die during the second world war!) was the first to propose a
collider that used a single storage ring for two counter propagating beams of oppositely charged
particles. He built the first collider in Frascati near Rome, in 1961, colliding 250 MeV electrons
with positrons.

• In the simplest colliding beam experiments, identical particles (or anti-particles, e+e−, pp̄, pp)
with the same energy E are made to collide head-on, so that the center of momentum frame
coincides with the lab frame. The total initial 4-momentum is pµ = (2E,~0) . The final state
as a whole is at rest in the lab frame. The particles produced in the final state are not required
to carry away any momentum (though they often do, flying off in all directions). So the entire
center of mass energy 2E is in principle available for producing new particles.

• Consider the general case of a colliding beam experiment, where particle a with 4-momentum
pa = (Ea,pa) collides with particle b with pb = (Eb,pb) . Let us work in the center of
momentum frame, in which the total 3-momentum is zero (both before and after the collision,
indeed at all times). The final state is at rest in the CM frame, so the final 4-momentum is
pf = (E, 0) . The energy E of the final state in the center of momentum frame is the maximum
energy that is available for production of new particles. Thus we have

p2
f = E2 = p2

i = (pa + pb)
2 = p2

a + p2
b + 2pa · pb = m2

a +m2
b + 2(EaEb − pa · pb). (95)

Suppose the initial 3-momenta pa and pb are at an angle θ and that the energies Ea,b � ma,b

are significantly more than rest masses. Then |pa,b| ≈ Ea,b . Then the CM energy is

E2 ≈ 2EaEb(1− cos θ) (96)

So to maximize the energy available for creation of new particles, we must have θ = π (head
on collision), in which case, Ecm ≈

√
4EaEb . In particular, if the colliding particles have the

same energies Ea = Eb , then Ecm ∼ 2Ea (as obtained previously). Ecm is the energy available
for production of new particles in the final state, which is produced at rest in the CM frame.

• On the other hand, in the case of a fixed target experiment, with particle b at rest in the lab
(pb = 0), the CM energy is

E2
cm = m2

a +m2
b + 2mbEa. (97)

And again, if the rest masses are small compared to Ea , then the CM energy available in a fixed
target experiment is Ecm ≈

√
2mbEa (this is the invariant mass of the final state, which is the

maximum possible mass of a particle created in the collision). So the available cm energy in
a colliding beam experiment grows linearly with the beam energy while it grows as the square
root of the beam energy in a fixed target experiment.

• The (design) CM energy in pp collisions (7 TeV on 7 TeV) at the LHC is 14 TeV. If we
wanted this CM energy to be achieved via fixed target collisions with a proton, then what beam
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energy would we need? From the answer, it should be clear that with current beam energies, the
only way to achieve a CM energy of 14 TeV is via colliding beams. The drawback of colliding
beam experiments is that beam flux (and so event rates) are much lower than in fixed target
experiments (with the same CM energy), the latter benefit from the availability of dense target
materials.

3.11 Asymmetric colliders

• The advantage of a symmetric collider (say head-on collision of e+e− beams of equal energy)
over a fixed-target experiment is that it reduces the beam energy required to produce a new
particle of given mass. This is because no energy is unnecessarily ‘wasted’ in kinetic energy
of the final state particles: they can even be produced at rest in the lab since the initial total 3-
momentum is zero. Typically, in a colliding beam experiment, the final state particles fly out in
all directions from the collision vertex. On the other hand, in a fixed target experiment, the final
products typically move in the direction of the original beam with significant momentum. This
can be advantageous in special circumstances. If the particles produced are very short-lived,
then they may decay before they are detected. On the other hand, the lab-frame mean lifetime of
a particle grows with its speed τ ′ = γτ . So we may lengthen the tracks of short-lived particles
by producing them with significant momentum. This is what is done at asymmetric colliders,
which are a cross between symmetric colliding beam and fixed target set-ups. For example,
at beauty-factories (BaBar at PEP2 SLAC Stanford during 1999-2008 and Belle at KEKB,
Tsukuba Japan), B mesons Υ(4S) containing b, b̄ quarks are produced in e+ e− annihilations.
One requires about 10 GeV CM energy to produce these mesons since mb ∼ 4.2 GeV. However,
instead of colliding electrons and positrons of equal and opposite momenta, one collides 9 GeV
electrons of momentum p (what is |p|?) with 3.1 GeV positrons of momentum p′ (what is
|p′|?) where p and p′ are oppositely directed but of different magnitudes What is the center
of momentum energy? As a consequence the final products as a whole move in the direction
of p − p′ . The B0 and B̄0 mesons produced in the decay of Υ live longer than if they were
produced at rest. Using the accurate silicon vertex detector it was possible to study the weak
decays of B0 and B̄0 and learn about CP violation in the weak interactions. The results
confirm the CKM theory of mixing of quark families.

• Another example of an asymmetric collider is the electron proton collider at HERA (Hadron
Elektron Ring Anlage) at DESY (Deutsches Elektronen-Synchrotron) in Hamburg. ep deep
inelastic scattering experiments have been used to probe distances of a tenth of an attometer
deep inside the proton. The measurements confirm perturbative QCD calculations and also
determine non-perturbative aspects of the distribution of quarks and gluons in a nucleon that
have not yet been theoretically understood.

3.12 Focusing the beam using quadrupole magnets

• Charged particles in a synchrotron beam repel each other causing the beam to spread out.
They are also subject to imperfections in the bending magnets etc so the particles do not travel
in circular orbits of a common radius, but suffer so-called betatron oscillations about a circular
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path. A typical proton may make a hundred thousand revolutions around the ring, covering
nearly a million kilometers, so beam stability is essential. The beam consists of bunches of,
say 1012 protons as at the LHC. The bunches are separated and do not significantly affect each
other. However, there is a tendency for a given bunch to spread out both laterally (in the plane
perpendicular to the beam pipe) and longitudinally.

• To get a high intensity proton beam, it is focussed laterally, essentially by using magnetic
analogues of converging and diverging lenses. These are ‘focusing magnets’, with appropri-
ate magnetic field gradients. The method is called strong focusing, it has been an important
advance in the development of particle accelerators. Suppose the beam travels into the plane
of the paper. An F-type quadrupole magnet focuses the beam in the horizontal direction while
defocusing in the vertical direction. A D-type quadrupole magnet defocuses in the horizon-
tal direction while focusing in the vertical direction. By placing F- and D-type quadrupoles
at suitable intervals, it is possible to produce net focusing both horizontally and vertically. A
quadrupole magnet may be visualized as a system of 4 bar-magnets (coil electromagnets with
an iron core) lying in the plane of the paper, at right angles to each other, with S and N poles
alternating S(NorthEast)N(SE)S(SouthWest)N(NW ) as one goes around the beam pipe.
The magnetic field is zero at the center but increases outwards, resulting in a gradient. A D-
type quadrupole is an F-type quadrupole rotated by 90 degrees in the plane of the paper. The
arrangement results in an alternating gradient synchrotron (AGS). Draw the field lines of such a
quadrupole magnet and demonstrate its focusing and defocusing properties. The focusing and
defocusing effects are greater in the periphery of the beam pipe (near the pole pieces of the
magnets) than at the center, due to the field gradient. So having been focussed horizontally by
an F quadrupole, the horizontal defocusing due to the next D quadrupole does not entirely undo
the effect of the previous F magnet. Thus it is possible to obtain focusing in both directions
using a succession of alternating gradient quadrupole magnets!

• The resonance acceleration principle using RF cavities has an inbuilt tendency towards com-
pressing bunches longitudinally. The synchrotron is set up to optimally accelerate particles that
emerge from an RF cavity when the oscillating voltage has grown, say, half-way to its maxi-
mum. Such particles receive the optimal kick and stay on resonance. Particles that are going
too fast arrive early, see a smaller voltage, and receive a smaller kick. Particles that are going
a bit too slow arrive late, by which time the voltage has grown. They get a greater kick which
pushes them towards the optimal position in the middle of a bunch.

3.13 Secondary and tertiary beams from fixed targets

• Bunches of protons accelerated at a synchrotron can be extracted and aimed at a target, often
beryllium, copper or carbon. Collisions with nuclei produce many particles, of which pions
and kaons are plentiful since they are the lightest hadrons; they are of particular interest. For
example, at the LHC in 2012 there were about 1011 4 TeV protons in each bunch and 107

bunches per second. At the proton synchrotron at CERN in 1963, there were 1012 25 GeV
protons every three seconds. The point is that there are sufficiently many protons to produce
large numbers of pions and kaons (more pions than kaons). However, pions and kaons are
unstable. Can we make secondary beams of them? If they are sufficiently energetic and moving
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at relativistic speeds, then time dilation allows us to do so.

mπ± = 139.6MeV, mπ0 = 135MeV, mK± = 493.7MeV, mK0 = 497.6MeV. (98)

• The mean lifetime of charged pions is about τπ± = 26ns, with the primary decay mode being
π+ → µ+ + ν̄µ . A charged pion moving at speed v has an energy E = γmc2 . Viewed from
the lab frame, it has a mean life time of γτ . Thus a relativistic pion of energy say 14 GeV has
γ = 100 and lives on average 2.6µs. In this time it can travel on average 2.6×10−6×3×108 =
780m. This is enough to make secondary beams of pions. Magnets may be used (like a prism
for bending light) to bend the charged pion trajectories. More energetic pions bend less so we
may make secondary beams with specified energy (like selecting light of specific wavelength
using a prism).

• Neutral pions (which are a linear combination of uū and dd̄) have a mean life-time of 10−17 s
(π0 → 2γ ), which is too short for producing a secondary beam.

• Charged kaons K± have a mean life-time 12ns, roughly half that of charged pions. K+ →
µ+ν̄µ . Thus it is possible to prepare secondary beams of charged kaons as well. A 5 GeV beam
of kaons has γ ≈ 10 and will travel on average 36m. This is adequate for secondary beams, as
were produced using the main injector at Fermilab with 120 GeV protons.

• Due to mixing, the neutral kaons K0 and K̄0 do not have definite lifetimes. The point
is that they are strangeness eigenstates, being produced via the strong interactions in proton
nucleus or pion nucleon collisions. But they decay via the weak interactions. The states with
definite life-times are a long lived K-long KL (τKL = 50ns. KL → 3π ) and a short lived
K-short KS (τKS = 90ps, Ks → 2π ). So K-long lives longer than charged pions and one can
form secondary beams of KL , though one cannot control them with magnetic fields as they are
neutral. Remarkably, it is possible to ‘generate’ KS in a beam of KL by passing it through
matter, as we shall see shortly.

• Neutral kaons are of interest in studying CKM mixing and CP violation. Charged kaon beams
have been used to produce other hadrons (especially strange particles) in collisions with nuclei
in bubble chambers in the 1960s and subsequently. The KTeV experiment at Fermilab used
secondary beams of kaons.

• Charged pions and kaons decay producing neutrinos (more muon neutrinos than electron
neutrinos). Neutrinos interact very weakly and pass through shielding that absorbs all the other
decay products. Thus, one obtains tertiary beams of mostly νµ, ν̄µ . It is possible to select neu-
trinos from anti-neutrinos by selecting the charge of the parent pions and kaons using bending
magnets. By colliding the neutrinos with a fixed target detector, one obtains neutrino-nucleon
deep inelastic scattering events, which probe the structure of the proton and also study the weak
interactions. Nuclear fission reactors are sources of ν̄e from beta decay of neutrons.

4 Neutral Kaon oscillations/mixing and regeneration

• We have mentioned 2 body scattering and decays to two bodies. Do 1-body decays exist? If
so, the parent and daughter must have the same mass, so one must look for particles with the
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same mass that can make a transition (‘oscillation’) without the net emission/absorption of any
other particle. Particle-anti-particle pairs have degenerate masses and are obvious candidates
for oscillations. But for this to happen, they must also have the same electric charge and baryon
number and other exactly conserved quantum numbers. Examples include the neutral kaons
K0 = ds̄, K̄0 = sd̄ , neutral charmed mesons D0 = uc̄, D̄0 = cū , neutral bottom mesons
B0 = db̄, B̄0 = bd̄ and neutral Bs -mesons B0

s = sb̄, B̄0
s = bs̄ . On the other hand, we cannot

have oscillations between the degenerate but oppositely charged kaons K± , neutron and anti-
neutron or Λ0 and Λ̄0 . To study the K0 − K̄0 system, it helps to have the concept of charge
conjugation at our disposal.

4.1 Charge conjugation and C -invariance

• The operation of replacing a particle with its anti-particle is called charge conjugation C .
Acting on a one-particle state, it reverses all the internal quantum numbers, both those associ-
ated to gauge symmetries and global symmetries. In particular, the electric charge Q , magnetic
moment, color, weak hypercharge Yw and weak isospin T3 are reversed. So are the baryon
number, lepton number, isospin projection I3 , strangeness, charm, beauty, topness etc. Space-
time coordinates, spin, angular momentum and helicity are unchanged. E.g. π± are related by
charge conjugation, as are K± .

• Maxwell’s equations of classical EM are C -invariant in the sense that they are unchanged
if we reverse the signs of ρ,~j, ~E, ~B,Aµ . EM and Strong interactions are empirically found
to be symmetric under C (Charge conjugation invariance was first proposed by Kramers.).
This means the rate of a (strong/EM) reaction is is same as the rate of the reaction that results
from replacing all particles by their anti-particles. The conjugate reaction may happen to be
the same reaction. For instance, the rate of π+ and π− production in pp̄ annihilation p + p̄→
π++π−+· · · are equal to better than a percent, the same applies to kaons in pp̄→ K+K−+· · ·
(see Perkins). There are more stringent tests of C -invariance.

• C2 = I , so the eigenvalues of C are ±1 , called C -parity or charge conjugation. The
charge conjugation operator C , when acting on a |π+〉 state produces a state of a negative pion:
C|π+〉 ∝ |π−〉 . In fact, one may choose phases so that

C|π+〉 = |π−〉 and C|π−〉 = |π+〉. (99)

Similarly, we may take C|K±〉 = |K∓〉 , C|K0〉 = |K̄0〉 and C|K̄0〉 = |K0〉 . A 1-particle
state can have definite C -parity only if the particle is its own anti-particle, like the photon, Z0 ,
π0 , η, η′, J/ψ,Υ etc. Reversal of sign of Aµ under charge conjugation means that a photon
has negative C -parity C|γ〉 = −|γ〉 . Like parity, C -parity is a multiplicative quantum number
so for a multi-photon state C|nγ〉 = (−1)n|nγ〉 . The C -conserving EM decay of the neutral
pion to two photons π0 → 2γ implies that it has even C -parity: C|π0〉 = |π0〉 . C -invariance
of EM would then forbid π0 → 3γ , and indeed this decay has not been seen. The upper limit
on the branching ratio is 3.1 × 10−8 . Another even C -parity particle is the neutral η meson
(uū− dd̄− 2ss̄) . Its decays too preserve C -parity (e.g. η → 2γ , η → 3π0 ).

• C -invariance is broken (in a sense maximally) by the weak interactions. Under C , a left-
handed neutrino is mapped to a left-handed anti-neutrino. The latter does not exist in the stan-
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dard model and has not been seen. So it is not even possible to compare the rate of LH neutrino
production to LH anti-neutrino production in weak interaction reactions that would otherwise
be charge conjugates of each other. Similarly, the charge conjugate of a LH electron is a LH
positron. Though both exist, they have different weak interactions: the LH electron transforms
as a doublet under weak isospin while the LH positron is a singlet under weak isospin.

4.2 Neutral Kaons: production and strong interactions

• Recall that the kaons form two I = 1
2

doublets, the S = 1 doublet (K+ = us̄,K0 = ds̄) and
the S = −1 pair (K̄0 = d̄s,K− = ūs) . The neutral kaons are anti-particles of each other and
form a very interesting ‘2-state’ system first studied by Gell-Mann and Pais in the mid 1950s.
Feynman includes a discussion in his lectures on physics. Neutral kaons are produced in strong
interactions.

• E.g., K0 are produced in association with Λ0 baryons (S = −1) when a pion beam strikes a
proton target

π−(dū) + p(uud)→ Λ0(dus) +K0(s̄d) (100)

or in association with a Σ+ baryon (S = −1) when two protons collide

p+ p→ p(uud) + Σ+(uus) +K0(s̄d). (101)

A point to notice here is that to conserve baryon number, a strange baryon (which necessarily
has negative strangeness), is produced in association with a K0 and never a K̄0 . So if a Λ0

is produced in πp collisions at not too high energies, we can be sure that the resulting neutral
kaon is not a K̄0 .

• However K̄0 can be produced in association with K+ mesons in π+p collisions:

π+(ud̄) + p(duu)→ K+(us̄) + K̄0(sd̄) + p(duu) (102)

The threshold pion energy for this reaction is 1.5 GeV while that for production of K0 in
association with Λ0 above is .91 GeV. So one may produce a pure K0 beam by choosing the
charged pion beam energy appropriately. The point is that K0 and K̄0 are not the same particle,
and it is possible to choose reactions where only one is produced, and make a beam of those
neutral kaons.

• It is also possible to produce K̄0 in association with K+ (S = +1) by scattering protons off
neutrons p(uud) + n(udd)→ n(udd) + n(udd) + K̄0(d̄s) +K+(s̄u) .

• Another way of making neutral kaons is by aiming a secondary beam of charged kaons at a
target containing nucleons:

K+ + n→ K0 + p, or K−(sū) + p(uud)→ K̄0(sd̄) + n(duu). (103)

By choosing the sign of the charged kaon beam, we can select neutral kaons with a specified
strangeness.
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• Neutral kaons can also be produced in association with charged kaons in pp̄ annihilation
reactions

pp̄→ K−π+K0 and pp̄→ K+π−K̄0 (104)

Which neutral kaon is produced can be determined from the charge of the pion/kaon co-produced.

• Neutral kaons interact differently with matter, depending on their strangeness. K̄0 are seen
to produce the S = −1 Λ0 baryons via K̄0p → Λ0π+ . But K0 does not produce Λ0 upon
striking protons unless the energy is so high as to allow reactions such as K0p→ Λ0K+K+π− .

• A K0 can ‘exchange charge’ with a proton, K0 + p → K+ + n while K̄0 cannot do so.
On the other hand, K̄0 can produce the strange baryon Σ+(uus) upon colliding with a proton,
K̄0 + p → Σ+ + π0 but the S = 1 K0 cannot produce a strange baryon in such a collision.
Thus it is possible to detect the presence of neutral kaons of specified strangeness by examining
how a beam of neutral kaons interacts with matter.

4.3 Neutral kaons: weak interactions, decays and CP eigenstates

• K0 and K̄0 are stationary states of the strong interaction (QCD) hamiltonian Hstrong , they
are states of definite strangeness and mass (same mass 497.7 MeV) if we ignore the weak inter-
actions. Such an approximation holds for 10−23 s during the strangeness-conserving production
process via the strong interactions (due to the proximity of other strongly interacting particles
p, π,Λ). When the kaons propagate after they are produced, the hamiltonian that governs their
time evolution is in principle the sum of the strong, weak and EM hamiltonians. The strong in-
teractions are responsible for binding the kaons while the weak interactions are responsible for
their non-leptonic decay to pions or semi-leptonic decay to pions, leptons and neutrinos. Unlike
neutral pions, neutral kaons cannot decay to photons or pions electromagnetically since EM
conserves strangeness, so we can ignore EM. If we include the weak interactions, K0, K̄0 are
not stationary states, they do not have definite masses or life-times. They decay in strangeness
changing weak interactions after a long time (10−8 - 10−10 s), so we can make secondary beams
of neutral kaons. A Feynman diagram for the decay K0 → π+π− is shown24. Draw similar
diagrams for K̄0 → π+π−, π0π0 .

• It was discovered (theoretically predicted in 1955 and then experimentally discovered in
1960) that a pure K0 beam, upon propagating in vacuum could turn into a mixed beam of K0

and K̄0 with their numbers oscillating in time. This is called K0K̄0 mixing or strangeness

24Though we can draw such diagrams, the particle that decays to π+π− with a definite lifetime is neither K0

not K̄0 , but a certain linear combination that is to be determined.
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oscillations. This could be detected since K0 and K̄0 react differently when passing through
matter, as explained above.

• K0 and K̄0 are not stationary states (i.e. of definite mass and life-time; the combination of
mass and lifetime m − i

2τ
can be regarded as a complex energy eigenvalue corresponding to

a stationary state of an unstable particle in its rest frame) if one includes the weak interactions
Htotal = Hstrong + Hweak . Usually, the weak interactions may be ignored in comparison to
the strong interactions. But when there are degeneracies, a small perturbation can alter the
stationary states significantly (as we will see in the example below). Since charge changing
weak interactions can change strangeness, the new states of definite mass (and life-time) need
not have definite strangeness. Moreover, weak interactions can cause transitions (or oscillations)
between K0 and K̄0 , which are forbidden by S-conserving strong interactions. From a study
of weak decays, it is found that there are two neutral kaons with definite masses and life-times,
Kshort and Klong with τS = .9 × 10−10 s and τL = .5 × 10−7 s. They decay primarily to two
and three pions, KS → π+π−, π0π0 and KL → 3π0, π+π−π0 . The phase space for three body
decay is smaller than for two body decay; it has a smaller Q value, which explains why KL

lives longer.

• To begin to understand all this, following Gell-Mann and Pais (1955), let us model the K0 −

K̄0 Hilbert space as C2 = span(|K0〉, |K̄0〉) and represent Hstrong =

(
E 0
0 E

)
where E =

497.7 MeV. In other words, we are ignoring the translational degrees of freedom and focusing
on the two dimensional space labelled by strangeness of the neutral kaons.

• For simplicity, we model the perturbing hamiltonian due to the weak interaction by the
purely off-diagonal (off-diagonal matrix elements are the ones that cause transitions) real matrix

Hweak =

(
0 w
w 0

)
with w � E . It follows that the perturbed eigenstates are

K1 =
1√
2

(
K0 + K̄0

)
and K2 =

1√
2

(
K0 − K̄0

)
with energies E ± w. (105)

If Hweak =

(
0 w
w∗ 0

)
were hermitian, off-diagonal but not real, the perturbed energies would

be E ± |w| , corresponding to the eigenstates 1√
2
(ei arg(w)K0 ± K̄0) .

• By transitions between K0 and K̄0 we mean reactions of the sort K0 ↔ K̄0 . This could
happen, for instance, through an intermediate state that both K0 and K̄0 can decay to, such
as π+π− or π+π−π0 . Thus mixing can take place through virtual intermediate pion states
like K0 → π+π− → K̄0 . Such a |∆S| = 2 transition must involve two charge changing
weak currents, i.e. two W bosons exchanged (neutral current Z0 exchange does not change
strangeness, nor would gluon or photon exchange). An example is a 1-loop ‘box’ Feynman
diagram with virtual up type quarks and anti-quarks shown below.

• The true neutral kaon eigenstates K1, K2 of Htotal are some linear combinations of K0 and
K̄0 . We can find them without knowing the explicit form of the hamiltonian if we assume that
it commutes with CP . Unlike P and C which are individually not conserved in weak inter-
actions, CP is a symmetry of the strong interactions and very nearly (to about one part in a
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thousand) a symmetry of the weak interactions. We will work in the approximation where CP
is conserved, so the eigenstates of H are also CP eigenstates. The hamiltonian also possesses
other symmetries like rotations and translations, but these act trivially within the two dimen-
sional subspace under consideration, the corresponding symmetry generators are multiples of
the identity and do not allow us to identify the states with definite lifetime.

• Now, being anti-particles, charge conjugation takes a one-K0 state to a one-K̄0 state and
vice-versa. For some phase (|α| = 1),

C|K0〉 = α|K̄0〉 and C|K̄0〉 = (1/α)|K0〉 since C2 = I. (106)

It is possible to absorb the phase α into the state vector |K̄0〉 so that C|K0〉 = |K̄0〉 and
C|K̄0〉 = |K0〉 . Now kaons all have negative intrinsic parity (they are part of the pseudo-scalar
meson octet with the pions) P |K〉 = −|K〉 . So PC|K0〉 = −|K̄0〉 and PC|K̄0〉 = −|K0〉 . It
is conventional to absorb the minus sign into the state vector |K̄0〉 to get (note that CP = PC
since C does not affect the spatial or spin degrees of freedom upon which P acts)

CP |K0〉 = |K̄0〉 and CP |K̄0〉 = |K0〉. (107)

So the CP matrix is simply the Pauli matrix σ1 within this subspace, and its eigenstates are the
previously introduced combinations K0 and K̄0 . Thus the strangeness eigenstates are not CP
eigenstates, but the sum and difference K1,2 are CP even and odd

|K1〉 =
1√
2

(|K0〉+ |K̄0〉), CP = +1, and |K2〉 =
1√
2

(|K0〉 − |K̄0〉), CP = −1.

(108)
To the extent that CP is a symmetry of the weak interactions K1 and K2 should be the states
with definite masses and life-times.

• CP conserving weak interactions would allow K1,2 to decay only into CP-even and CP-odd
final states. Neutral kaons are seen to decay weakly to two pion (π0π0 or π+π− ) and three-pion
(π0π0π0 or π+π−π0) final states.

• Let us argue that the two pion final states are CP even25. Since kaons have no angular momen-
tum (spin zero) the 2π final state does not have any orbital angular momentum, so its extrinsic
parity (−1)l = 1 . The odd intrinsic parities of the pions combine to make ππ a parity even

25More generally, consider the two pion final state |π+π−〉 . Pions have spin zero each so we may ignore spin.
Suppose the pair has orbital angular momentum l . The intrinsic parities are both odd and multiply to give one.
The extrinsic parity is (−1)l . The effect of C is simply to exchange the pions, which is the same as reflection
through the origin, under which |π+π−〉 = (−1)l|π+π−〉 . So the C -parity is (−1)l . Thus the CP eigenvalue is
(−1)2l = 1 irrespective of the value of l . Of course l = 0 since the decaying kaon was spin less.
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state. C does not affect the 2π0 state while it exchanges the π± , though this leaves an S -wave
state unchanged. Thus the ππ final states have CP = +1 and only K1 can decay to ππ . Note
that the Q value for 2-pion decays is 498− 140− 140 ≈ 218 MeV.

• The πππ final states relevant to neutral kaon decay can be shown to be CP odd, so only
K2 can decay 3π while conserving CP 26. Irrespective of this, the Q value ≈ 78 MeV for
3 pion decay is significantly less than for 2π decay. So K1 which decays to two pions has
a much shorter lifetime τ1 ≈ .9 × 10−10 s than (K2) that decays to 3π in τ2 ≈ .5 × 10−7 s.
τ2/τ1 ≈ 570 . The energy widths are Γ1 = 7.4 µeV and Γ2 = 0.013 µeV. These widths are
very narrow compared to the masses (≈ 497.6 MeV), so the neutral kaons are much more stable
compared to the hadronic resonances like the ∆ that decay via the strong interactions.

• It turns out that CP isn’t exactly conserved in weak decays27, so the states of definite mass
and lifetime aren’t exactly CP eigenstates but a pair of short and long-lived neutral kaons KS

and KL . However, KS ≈ K1 and KL ≈ K2 , so we shall ignore the effects of CP violation in
this discussion and use the symbols KS and K1 interchangeably as also KL and K2 .

4.4 Neutral kaons: strangeness oscillations

• Hweak breaks the degeneracy in masses, so K1,2 have slightly different masses m1,2 (∆m/mK0 ≈
7× 10−15 ); they also have significantly different mean life times τ1,2 (or energy widths Γ1,2 =
~/τ1,2 ). The fact that the strangeness eigenstates K0, K̄0 differ from the mass eigenstates leads
to the phenomenon of strangeness oscillations, predicted by Gell-Mann and Pais in 1955 and
experimentally detected in 1960.

• Suppose we start off with a neutral kaon produced in a strong interaction, it must have definite
strangeness. For definiteness, if it was produced in π−p collisions in association with Λ0 , then
it must have S = 1 and be a K0 . However, K0 is not an eigenstate of Htot and to examine
its time evolution as it propagates (as part of a beam) we decompose it in terms of the CP
eigenstates K1,2 . At t = 0 we have

|K0(0)〉 =
1√
2

(|K1(0)〉+ |K2(0)〉) where K1(0) ≡ K1 and K2(0) ≡ K2. (109)

26Consider the 3π0 final state from neutral kaon decay, we will show that it is CP odd. First, C leaves each
π0 invariant, so we only need to determine the parity of this 3π0 state. Each pion has odd intrinsic parity, so the
product of intrinsic parities is −1 . It remains to consider the extrinsic parity from orbital motion. The 3π0 state
must have zero total angular momentum J since the original kaon is spin-less (pseudo scalar). Now suppose the
orbital angular momentum of one pair of pions about their CM is l and that of the remaining pion about the CM
of the other two is l′ . Then J = l + l′ . But since J = 0 , l = l′ . What is more, since the pions are identical
bosons, any two pions must be in a symmetric state under exchange, which means l is even. So both l and l′ are
even, resulting in even extrinsic parities (−1)l, (−1)l

′
(in any case, the product of the extrinsic parities will be +1

since l = l′ ). In summary, the CP eigenvalue of a J = 0 3π0 state is simply the product of intrinsic parities, and
therefore CP = −1 . The π+π−π0 state can be CP odd or even, depending on the relative angular momentum l
of the π+π− pair. However, the small Q value ≈ 80 MeV of the decay, suggests l = 0 . Now the π+π− pair is
CP even, as argued earlier for KS → 2π . Combining this with the CP odd π0 (C = 1, P = −1 ) we conclude
that the π+π−π0 system is CP odd.

27A manifestation of CP violation is the very rare weak decay of KL to two pions, the amplitude for this is
about 500 times less than the amplitude for KS → ππ
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In their rest frame, the amplitudes for the CP eigenstates have a time dependence determined
by their masses and life-times

|K1(t)〉 = e−im1t−t/2τ1|K1(0)〉 and |K2(t)〉 = e−im2t−t/2τ2 |K2(0)〉. (110)

Thus the time evolution of our initial K0 is a superposition of a pair of oscillatory amplitudes,
each with its own exponential damping.

|K0(t)〉 =
1√
2

(
e−im1t−t/2τ1 |K1(0)〉+ e−im2t−t/2τ2 |K2(0)〉

)
(111)

Production of K0 via the strong interactions happens in 10−23 seconds28. For a long time after
this, i.e. till t . τ1 ≈ .9× 10−10 s both K1 and K2 are present in the beam. As t approaches τ1

one observes decays to two pions arising from the CP even K1 component. When τ2 & t� τ1 ,
the K1 component would have decayed and one would primarily see decays to three pions. This
is in the rest frame of the K0 . If it were moving at a speed v , relative to the lab frame, then
the masses and life-times must be scaled up by γ . In practice, the 2π decays are seen closer to
the K0 production region and the 3π decays at greater distances downstream since τ2 is about
570 times larger than τ1 . In fact, cτ1 = 2.67 cm while cτ2 = 15.5m. A neutral kaon beam of
energy 5 GeV, has γ ≈ 10 and γcτ1 = 26.7cm while γcτ2 = 155m. So a few meters from the
production region, all the short-lived K1 ’s would have decayed.

• In |K0(t)〉 , the amplitudes of K1 and K2 are unequal at t > 0 . What this means is that
an initially pure K0 beam morphs into one containing neutral kaons of either strangeness29.
To study this, we may allow the neutral kaon beam to pass through matter (e.g. a hydrogen
target). The kaons will interact strongly with the nucleons, but unlike the weak decays, these
are strangeness preserving reactions. While the (S = −1) K̄0 interacts strongly with protons,
producing S = −1 strange baryons (like Λ), the K0 does not interact as much and cannot
produce Λ0 . Thus, starting with a pure K0 beam, one can measure the intensity of K0 at time
t . The probability of finding a K0 in |K1(t)〉 is the absolute-square of the amplitude

Ampl(K0, t) = 〈K0|K0(t)〉 =
1√
2

(〈K1|+ 〈K2|) |K0(t)〉 =
1

2
(e−im1t−t/2τ1 + e−im2t−t/2τ2)

⇒ Prob(K0, t) =
1

4

[
e−t/τ1 + e−t/τ2 + 2e

− t
2

(
1
τ1

+ 1
τ2

)
cos(∆m t)

]
where ∆m = |m2 −m1|.(112)

So the K0 probability is expected to decrease exponentially from 1 at t = 0 , but should show
an oscillatory behavior superimposed on the exponential decay. The angular frequency of the
oscillations is ∆m , it has been measured (and calculated approximately using the 1-loop box
Feynman diagram).

∆m = 3.5× 10−6 eV ≈ 1

2τ1

, m2 > m1. (113)

28 10−23 s is the natural time-scale for the physics of hadrons. It is simply the time it takes light to cross a hadron,
which is about a fermi in size.

29Note that kaons of opposite strangeness, being anti-particles, could annihilate if they collide. However, it is
more likely for a single kaon to propagate or decay than for two of them to annihilate in such a beam. Moreover,
the interference phenomena that lead to oscillations are due to the superposition principle of QM and apply to
single kaons, just as the double slit interference pattern with photons may be developed with very low intensity
light (single photons that do not interact with each other).
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Though this mass difference is very small compared to the masses of other elementary particles,
it is measurable since the corresponding oscillations have a time period of order 2π/∆m ≈
4πτ1 ≈ 1 ns. Due to time-dilation, this is manifested over a macroscopic length. Similarly, the
probability of finding a K̄0 in the beam at time t is (plot these probabilities!)

Prob(K̄0, t) = |〈K̄0|K0(t)〉|2 =
1

4

[
e−t/τ1 + e−t/τ2 − 2e

− t
2

(
1
τ1

+ 1
τ2

)
cos(∆m t)

]
. (114)

The probability of finding a K̄0 in an initially pure K0 beam grows from 0 at t = 0 , reaches
a maximum at a time of order τ1 , oscillates and eventually decays to zero. Of course, after a
time long compared to τ2 , there are no neutral kaons left, they have all decayed to two or three
pions.

• The rate of K0 − K̄0 strangeness oscillations that can be calculated from the 1-loop box
Feynman diagram depends on the mass of the charm quark, which can appear as a virtual parti-
cle in some Feynman diagrams. By comparing the calculations with experimental measurement
of the rate of strangeness oscillations, it was possible to predict the mass of the charm quark
before it was discovered as a constituent of the J/ψ in 1974!

4.5 KS regeneration

• A particularly striking manifestation of strangeness oscillations is in the phenomenon of KS

regeneration, predicted in 1955 by A Pais and O Pancini and detected by Pancini and collabora-
tors in 1960. Suppose we begin with a beam (traveling through vacuum) of pure K0 produced
in π−p collisions in association with Λ0 baryons (originally called hyperons). K0 being an
equal superposition of the short lived K1 and long-lived K2 , we will initially see two pion de-
cays by which the K1 = KS component is depleted once t & τ1 (in the rest frame), leaving a
less intense beam of long lived K2 = KL = (K0−K̄0)/

√
2 (as long as t� τ2 ). Now, if we let

the KL beam pass through a layer of matter, the K0 and K̄0 components will react differently.
The S = −1 K̄0 are more easily absorbed (producing Λ0 baryons) leaving a beam of more
K0 ’s than K̄0 s, so that (up to overall factors) the sequence of amplitudes may be written

K0 → KL =
1√
2

(K0 − K̄0)→ 1√
2

(fK0 − f̄ K̄0) =
1

2
(f + f̄)KL +

1

2
(f − f̄)KS, (115)

where f > f̄ are the amplitudes for K0 and K̄0 to emerge from the layer of matter (Perkins’
notation). Having emerged from the slab of matter the beam now has a KS component which
will decay to two pions! So by passing a neutral kaon beam (from which all the KS had been
depleted) through matter, KS has been regenerated. This process can be repeated several times
till all the kaons have decayed.

• These strange features of neutral kaons are partly a consequence of the superposition principle
of quantum mechanics (and serve as a test of it).
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5 Detection of particles: basic ideas

• The screen of a cathode ray tube (TV screen) serves as a detector of electrons, via the flashes
of light they emit when hitting the scintillating material. Rutherford, Geiger and Marsden man-
ually counted such flashes from α particles incident on a ZnS screen as a function of location
using a microscope, in their alpha scattering experiments.

• Charged particles like electrons, muons, alpha particles etc are often detected by the tracks
they leave. When a charged particle passes through a gas, it ionizes atoms along its path. The
ions (due to their inertia) do not move much, while the liberated electrons tend to drift away.
Many detectors like cloud, bubble, spark and proportional wire chambers work by detecting the
ions (or electrons) left in the wake of the charged particle.

• Photons are neutral and do not ordinarily leave ion trails like electrons. However, high energy
photons (gamma rays) can ionise atoms in a gas and the resulting ions/electrons can be collected.
More spectacularly, photons of sufficient energy (more than 2me ) pair produce while passing
through matter. Though pair production by real photons in vacuum γ → e+e− is not allowed
due to momentum conservation, it can happen in the Coulomb field of a nucleus. The tracks of
the e+e− pair can then be observed. The leading order Feynman diagram is drawn with time
increasing upwards. There are three vertices (including the one at the nucleus) each of which
contributes a factor of electric charge e . So the amplitude is ∝ e3 and the cross section to α3 ,
so pair production is called a third order process.

• Charged particles radiate photons when accelerated. Classically, the power radiated (say in
a circular trajectory of radius r ) grows with square of energy and decreases as the square of
the mass P = 2e2a2

3·4πc3 = 2e2E2

3·4πm2r2c3
. So this is particularly important for high energy electrons.

Momentum conservation does not permit a free electron to radiate a single photon e → eγ
in vacuum. However, an electron passing through matter is accelerated in the coulomb field
of a nucleus and does radiate photons (the momentum being balanced by the nucleus). This
is called bremsstrahlung, German for breaking radiation. There are two leading order FD for
bremsstrahlung, which show that it is a third order process30 If the photons produced are suffi-
ciently energetic, they can pair produce in the vicinity of other nuclei. This produces an elec-
tromagnetic shower or avalanche of characteristic shape, and the charged particle tracks can be
observed.

30Note that one needs to add the amplitudes represented by each of these diagrams and square the sum to get
the physical rate. The photons that emerge cannot be identified as having been radiated by the electron or by the
nucleus, it is the system that radiates, though we say that the electron radiates photons.
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• Muons being 200 times heavier than electrons radiate less and typically do not produce elec-
tromagnetic showers. But they leave long tell-tale ion-tracks in detectors. Muon trackers are
usually on the outer part of collider detectors, since muons make it quite far, unlike electrons.
The tau lepton (mτ = 1.777 GeV) is even heavier than the muon, but it does not leave tracks,
because it decays rapidly via the weak interactions (lifetime of 10−13 s) to charged leptons/pions
and neutrinos.

• The neutron is a strongly interacting electrically neutral particle that lives long enough to be
detected. Its EM interactions due to magnetic dipole moment are rather weak to be used as a
method of detection. Beta decay to charged particles (electron and proton) is not a very practical
means of detection since the rate is very low and the neutron may leave the lab before it decays.
When passing through matter (especially hydrogen rich matter so that the target nuclei have the
same mass as the projectile), neutrons can elastically scatter off protons (or other nuclei), and
the recoiling protons/ions, being charged, can be more easily detected. When passing through
matter, energetic neutrons can also collide inelastically with nuclei and produce several charged
particles and daughter nuclei in a hadron shower which can be detected. Low energy neutrons
can be absorbed by appropriate nuclei, which then undergo nuclear reactions (including fission)
emitting gamma rays and other ionizing charged particles like beta and alpha rays, which can
be detected.

• The neutral pion also interacts strongly, but is very short-lived. It decays in 10−17 s electro-
magnetically (π0 → 2γ ) and the photons can be detected through pair production or otherwise
(e.g. via the photo electric effect).

• We now introduce some specific devices/methods of particle detection.

5.1 Geiger counter

• In its simplest form, a Geiger counter consists of a hollow metal cylinder filled with a (typ-
ically inert noble) gas at low pressure. A wire along the axis was maintained at 1 kilo volt
potential difference relative to the cylinder. When a charged particle (say an alpha or beta parti-
cle) passed through the cylinder, it left a trail of ionized atoms which were attracted to the wire
due to the electric field. These ions produced more ions as they were accelerated towards the
wire, resulting in a small electric pulse (‘discharge’) in the wire, which could be detected using
an electrometer. In more sophisticated versions, the small current is amplified using amplifiers
so that it can be heard on a speaker. Diodes and subsequently triodes, which were developed in
the first decade of the 20th century were used to amplify the electrical pulse.

• The Geiger counter was developed by Geiger (and Rutherford) by 1913 and was improved
upon by Geiger and Müller in 1928.

• Though it did not provide information on the track followed by the charged particle, the
Geiger counter could detect the passage of individual alpha or beta particles, and hence count
them. Clicks of a Geiger counter were used to measure radioactivity from uranic salts. How-
ever, they do not provide tracks of charged particles nor do they measure the energy of charged
particles. Geiger counters can serve as triggers to switch on more sophisticated tracking de-
tectors (like cloud chambers) when a charged particle passes by. A more sophisticated version
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of the Geiger counter, a proportional counter can indicate the energy of the charged particle
by producing a current whose total charge is proportional to the energy. The point is that the
number of ion-electron pairs produced by an ionising charged particle is roughly proportional
to its energy. Each of these ion pairs is used to produce a small avalanche close to the anode
wire, by carefully adjusting the voltage in the chamber, the gas pressure and composition.

5.2 Electroscope

• The electroscope as an instrument to detect electric charge goes back to the 1600s. It was
used to discover cosmic rays in the early 20th century. Theodor Wulf constructed a sensitive
electroscope in 1910 in the Netherlands. It consists of a pair of conducting leaves, say gold
leaves that hang downwards and are joined at a vertex to a conducting central holder. When it is
charged, the leaves repel each other. If a charged particle passes by, it ionizes the surrounding
gas and electrons or ions drift to the electroscope discharging it. As a consequence, the leaves
cease to repel. Natural radioactivity from the earth could discharge an electroscope, but this
effect should decrease with height (distance from radioactive sources). What Wulf and later
Victor Hess (Vienna, Nobel prize 1936) in more systematic studies found, was that the rate of
discharge did not decrease with height, and in fact increased. This was discovered via Eiffel
tower-top and balloon-borne experiments! It was deduced that the source of the discharging
radiation was from space, leading to the discovery of cosmic rays.

5.3 Wilson cloud chamber

• The Scottish physicist C T R Wilson (Nobel prize 1927) developed the cloud chamber that
bears his name. This is an example of a serendipitous development, Wilson originally wanted
to reproduce the optical glory effect. In a failed attempt to do so, he was led to the path of
developing the cloud chamber by 1911. He found in 1895 that water vapor condenses around
charged particles to form droplets (drops of oil with electrons stuck to them were used later
by Millikan to measure electron charge). The device consisted of a chamber filled with pure
water vapor fitted with a piston. When the vapor is expanded using the piston, it adiabatically
cools leading to supersaturation (the vapor pressure of water is exceeded). This is an unstable
state, passage of a charged particle leaves ions which act as nucleation sites. Water vapor
condenses around ions revealing the trails of charged particles. To work efficiently, one needs
to know when to expand the vapor. The cloud chamber was used to detect cosmic rays by using
Geiger counters as triggers for the expansion. Geiger counters were placed above and below
the chamber (counter controlled cloud chamber, Blackett and Occhialini 1937, Nobel prize to
Blackett in 1948). If both counters detected a pulse in quick succession, it signaled passage of a
charged cosmic ray and the expansion was triggered. The resulting water droplets revealed the
path which was photographed after activating a flash bulb. Tracks of α and β particles from
natural radioactive decay were detected using the Wilson cloud chamber, emphasizing their
particle-like nature. The α particle tracks are thicker than those of electrons, α’s have higher
ionizing ability due to higher charge. Later, particles produced in artificial nuclear disintegration
and cosmic rays were also detected. Positrons (1932) muons (1936) and kaons (1947) were
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discovered in cosmic ray showers using cloud chamber photographs. By applying a magnetic
field across the cloud chamber, information on the charge and momentum of charged particles
could be obtained from their tracks. In a non-relativistic approximation, assuming velocity
orthogonal to magnetic field,

qvB

c
=
mv2

r
=
pv

r
⇒ p =

qrB

c
(116)

High momentum electrons bend far less than low momentum ones. So the radius of curvature
gives an estimate of momentum if the charge and applied B are known. The sign of charge
is determined by whether the particle bends clockwise or anti-clockwise; e+ and e− bend in
opposite directions. The curvature of an electron track increases with time as the electron loses
energy to the material in the chamber, so cloud chamber photos show spirals.

• Moreover, particles of higher charge |q| produce thicker tracks, since more ions are ionized.
The chamber can be calibrated by using test particles of known charge. The thickness of the
track is proportional to the square of the charge and inversely proportional to the square of the
speed of the particle. So all particles of unit charge moving nearly at the speed of light leave
tracks of the same width. For fast particles v ' c , one cannot tell the direction of motion as the
track thickness does not appreciably increase within the dimensions of the chamber, given the
limited energy loss. To find the direction one simply inserted a thin lead plate in the middle of
the chamber. After passing through the plate, an electron/positron has less energy and its track
is more curved in a magnetic field.

• Cloud chambers, while being relatively easy to construct, have the drawback of not containing
much material to function as target. Glaser’s bubble chamber solved this problem by using
denser liquid instead of water vapor, which could act as target while continuing to reveal ion
trails.

5.4 Photographic emulsions

• Like intense light, high energy charged particles too can be used to take photographs. Dark-
ening of photographic plates (precursors to photographic film, glass coated with light sensitive
chemical emulsions) was crucial to the discovery of X-rays and radioactivity. Hess confirmed
the electroscopic detection of cosmic rays by the traces they left on photographic plates left on
mountains and taken up in balloons.

• Powell, Occhialini, Muirhead and Lattes discovered the charged pions in 1947 using photo-
graphic emulsions to record tracks of cosmic rays at high altitude. Powell had been developing
high quality photographic emulsions from the late 1930s. The thickness of the track left by a
charged particle in photographic emulsion decreases with the speed of the particle and reaches
a minimum as v → c . Powell (Nobel prize 1950) and coworkers made essential improvements
in photographic emulsion technology to record tracks of highly relativistic weakly ionizing par-
ticles, leading to the discovery of charged pions. A stack of emulsion covered plates (Silver
Bromide crystals suspended in gelatin) produced images of cosmic ray tracks (black tracks of
Silver grains), decays and interactions. Unlike cloud chambers which had to be expanded and
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contracted after each particle passage, the plates could be left to take photographs and many
tracks could be recorded on the same plate. Photographic emulsions have much greater stop-
ping power than air or vapor, so particle tracks are much shorter. The direction of motion of a
charged particle through a photographic plate is given by direction of increase of black grains.
A slower particle has greater ionizing ability. See the photographs in Perkins’ book. A charged
pion comes to rest in the emulsion and decays to a muon. The charged pion track ends and the
muon tracks emerges at an angle, the missing momentum being carried by the uncharged muon
neutrino. The resulting muon tracks were all of roughly the same length indicating that the
decay is a 2 body decay and the muon is mono-energetic and decays in about 2.2 microseconds.
At the end of the muon track is an electron track which again emerges at an angle, the missing
momentum being carried by a pair of neutrinos.

• Photographic emulsions have good spatial resolution (half a micron) and are still in use in
studies of cosmic rays and neutrinos as well as in astronomy. By very refined methods, distances
of 1 micron between the point of production of a π0 (via the strong interactions) and its decay
(to 2γ via EM) can be measured, even though it does not leave a track.

5.5 Glaser bubble chamber

• The bubble chamber was invented by Donald Glaser (Nobel prize 1960) at Michigan in 1952.
They were very widely used in tracking particles produced at accelerator experiments for the
next three decades. The bubble chamber was based on and replaced Wilson’s cloud chambers.
Bubble chambers used liquid rather than water vapour used in cloud chambers. The greater
density produced more target material for energetic particles (including neutrinos!) to interact
with. While liquid hydrogen produced clear tracks, denser liquids like freon were used when
more target mass was needed and also to ensure that photons and electrons produce EM showers.
Cloud chambers also take longer (1 minute) than bubble chambers (1 second) for compression
after expansion and track photography.

• Bubble chambers work in a similar manner as cloud chambers. The boiling temperature of a
liquid decreases with decreasing pressure. A super heated liquid is one that is at a temperature
above boiling point due to a sudden drop of pressure. The basic principle of operation of a bub-
ble chamber is that a super-heated liquid is unstable and will begin to boil around perturbations
such as the ion trails left by a charged particle. They are filled with liquid (liquid hydrogen re-
quires a temperature of 20K; denser liquids like propane and freon have also been used. Glaser
is said to have tried out beer without success!) and fitted with a movable piston to adjust the
pressure. When the piston is pushed in, the liquid is at a high pressure of several atmospheres
and at a temperature just below boiling. The piston is suddenly withdrawn leading to a drop in
pressure and creating an unstable superheated liquid. If charged particles pass through in inter-
esting directions (as determined by scintillation counters placed around the chamber) then, the
compression of the chamber is triggered. Prior to this, the liquid has started to boil by forming
bubbles around the ions left by charged particles. The compression happens at just the right
time so that the bubbles are big enough to be photographed. Then the piston is pushed back
in to prevent the whole liquid from boiling and to return it to its original high pressure state.
The whole cycle can be completed in about a second in time for the next bunch of particles
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from an accelerator. A magnetic field (of order a Tesla) is applied across the bubble chamber
to enable determination of particle charge and momentum. Particles with higher charge leave
thicker tracks in bubble chambers. Muons leave long tracks since they radiate much less than
electrons of the same energy and do not interact strongly.

• Glaser’s first bubble chamber (1952) was only 3 cm in width. In the 1950s, L Alvarez (Berke-
ley), one of the champions of large-scale experiments, built along with coworkers, a 10 inch
bubble chamber and also a 72 inch bubble chamber filled with deuterium exposed to pions
and protons from the 6 GeV Berkeley Bevatron. Analysis of millions of bubble chamber pho-
tographs led to the discovery of numerous hadrons and resonances for which he received the
1968 Nobel prize. The Gargamelle bubble chamber used to discover neutral current neutrino
interactions via elastic neutrino electron scattering ν̄µe → ν̄µe via Z0 exchange at CERN in
1973 was 4.8 m long.

5.6 Spark chambers

• Spark chambers are made of several parallel metal plates with inert gas (He or Ne) in between
successive plates. When a charged particle passes through, it leaves an ion trail in the gas. By
applying a carefully chosen high voltage to alternate plates, one induces sparks along the ion
trails between plates (like in a gas discharge tube or lightning) which are photographed. The
timing of sparks can even be recorded using microphones. Spark chambers could be triggered
with greater precision than bubble chambers. The material in the plates also functions as a target
for particle interactions and increases the cross section for rare events like neutrino scattering.

• The basic idea of the spark chamber goes back to 1950 but it took some years to implement
the idea and find just the right voltage. The development of the spark chamber by Fukui and
Miyamoto in the late 1950s led almost immediately (in 1962) to the discovery that there were
two types of neutrinos, muon and electron. This was achieved by the team of L Lederman, J
Steinberger, M Schwarz et. al. using tertiary neutrino beams from the Alternating Gradient
Synchrotron (AGS) at Brookhaven, Long Island, NY.

• In 1956 Cowan and Reines had discovered the electron type anti-neutrino coming from beta
decay in nuclear reactors. Their ‘signature’ was that ν̄e produced positrons when interacting
with matter. Lederman et. al. found that the neutrinos from the AGS produced largely muons
rather than positrons when they interacted with the material in the spark chamber (see below).
Positrons annihilate readily and produce an EM shower with a characteristic shape in spark
chamber photographs. On the other hand, muons which radiate much less leave long tracks in
the spark chamber, they do not produce EM showers. They concluded that there was a second
kind of neutrino associated to the muon. This completed the second lepton family.

• Protons accelerated in the AGS were extracted, made to hit a target (e.g. Berillium) producing
a shower of hadrons, including pions and kaons. The resulting particles were passed through a
pile of mud. The pions and kaons decayed primarily to µ−ν̄µ or µ+νµ (with a lesser fraction of
eν̄e or e+νe - recall the helicity rule). At the end of the mud, one was left with a beam of mostly
νµ, ν̄µ and fewer νe, ν̄e . The neutrino beam was directed at a spark chamber. A small fraction
of the neutrinos then underwent neutrino nucleon deep inelastic scattering (νµp→ µ+X where

90



X may include several hadrons, and similarly for νe, ν̄µ, ν̄e ) Draw the Feynman diagram with
W± exchange.

5.7 Wire chambers

• Analyzing millions of photographs from bubble and spark chambers was cumbersome. Be-
ginning in the 1960s it became feasible to directly digitize the positions and times of charged
particle tracks using electronics attached to wire chambers. Wire chambers are in a sense supped
up versions of the Geiger counter.

• In essence, the metal plates of spark chambers are replaced with closely spaced (millimeter)
parallel wires to which voltages are applied. The resulting sparks along ion trails, when charged
particles pass through, are received by the nearest wire. This information (including the timing)
is passed to a computer. By using several layers of wires oriented at different angles, accurate
particle tracking is achieved using wire spark chambers.

• Multiwire proportional31 chambers developed by G. Charpak (1968-70) provide even greater
position (sub mm) and 10 ns time resolution for charged particle tracks. Here the free electrons
produced along the particle track drift to the wires giving rise to small currents that are accu-
rately measured and timed (typically, there are three layers of wires with the central layer held
at high voltage being the one that received the electrons). This information is fed to a computer
to reconstruct 3d tracks and determine particle momenta (using curvature of their trajectories in
a magnetic field). Charpak received the Nobel prize in 1992. A multiwire proportional cham-
ber requires elaborate electronics as each wire needs to be connected to electronic circuits to
amplify the signals.

• Drift chambers work in a similar way as wire chambers but focus on measuring the ‘drift
time’ taken for the electron signal to reach the ‘sense’ wire, to estimate distances of 10s of
micrometers.

5.8 Scintillation counters

• Scintillation materials (crystals like CsI, NaI or organic materials (plastics containing an-
thracene dissolved in a liquid) and placed in a layer within a larger detector) give off flashes of
light when charged particles pass through. The charged particle produces an electronic excita-
tion in a molecule in the material. When an electron returns to the lower energy level, a photon
is emitted, typically in the visible (often blue) or UV region. There are scintillation materials
that give off flashes of light even when gamma rays pass through (not just charged particles).
Geiger, Marsden and Rutherford used a Zinc Sulphide screen which produced flashes of light
when struck by alpha particles that passed through their gold foil.

31An electron released when a charged particle ionizes a gas atom is accelerated towards the high voltage wire.
If it picks up enough energy before reaching the wire, it ionizes other atoms producing more electrons, creating an
avalanche. The number of secondary electrons is proportional to the number of primary ions by an amplification
factor of order 105 .
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• The photon signal from scintillation counters can be very weak (1 or a few photons). It needs
to be amplified. This is done by photo multiplier tubes PMTs.

• Scintillation detectors do not provide tracks of charged particles. However, a pulse recorded
by a scintillation counter can be used as a trigger to activate other detectors like bubble chambers
or spark chambers . They are also used to estimate the energy of charged particles and EM and
hadron showers, as we shall see.

5.9 Cherenkov radiation

• Cherenkov radiation is emitted by charged particles moving in a polarizable medium (usually
water or heavy water) faster (βc) than the speed (c/n) of light in the medium (which is always
less than c). The phenomenon had been noticed before Pavel Cherenkov and his advisor Vavilov
(1934) but had been mistaken for fluorescence32. When a plane flies at above the speed of sound
in air, a shockwave forms between regions of sub-sonic and super-sonic flow. This wave can be
heard by ground based-observers in a sonic boom. Cherenkov radiation is an optical analogue,
when a charged particle (electron or muon, pion, kaon etc) moves faster than the local speed of
light. There results an expanding cone of (usually bluish) light that follows the particle. The
wave front of Cherenkov radiation is shaped like the wake of a ship and is at a fixed angle
relative to the particle trajectory. The opening angle of the cone is given by

sin θ =
(c/n)t

βct
=

1

βn
. (117)

The opening angle of this cone decreases with the speed of the charged particle and may be
used to determine its speed. Cherenkov radiation emitted in a tank forms ring-like patterns on
the walls of the tank, which can be detected by photo multiplier tubes that line the walls. There
is a photo you may find on the internet of technicians in a boat repairing the PMTs on walls
of a Cherenkov tank. The Cherenkov effect was theoretically explained by Tamm and Frank,
colleagues of Cherenkov in the same department. The three of them shared the 1958 Nobel
prize.

5.10 Photo Multiplier Tubes

• PMTs are used to amplify the photon signal from scintillation counters or Cherenkov coun-
ters. So a scintillation detector is often fitted with a PMT. And hundreds of PMTs line the
walls of huge tanks of water in order to detect Cherenkov radiation from fast moving charged
particles.

• PMTs work on the basis of the photo electric effect. Visible and UV photons incident on a
metallic cathode can cause photo electrons to be ejected. An electric field guides these photo
electrons to an anode. Upon striking the anode, several more electrons are ejected, which are
then directed at a second anode, generating yet more electrons. Thus, a single photon can
generate an cascade of electrons, enough to produce a detectable current.

32Fluorescence is the emission of characteristic light by excited molecules, as they relax to a lower energy level
after having been excited by radiation.

92



5.11 Silicon vertex detectors

• Highly sensitive doped semiconductor strips (10-20 µm width, made of Si/Ge) may be used
to detect the passage of charged particles. The semiconductor strip functions as a diode which is
reverse biased and does not conduct under normal circumstances. The charged particles ionize
silicon atoms producing conduction electrons whose current is then detected. It is possible to
get position resolution of less than 10 microns this way. This is needed to study weak decays of
heavy quarks (b,c), which live for only 10−13s and travel a fraction of a millimeter at energies
of order 10-100 GeV. SVX detectors have enabled us to study the weak decay chain b→ c→ s
(of hadrons containing these quarks) from very close to the collision vertex. Current day collider
detectors contain silicon strip detectors as their innermost component surrounding the collision
vertex. The top quark, which decays to b before it can hadronize to form mesons/baryons, was
discovered in 1995 at the Fermilab Tevatron (CDF and D0 detectors) by observing the b mesons
produced in top decays.

5.12 Sampling Calorimeters

• Often, the energy of a charged particle is determined by measuring the curvature of its track in
a fixed magnetic field. However, very high energy particles do not bend much and this method
is not always feasible. The other problem is that of determining the energy of a shower of
particles (electromagnetic or hadron showers and jets of hadrons), where there may be hundreds
of densely packed short tracks rather than a single curved track.

• A sampling calorimeter is used to determine the energy of single charged particles or showers.
A calorimeter typically consists of a sequence of heavy metal plates interspersed with scintilla-
tion counters or spark chambers. The metal plates (e.g. iron slabs) serve as target material to
induce particles (like electrons, muons, nucleons and neutrinos) to interact, slow down/produce
showers and deposit their energy. The light emitted in the interspersed scintillation counters and
spark chambers is measured. By calibrating the calorimeter using test beams of known energy
particles, one can arrive at accurate measurements of unknown particle energies and shower
energies. Sampling calorimeters essentially use an analogue of Simpson’s rule to sample the
energy deposition function and ‘integrate’ it to estimate the total energy of a particle or shower.

• The recently sanctioned India Based Neutrino Observatory will use a sampling calorimeter to
measure the energies of (especially) νµ and ν̄µ that undergo deep inelastic scattering with nuclei
in the detector producing µ± and hadron showers. 30,000 RPCs (resistive plate chambers) will
be used to detect muon tracks and measure their energies from the ionization produced in the
gas, as in a wire chamber. A magnetic field will also be used to bend muon tracks to estimate
their momenta.
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6 Nuclear physics and isospin with a view towards particle physics

6.1 α,N, p and n particles and the discovery of the strong nuclear force

• Rutherford discovered the alpha particle in natural radioactive emission from uranium and
radium in 1899. It was the least penetrative (through matter) of the three types of radioactive
radiation α, β, γ . Now we know why: α particles, unlike β electrons and γ ray photons
interact both strongly and electromagnetically. However (and partly for these reasons) the alpha
particle was a work-horse of sub-atomic physics in the first third of the 20th century. Now we
know that an α particle is a stable bound state of two neutrons and 2 protons (He4

2 nucleus)
with a large binding energy of 28 MeV. Bombarding atoms and nuclei with alpha particles led
to many discoveries.

• During 1908-1913 Geiger and Marsden under the supervision of Rutherford at Manchester
scattered alpha particles against thin metal foils (esp. gold foils which can be made very thin)
and detected the alpha particles through flashes on a fluorescent screen beyond. The obser-
vation of wide angle scattering was used to deduce the concentration of positive charge in a
point-like atomic nucleus. Rutherford worked out the differential scattering cross section for
Coulomb scattering of point charges in 1911 and the experimental results of 1913 agreed with
Rutherford’s formula. Thus atomic nuclei were discovered.

• In 1919 Rutherford discovered the proton by bombarding hydrogen gas with 5 MeV alpha
particles from Radium decay. αs being much heavier, knock protons (called H particles then)
out of the atoms and they could be detected by counting scintillations they produced or via their
tracks in a cloud chamber.

• Interestingly, for α particles of higher energy, the measured number and angular distribu-
tion of scattered protons did not match the Coulomb scattering formula, even after accounting
for recoil of the target. There was an anomalously large scattered proton current produced.
The experiments showed that the α − H force at short distances could not be purely electro-
magnetic and must be of a great intensity. Rutherford also estimated the distance at which
the simple Coulomb repulsion picture must break down: around 3.5 Fermi. While the earlier
Geiger-Marsden experiments involved high Z targets like gold, the H target was at the op-
posite extreme. 5 MeV was adequate to overcome the repulsive α − H Coulomb barrier and
provide (in retrospect) the first experimental observation of the strong nuclear force. However,
it was not initially interpreted as such (the deviations were initially attributed to the possible
non-point-like nature of the alpha particle) and it took more than a decade and a half to begin
understanding the nature of the strong nuclear force. However, Rutherford’s discovery of the
proton paved the way for the identification of the first constituent of the atomic nucleus, the
proton.

• The neutron was discovered by Chadwick at the Cavendish lab in 1932 by bombarding Beryl-
lium with α particles from a radioactive source via the reaction α4

2 + Be9
4 → C12

6 + n . While
the alpha particle, nucleus and proton had been discovered essentially by chance, the existence
of the neutron as a constituent of the nucleus had long been suspected.

• Electromagnetism was still the only force known and it was impossible to explain the stability
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of heavier nuclei if they consisted only of protons. The electron was the only other matter
particle known at the time and electrons emerged from the nucleus in beta decay. So it was
tempting to think that nuclei were made of protons and electrons. But there are many difficulties
with this. If electrons were bound to protons by the electrostatic Coulomb potential, then the
size of a nucleus could not be smaller than the Bohr radius, which is much larger than nuclear
dimensions of a few Fermi. If some other force confined an electron within a fermi, then the
uncertainty in its momentum would be at least of order ~/1fm which is about 197 MeV/c.
To confine an electron with such high (relativistic) momenta would require nuclear potentials
of comparable size, but experimental observations indicate nuclear potentials of a few MeV
at most. If we try to build the nucleus from protons and electrons alone, we also run into
trouble with measured nuclear angular momenta. N-14 nucleus is problematic (as pointed out
by Heitler and Herzberg in 1929) since it would have to contain 14 protons and 7 electrons based
on mass number and charge. The spin of 21 spin half particles cannot be an integer, yet the
measured spin of N-14 is one. Moreover, the measured mass numbers A of some nuclei were
twice or even more than the atomic number Z (nuclear charge). In the absence of electrons, the
nuclear mass could not come from protons alone. It was natural to conjecture (as Rutherford
did in his Bakerian lecture to the Royal Society in 1920) that the nucleus consisted of protons as
well as neutral neutrons33. Rutherford and his associates at the Cavendish desperately searched
for the neutron from 1920 onwards. The breakthrough came in 1932, the year in which both the
positron and neutron were discovered.

• The exposure of beryllium to alpha particles produced from Polonium radioactive decay
was found (by Bother and Becker (1930) and by the Joliot-Curies (1932)) to produce neutral
radiation of very high energy. It had to be of nuclear origin, rather than, say, from atomic
electron transitions. These experimenters thought these were gamma rays and, if so, they had to
have energy ∼ 50 MeV, based on the manner in which they reacted with matter. But Rutherford
and Chadwick did not believe the gamma ray hypothesis. Chadwick estimated the mass of the
neutral particles by studying the recoil of hydrogen and nitrogen gas exposed to the radiation.
He found a mass of order of the proton mass. Moreover, if it was gamma emission, then the
reaction would be α4

2 +Be9
4 → C13

6 +γ . From the mass defect, the resulting gamma rays could
have energies of at most 14 MeV. So the neutral radiation could not be gamma rays. Thus was
discovered the neutron, as a constituent of the nucleus. Chadwick got the 1935 Nobel prize for
the discovery of the neutron.

• One can infer the existence of neutrons from the missing momentum in proton nucleus col-
lisions. In cloud chamber/photographic emulsions, one sees the track of the incoming p and
of a recoiling nucleus, but there is missing momentum which is ascribed to an unseen neutral
particle.

• The discovery of the neutron paved the way to understanding the nucleus as a bound state of
protons and neutrons, as proposed by Heisenberg. It was also crucial for Fermi’s theory of beta
decay n→ p+ e− + ν̄e .

33Neutrons were initially hypothesized to be proton-electron bound states, though this idea was problematic
for similar reasons. The only known pe bound states, were the electromagnetically bound levels of the hydrogen
atom, which is much larger than the nucleus. The spin of Nitrogen is also inconsistent with the neutron being an
ep bound state with integer spin.
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• Confining a neutron in a nucleus of linear dimension 1 fm corresponds to a momentum
uncertainty of order ∆p ≈ ~/1fm . Putting (∆p)2 = 〈p2〉 − 〈p〉2 and taking 〈p〉 = 0 , this
corresponds to a non-relativistic kinetic energy 〈 p2

2mn
〉 ≈ ~2

2·1GeV/c2 ≈ 20 MeV. This energy is
significantly less than the rest energy of neutrons and comparable to nuclear potential energies.
So nucleons in a nucleus can be treated within non-relativistic quantum mechanics.

• On the experimental side, neutron scattering became a key technique for studying the structure
of bulk matter (neutrons being neutral penetrate further than charged particles through solids and
liquids). Fermi in Rome and others (including the Hahn group in Berlin, Rutherford’s group in
Cambridge and Jolio-Curie in Paris) reasoned that neutrons being neutral could penetrate nuclei
better than alpha particles (which were the projectiles of choice till then) and led to the synthesis
of new radioactive isotopes. In most cases the nucleus absorbed the neutron to form an unstable
isotope which then suffered beta decay. There was one case which Fermi and collaborators
did not understand properly: neutron scattering off Uranium where there seemed to be several
radioactive products. Their experiments were stopped due to fascist political developments pre-
ceding WWII: he went to Stockholm for the Nobel prize and then sailed to the US. Meanwhile
(in 1938) the master chemist Otto Hahn working with Fritz Strassmann in Berlin discovered
nuclear fission (breakup of Uranium92 into two nuclei of roughly half the size, Barium56 and
Krypton36 (Technitium43 and Lanthanum57 etc were also produced in some fission reactions))
by slow neutron scattering off Uranium. Conventional wisdom was that scattering neutrons off
Uranium would produce neighbors or isotopes of Uranium, but not an element roughly half its
size. This was further investigated and explained in Stockholm by Lise Meitner and her nephew
Otto Frisch (Meitner was Hahn’s collaborator but had to leave Germany in 1938) who showed
that a lot of energy was released. Slow neutrons were used by Fermi, L. Szilard and H. An-
derson to produce the first nuclear chain reaction, working first at Columbia Univ and then in
Chicago.

6.2 Strong force and nuclear spectra

• By scattering fast neutrons off nuclei, nuclear radii could be measured. Fast neutrons have a
de Broglie wave length much smaller than nuclear dimensions and classical hard sphere scatter-
ing approximation applies. One finds that lead and uranium have 10 fm radii, while it is about 6
fm for nuclei in the middle of the periodic table and decreases further to about a fermi for light
nuclei.

• Protons and neutrons are held together in atomic nuclei by the strong nuclear force which
outweighs the electric repulsion between protons. Potentials34 used to model nucleon scattering
show that the force has a finite range of about 2-3 fm and is attractive for inter-nucleon sepa-
ration above about .7 fm corresponding roughly to a Yukawa potential −ge−r/λ/r . At smaller
separations, it is repulsive (see Fig 2 on p.47 of Gottfried and Weisskopf). At separations of a
Fermi, the strong force between protons is about 10 times their electrostatic repulsion. G & W
use this to get a crude estimate of nuclear excitation energies and nuclear dimensions. If the

34Potentials can only be approximate since the inter-nucleon force also depends on the spin and isospin states of
the nucleons, it is not simply a central force.
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attractive part of the nuclear potential is approximated by a Coulomb potential, then the nuclear
analogue of the fine stricture constant is about αN ∼ 1/10 . It follows that the nuclear Rydberg
RyN = 1

2
mNα

2
N ∼ 938/200 ∼ 5 MeV and the nuclear Bohr radius aN = 1

mNαN
∼ 10

938
MeV−1

∼ 2 fm. Thus one expects nuclear excitation energies to be a few MeV and nuclear dimensions
to be a few fm, as is observed.

• As already discussed, the motion of nucleons in a nucleus may be treated within non-relativistic
QM to good approximation: binding energies of a few MeV are small compared to rest energies
of constituents (938 MeV) while de Broglie wavelengths are comparable to nuclear dimensions.
Like atoms, nuclei have a spectrum of discrete excited states. In an atom the electrostatic po-
tential due to the nucleus, along with Pauli’s exclusion principle gives a first approximation to
energy levels and wave functions; inter-electron repulsion introduces important corrections to
the independent electron approximation. In the absence of a large central potential in a nucleus,
many-body effects are more pronounced in nuclear structure, making it more challenging to de-
termine theoretically. Nevertheless on account of rotation invariance, nuclear levels (like atomic
levels) may be labelled by an angular momentum quantum number J , which is an integer or
half-odd-integer, according as the baryon number (= mass number A) is even or odd.

• Nuclei with large numbers of protons (Z � 1) tend to have more neutrons than protons
(A > 2Z ) to counter inter-proton electric repulsion; U-238 has only 92 protons and is quite
stable (alpha decay with half life of 4.5 billion years). If an isotope has too few neutrons, then
it is susceptible to alpha decay (e.g. Radon-222). In general, α decay increases the neutron
fraction since the alpha particle has only 50% neutrons whereas the parent nucleus typically
has A/Z > 50% . A few nuclei are fissile (U-235, U-233 and Plutonium-239), susceptible to
fission induced by a slow neutron to daughter nuclei of roughly half the size. These are used as
fuel in nuclear reactors and in fission bombs. Th-232 is not fissile but available in beach sands
in India. However, Th-232 can be converted into fissile U-233 by bombarding with thermal
neutrons, followed by a couple of beta decays. Fission of U-233 produces energy as well as
neutrons which can be used to convert some more Th-232 into fissile U-233. So Th-232 can
play a useful role in the nuclear fuel cycle.

• On the other hand, if a nucleus has too many neutrons, then it is susceptible to beta decay
converting a neutron to a proton. E.g. the stable isotopes with Z = 1 are hydrogen H1

1 and
deuterium H2

1 while tritium H3
1 undergoes beta decay.

6.3 Yukawa’s π mesons

• Yukawa originally proposed the charged pions π± to mediate the strong force between proton
and neutron, which would involve a charge exchange p ↔ π+n, n ↔ pπ− . Of course, it was
natural to postulate a third neutral pion to mediate the strong force between a pair of protons
or a pair of neutrons. In fact, Kemmer showed later that there had to be a third neutral pion
by extending heisenberg’s isospin symmetry to pions postulating that they were in an isospin
triplet representation of SU(2) .

• Yukawa thought that charged pions would decay via π− → e−ν̄e and this could be used to
explain neutron beta decay via the dissociation of a neutron n→ pπ− followed by π− → e−ν̄e .
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But this is not correct, neutron beta decay is a single three body decay n → peν̄ and charged
pions predominantly decay to muons π− → µ−ν̄µ . The µ− subsequently decays to an electron
and two neutrinos µ− → e−ν̄eνµ .

• The production of pions in the upper atmosphere due to collisions of cosmic ray protons with
nucleons proceeds through reactions such as

p+ p→ n+ π+ + p and p+ n→ n+ π+ + n. (118)

With more energy more pions can be produced, including π0 s. But the pions can be cap-
tured/absorbed by a nucleus. And charged pions decay with a mean life of 10−8 s. For these
reasons, pions do not easily reach the Earth’s surface, and had to be found using high alti-
tude/balloon borne experiments (Powell et. al. using photographic plates). This explains why
the muon was discovered before the pion and mistaken for it.

6.4 Static Yukawa potential from massive Klein-Gordon field equation

• A scalar particle like the pion is associated to a scalar field, it transforms as a scalar under the
Poincare group. Ignoring self-interactions, the simplest scalar field is the Klein-Gordon field,
one that satisfies the KG equation

(
�+ m2c2

~2

)
φ(r, t) = 0 where � = 1

c2
∂2
t − ~2∇2 is the

d’Alembertian. The pion field was introduced to explain the strong force between nucleons.
Yukawa argued that it must be massive since the force is short-ranged. Recall that the electric
field encodes the force between static electric charges. The Coulomb potential arises as a partic-
ular static solution of Maxwell’s equations (Gauss’ Law) of electromagnetism in the presence
of a point electric charge.

• So we seek a static solution of the KG equation in the presence of a source (say a neutron). In
the presence of sources, there is an inhomogeneous term on the RHS of KG equation. For sim-
plicity, consider an attractive point source of strength g0 , and let us look for a time-independent
solution (

−∇2 +
m2c2

~2

)
φ = −g0δ

3(r). (119)

This may be done by going to momentum space

φ(r) =

∫
φ̃(k)eik·r[dk] and δ3(r) =

∫
eik·r[dk] where [dk] =

d3k

(2π)3
. (120)

The equation becomes (in natural units)

(k2 +m2)φ̃(k) = −g0 or φ̃ = − g0

k2 +m2
⇒ φ(r) = −g0

∫
eik·r

k2 +m2
[dk] = −g0

e−mr

4πr
.

(121)
Thus the scalar field in the presence of a source is given by the Fourier transform of a 3d
Lorentzian. The Fourier transform may be evaluated using contour integration to obtain the
screened Coulomb or Yukawa potential (see problem set 7).
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• The general solution of (−∇2 + m2c2

~2 )φ = −g0 δ
3(r) is the sum of a particular solution and

the general solution of the homogeneous equation −∇2φ = −m2φ , which is the same as the
non-relativistic Schrödinger eigenvalue problem for a free particle with negative energy. So the
general solution to the homogeneous equation is φ(r) =

∑
~κA~κe

~κ·x where ~κ is any vector with
~κ2 = m2 . However, these solutions all blow up at large spatial distances, so we do not add them
to the particular solution obtained by Fourier analysis.

• As an alternative to Fourier analysis, one may solve the differential equation in position space
by looking for a spherically symmetric φ , which must satisfy

(−∇2 +m2)φ = −1

r
(rφ)′′ +m2φ = −g0δ

3(r) (122)

For r > 0 we have (rφ)′′ = m2rφ whose linearly independent solutions are rφ = e±mr . Keep-
ing the decaying solution, φ = A e−mr

r
. The proportionality constant A is fixed by examining

the behavior near r = 0 , where φ → A/r . Recalling ∇2(1/r) = −4πδ3(r) and ignoring the
sub-leading divergence of m2φ at the origin, we get φ = −g0

e−mr

4πr
.

• The quantity (k2 +m2)−1 , which is the inverse of the operator (−∇2 +m2) is an example of
a propagator, it propagates the influence of the source at the origin −g0δ

3(r) to determine the
value of of the pion field at r , φ(r) . More generally, in a non-static situation, the propagator for
a massive scalar (spin zero) field is (�+m2)−1 or (−p2 +m2)−1 in momentum space, where
p2 = E2 − p2 is the square of the 4-momentum pµ = i∂µ . The propagator is the contribution
of the exchange of a virtual scalar particle to the amplitude for a scattering or decay process.
The intermediary need not be on mass shell, so p2 6= m2 in general. Rather, one must integrate
over all possible values of pµ consistent with momentum conservation to find the amplitude.

6.5 Isospin

• The proton and neutron masses are the same to about one part in a thousand (mn = 939.565 ,
mp = 938.272 MeV). Even with the accuracy available in 1932, Heisenberg suggested that
they are nearly degenerate energy states of the same system, the nucleon. Moreover, weak
interactions (like beta decay) transform nucleons into each other though the emission of other
particles, just as happens between two levels of an atom in a radiative transition. Nucleons also
feel essentially the same strong forces, which are (electric) charge-independent. In general,
degeneracies in spectra are indicative of a symmetry (recall that degeneracy with respect to
magnetic quantum number Enlm = Enlm′ in the hydrogen atom is due to rotation invariance).
All this can be explained by postulating that the strong interactions possess a new internal
isospin symmetry. Isospin (‘iso’ means ‘like’) was somewhat misleadingly named isotopic spin
(by E P Wigner); it does not have much to do with isotopes. The more accurate term isobaric
spin is sometimes used. Mass differences between the nucleons are attributed to electromagnetic
corrections to strong forces.

• In so far as the isospin degree of freedom is concerned, the nucleon is modeled as a 2-
state system with Hilbert space C2 spanned by |p〉 = (1, 0)t and |n〉 = (0, 1)t . Hermitian

observables can be expressed as linear combinations of the Pauli matrices τ1 =

(
0 1
1 0

)
, τ2 =
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(
0 −i
i 0

)
, τ3 =

(
1 0
0 1

)
and the identity. Including the ordinary spin-half of nucleons, the

wave function must lie in the tensor product C2
isospin ⊗ C2

spin with the isospin/spin observables
acting on the first/second factors. If we included translational degrees of freedom there would
be a third tensor factor L2(R3) in the Hilbert space.

• By analogy with spin angular momentum ~S , isospin is defined as a vector observable ~I .
~I = (I1, I2, I3) are the components of the isospin vector observable in a 3d ‘internal’ isospin
space R3

iso , whose analogue in the case of spin (or angular mom) is ordinary 3d xyz -coordinate
space. While angular momentum ~J generates rotations in ordinary xyz Euclidean space, ~I
generates rotations in the internal R3

iso . The components of isospin are postulated to satisfy
the SU(2) Lie algebra [Iα, Iβ] = iεαβγIγ . Now this Lie algebra possesses irreducible unitary
representations of dimension 1, 2, 3, · · · . The nucleon doublet carries the 2d irreducible rep-
resentation of isospin (denoted 2) where Iα are represented by 2 × 2 hermitian matrices. In
the neutron-proton basis for C2 , I = 1

2
(τ1, τ2, τ3) . This representation is also called the funda-

mental or defining representation of SU(2) Lie algebra. The proton and neutron are the isospin
I3 = ±1

2
states (up and down relative to the 3rd direction of the internal R3

iso ).

• Under a finite rotation by angle |~θ| about the axis ~θ in isospin space, the nucleon doublet
transforms as

N → UN where U = exp

(
−1

2
i~τ · ~θ

)
=
[
cos(θ/2)− i~τ · θ̂ sin(θ/2)

]
∈ SU(2). (123)

For example, under a rotation about the second axis [n̂ = (0, 1, 0)],

N =

(
p
n

)
→
(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
p
n

)
. (124)

Under an infinitesimal isospin transformation, the nucleon doublet N → N + δN where
δN = −1

2
i~θ · ~τN . Here ~θ = (θ1, θ2, θ3) are infinitesimal real parameters of the transformation

specifying the axis and angle of rotation in isospin space.

• Isospin symmetry is the approximate (in retrospect because u and d are not exactly equal
in masses) invariance of the strong interactions under rotations in isospin space R3

iso . This is
the analogue of invariance under rotations in ordinary Euclidean space R3

xyz . For example, a

rotation by π about the 2nd direction in isospin space U =

(
0 −1
1 0

)
would take U |p〉 = |n〉

and U |n〉 = −|p〉 in effect reversing the sign of I3 . While the strong interactions are nearly
unchanged by this transformation, the proton and neutron have very different EM interactions
due to their different electric charges and magnetic moments. Thus, the EM interactions pick
out a specific direction in isospin space, the third direction. Now we may define the charge

operator, which in the |p〉, |n〉 basis for C2 is just Q =

(
1 0
0 0

)
. Like other observables acting

on the nucleon Hilbert space, it must be a real linear combination of the Pauli matrices and
the identity. We find Q = 1

2
(τ3 + I) = I3 + 1

2
. So Q does not commute with I1 and I2 .

In particular, electric charge is not invariant under rotations in isospin space: EM interactions
violate isospin conservation.

100



• If we use electromagnetic probes to observe particles of definite electric charge, we do not
see states like |p〉 + |n〉 , though they too are elements of the Hilbert space. Turning on EM is
like breaking rotation invariance by switching on a magnetic field B = Bz ẑ in the z -direction
of xyz -space. The magnetic field breaks the degeneracy in energy (Zeeman splitting) among
the 2Jz + 1 states that differ in their projections of J on ẑ .

• The isospin raising and lowering operators I± = I1 ± iI2 are defined by analogy with those
for angular momentum and allow us to construct representations of the isospin SU(2) algebra.
As with ordinary spin, we have (2I + 1)-dimensional irreducible representations where the
Casimir I2 = I2

1 + I2
2 + I2

3 takes the values I(I + 1) for each I = 0, 1
2
, 1, 3/2, 2, . . . etc. I = 0

is the one dimensional trivial representation where Iα are all represented by the zero matrix.
The corresponding group elements are all represented by the identity matrix.

• Looking at masses of strongly interacting particles, one notices that they come in multiplets
of particles of nearly equal mass and the same spin and parity, but different electric charge and
strangeness. This is due to isospin symmetry, the states of a multiplet differ in their isospin
projections I3 , and are related by the action of I± . The nucleons as well as u, d form I = 1

2

doublets. Pions π±(139.6) MeV, π0(135) MeV form an I = 1 triplet as do their orbital
excitations ρ±, ρ0 . (K+, K0) and (K̄0, K−) are isospin doublets. The spin 3/2 baryons (and
anti-baryons) provide several examples of isospin multiplets. The Ω− is an isospin singlet.
Ξ−,Ξ0 are an isospin doublet while Σ−,Σ0,Σ+ form an I = 1 triplet. The ∆’s transform in a
4-dimensional I = 3/2 representation. The microscopic origin of isospin symmetry lies in the
nearly degenerate masses of the up and down quark, which form an I = 1

2
doublet. The other

quarks s, c, t, b and leptons are all isospin singlets. Since the strange and charm quarks have
rather different masses, a transformation (like the isospin transformations that relate u and d)
that relates them would not be a symmetry of the strong interactions, so it is not useful.

• The empirical formula Q = I3+Y/2 relates isospin to electric charge where Y = B+S+C+
B̃ + T is the hypercharge. B is baryon number, S,C, B̃, T are the strangeness, charm beauty
and topness quantum numbers respectively that count the number of s̄, c, b̄, t (anti-)quarks. This
formula can be explained using the quark model.

• E.g., the triplet of pions π1, π2, π3 carry the 3d adjoint representation 3 of isospin, where
the matrix elements of the isospin operators are the structure constants themselves: (Iα)βγ =
−iεαβγ . Check that these matrices furnish a representation (the ‘adjoint’ rep.) of the SU(2) Lie
algebra [Iα, Iβ] = iεαβγIγ .

I1 = i

0 0 0
0 0 −1
0 1 0

 , I2 = i

 0 0 1
0 0 0
−1 0 0

 , I3 = i

0 −1 0
1 0 0
0 0 0

 . (125)

If we denote the components of the pion triplet in this basis as π = (π1, π2, π3)t , then the
representation is (Iαπ)β = (Iα)βγπγ = −iεαβγπγ . In order to relate these πα to the physical
pions of definite electric charge we must find the eigenstates of Q = I3 . I3 is not diagonal
in the span(|π1〉, |π2〉) sub-space in this basis. So |π1〉, |π2〉 are not the physical pions. The
observed pions are π± = (π1 ± iπ2)/

√
2 and π0 = π3 . Check that I3|π±〉 = ±|π±〉 and

I3|π0〉 = |π0〉 .
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• As for the nucleon doublet, under an infinitesimal isospin transformation, π → π+ δπ where
δπ = −iθαIαπ or in components,

(δπ)β = −iθα(Iα)βγπγ = −iθα(−iεαβγ)πγ = εβαγθαπγ. (126)

So δ~π = ~θ × ~π is the change in the vector ~π under an infinitesimal c.c. rotation by |~θ| about
the ~θ axis.

• Another interesting isospin multiplet consists of the anti-nucleons (n̄, p̄) with I3 = (1
2
,−1

2
) .

The vector space spanned by the anti-nucleons carries the conjugate of the doublet representa-
tion, denoted 2̄ or 2∗ . For SU(2) it turns out that 2 and 2̄ are equivalent representations. In
other words, by a suitable choice of basis for the anti-nucleon Hilbert space, the anti-nucleon
doublet transforms in the same way as the nucleon doublet. To see this, recall that under a
rotation about the second axis, the nucleon doublet transforms as N → N ′ = U(θ)N or
p′ = cp− sn and n′ = sp+ cn , where c = cos θ/2, s = sin θ/2 . Applying charge conjugation
Cp = p̄, Cn = n̄ we get

n̄′ = cn̄+ sp̄, and p̄′ = −sn̄+ cp̄. (127)

So when (p, n)transforms via U(ŷ, θ) , (n̄, p̄) transforms via U(ŷ,−θ) . However, if we reverse
the sign of p̄ and define the anti-nucleon doublet as N̄ = (n̄,−p̄)t , then N̄ transforms in the
same way as N :

n̄′ = cn̄− s(−p̄), and − p̄′ = sn̄+ c(−p̄) (128)

More generally, check that N̄ = (n̄,−p̄)t transforms via U = exp(−1
2
i~θ·~τ) , just as N = (p, n)t

does. This shows that the fundamental/defining 2 representation of SU(2), and the conjugate
representation 2̄ are equivalent. This also explains why the isospin-1 triplet of pions is written
π+ = ud̄, π0 = 1√

2
(dd̄ − uū), π− = dū in terms of the quark doublet (u, d)t and anti-quark

doublet (d̄,−ū)t . There is also an isospin singlet pseudoscalar meson which may be written as
η = 1√

2
(uū + dd̄) and another isosinglet pseudoscalar meson η′ = ss̄ . The pions kaons and

η , η′ comprise the pseudoscalar meson nonet. All these have zero orbital angular momentum.
The corresponding excited states (particles) with orbital angular momentum one are the nonet
of vector mesons, (ρω, ρ0, K∗, φ, ω ).

• In general, if D(g) are the matrices representing a group G with elements g . Then the
matrices D(g)∗ also provide a representation of the group. It is called the complex conjugate
representation. In the case of the fundamental representation of SU(2), D(θ) = e−iθ·τ/2 , so
D(θ)∗ = eiθ·τ

∗/2 . Now check that −τ ∗a satisfy the same commutation relations as τa : [τa, τb] =
2iεabcτc . So while ~τ furnish the fundamental 2 representation of su(2) Lie algebra, −~τ ∗ furnish
the 2∗ representation. Find a unitary equivalence between the two.

• The rules for addition of angular momenta also apply to isospins. E.g., the total isospin
observable for a system with B nucleons is defined as the sum of the isospin operators for
each I = I(1) + . . . + I(1) . Isospin multiplets higher than 3/2 do not appear in the spectrum
of hadrons, presumably because mesons made of up and down quarks and anti-quarks must
belong to 1

2
⊗ 1

2
= 0 ⊕ 1 and baryons/anti-baryons have three up or down quarks/anti-quarks

must belong to 1
2
⊗ 1

2
⊗ 1

2
= 1

2
⊕ 1

2
⊕ 3

2
. Of course, there are mesons with a strange quark or
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anti-quark and only one up or down quark or anti-quark, such as kaons, they must live in an
I = 1

2
multiplet coming from 1

2
⊕ 0 = 1

2
. Similarly there are baryons with strangeness (or

charm) equal to ±1 which could belong to 1
2
⊗ 1

2
⊗ 0 = 1 ⊕ 0 (e.g. the S = −1 isotriplet

Σ±,Σ0 ) or S = ±2 which would belong to 1
2
⊗ 0⊗ 0 = 1

2
, like the Ξ−,Ξ0 .

• However, there are nuclei with baryon number B > 1 with isospin more than 3/2 . All
nuclear states of a given I multiplet are approximately degenerate in energy.

• When electromagnetic and weak interactions can be ignored, the proton and neutron are
no longer distinguishable particles but rather like two spin states of an electron. Fermi statis-
tics now implies that the state vector of a multi-nucleon state must be anti-symmetric under
exchange of any two nucleons. For example, this helps to constrain the possible states of two-
nucleon systems.

6.6 Two nucleon states

• Consider a two nucleon system (in a bound or scattering state). The states of definite total
isospin I and I3 consist of a triplet of I = 1 states that we may denote pp, 1√

2
(pn + np), nn

with I3 = 1, 0,−1 and an I = 0, I3 = 0 iso-singlet 1√
2
(pn − np) . The triplet states are

symmetric under exchange while the singlet is anti-symmetric. It is generally the case that all
members of an irreducible isospin multiplet of a multi-nucleon system behave in the same way
under exchange of any pair of nucleons, since I± =

∑
j I

(j)
± which transform members of the

multiplet into one another are symmetric under exchange. As with ordinary angular momentum,
the states of the triplet transform as a vector under rotations in isospin space while the singlet is
invariant.

• Now, the near equality of proton and neutron masses and their strong interactions may be
interpreted as a symmetry of the strong nuclear hamiltonian H under exchange of neutron and
proton. However, this does not require invariance of H under arbitrary rotations in isospin
space. Indeed, a term in H such as CI2

3 has the same value (C/4) for the proton and neutron,
but it is only invariant under rotations about the 3rd axis of isospin space. So do we really need
the nuclear hamiltonian to be isospin invariant?

• Gottfried and Weisskopf use experimental facts about two nucleon states to argue that nature
has chosen invariance under all rotations in isospin space as the realization of the equivalence
of n and p . For the 2 nucleon system, the term CI2

3 has the same value C for |pp〉 and |nn〉
but vanishes for pn, np, pn + np and pn − np . This means that the states of the I = 1 triplet
are not degenerate in energy if C 6= 0 . However, it is found that the energy of a 2 nucleon state
depends only on whether the state belongs to an iso-triplet or is an iso-singlet (i.e., on the value
of I ) and not on the value of I3 or on whether the state contains two ‘like’ nucleons or ‘unlike’
nucleons. Using such data, we infer that the nuclear hamiltonian can depend on I but not on
the magnitude of the projection of ~I on any particular axis, i.e., is invariant under rotations in
isospin space.

• The difference in energies of triplet and singlet states can be attributed to a term in the hamil-
tonian such as H ′ = I1 · I2 . Being a scalar product H ′ is invariant under rotations in isospin
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space. In fact, H ′ = 1
2
(I2 − I2

1 − I2
2) = 1

2
(I(I + 1) − 3/2) . So H ′ takes the values −3/4 and

1/4 for the singlet and triplet and can explain the singlet-triplet energy splitting.

6.7 The Deuteron

• The deuteron is the nucleus of deuterium, the second isotope of Hydrogen. It was discov-
ered and isolated by H Urey (along with Brickwedde and Murphy) in 1931 (Nobel prize in
Chemistry, 1934). The initial discovery was through the observation of very weak ‘satellite’
atomic spectral lines in addition to the usual spectral lines from a sample of hydrogen that also
contained deuterium (about 1 part in 10000 in naturally occurring samples). The mass of the nu-
cleus mN affects the wavelengths of atomic transitions through the reduced mass m = memN

me+mN

that enters the Bohr energy spectrum −1
2
mc2α2/n2 .

• The deuteron is a proton neutron bound state. The deuteron is to nuclear physics what the
hydrogen atom is to atomic physics, both are two-body systems to first approximation. The
deuteron is a rich source of information on inter-nucleon forces. But it is not as simple as the
hydrogen atom since the inter-nucleon force (even in a non-relativistic approximation) unlike
the electrostatic Coulomb force is non-central (a.k.a. ‘tensor force’), it depends on the orien-
tation of their spins (via ~S1 · ~r and ~S2 · ~r ), as well as on separation r . The deuteron ground
state is not quite spherically symmetric (slightly cigar shaped) unlike the spherically symmetric
ground state of hydrogen. Nevertheless, like the 1S state of hydrogen, the deuteron has zero
electric dipole moment due to cancellations. What is more, nucleons and pions in a nucleus
are not elementary particles like electrons, nuclei and photons in an atom. In particular the 1
Fermi size of nucleons is comparable to the size of the deuteron while the sizes of the electron
(point-like) and nucleus (fm) are much smaller than the angstrom size of an atom. So despite
its apparent simplicity, the deuteron is a somewhat complicated system when viewed in terms
of quarks and gluons. Nevertheless, a good deal about the inter-nucleon strong nuclear force
can be learned from a study of the deuteron. We confine ourselves to a very brief introduction
largely ignoring the non-central nature of the inter-nucleon force.

• There are other two body bound states in classical (e.g. Kepler problem) and quantum physics.
An electron-positron bound state is called positronium, its bound state spectrum is given by the
Bohr formula for Hydrogen with the reduced mass given by half the electron mass. Positro-
nium is short-lived due to e+e− annihilation. Electron-electron bound states (Cooper pairs)
occur in BCS superconductors. Here the attractive force is very weak and long ranged, due to
phonons (ionic lattice vibrations) in the material, so the electrons in a Cooper pair can be several
nanometers apart. Since the attractive force is very weak (milli eV), the temperature must be
sufficiently low for thermal fluctuations not to break up the pair, hence Tc is low. Moreover, the
electrons in a Cooper pair can either be in an S = 0 (anti-symmetric singlet) state or an S = 1
(symmetric triplet) state since 1

2
⊗ 1

2
= 0 ⊕ 1 . Most of the traditionally studied low-Tc super-

conducting materials are well modelled by S = 0 Cooper pairs. The pair as a whole is a boson
and many pairs can Bose condense. However, Fermi statistics applies to the electrons making
up the pair. An anti-symmetric S = 0 spin state for the pair must go with a symmetric spatial
wave function, i.e. an l = 0 S -wave. So we say that traditional superconductors involve S -
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wave Cooper pairs. There are some superconductors where the spin state of the Cooper pair is a
member of the symmetric S = 1 triplet, whose spatial wave function must be anti-symmetric.
The simplest such possibility is an l = 1 P -wave spatial orbital, which is anti-symmetric under
exchange ((−1)l=1 = −1). The latter are called P -wave superconductors.

• The deuteron is the ground state of the two nucleon system, with binding energy 2.2 MeV,
which is small enough compared to nucleon rest energies to permit a non-relativistic quantum
mechanical treatment. On the other hand, the binding energy is large enough to make beta
decay of the neutron into a proton energetically disallowed (more on this when we discuss beta
decay). Free neutrons in the early universe decayed to protons; neutrons that are left over today
are those that were ‘saved’ by being bound inside deuterons (and to a lesser extent inside other
light nuclei)!

• Since nucleons have spin half and isospin half, the deuteron must have spin either zero or
one and isospin either zero or one from 1

2
⊗ 1

2
= 0 ⊕ 1 . The deuteron is experimentally found

to have a non-zero magnetic dipole moment (µd = 0.857µB where µB = e~/2mpc is the
nuclear ‘Bohr’ magneton and mp is the nucleon mass). This is not possible if the deuteron is
spin-less, since the magnetic moment would not have a preferred direction to point in. So the
deuteron has spin S = 1 and must be symmetric under exchange of spins of the two nucleons.
What is more, though the deuteron has zero electric dipole moment, it has a non-zero electric
quadrupole moment. A non-zero electric quadrupole moment is disallowed for spin zero and
spin half particles, so this too is consistent with deuteron spin being one rather than zero. A
further piece of experimental data is that the deuteron has even parity.

• To obey Fermi-Dirac statistics (nucleons have spin half), the wave function must be anti-
symmetric under exchange of position and isospin of the two nucleons, since it is symmetric
under exchange of spins. Since nucleons have isospin half, the deuteron can have isospin I = 0
or 1 . In most systems with central potentials (e.g. hydrogen atom), the minimum energy state
is one with zero orbital angular momentum, i.e., the symmetric S-wave state. If we ignore
the non-central forces between nucleons (of the form (~S1 · r)(~S2 · r)/r2 ) and work with the
central Yukawa potential between nucleons, then we expect the deuteron ground state to be an
l = 0 S-wave state which is symmetric under exchange. (When one includes non-central spin
dependent forces, the g.s. of the deuteron is found to include a small (few percent) l = 2 D-
wave ad-mixture. Note that even-l is needed for the even parity (−1)l of the deuteron.) The
Pauli principle then implies the deuteron wavefunction must be anti-symmetric under exchange
of isospins, i.e. it must be in an iso-singlet I = 0 state.

• Note that a two nucleon bound state with I = 1 would be an nn or pp or pn+np isospin state,
all of which should have the same energy since isospin rotations are a symmetry of the strong
forces (energy should not depend on the projection I3 ). However, no pp or nn bound state has
been observed. This is interpreted as implying that while pion exchange between nucleons in the
I = 0 channel provides a sufficiently strong attractive force to produce a deuteron bound state,
the force in the I = 1 channel is not adequate to produce bound states. However, scattering
states with I = 1 do exist.

• On the other hand, the attractive nuclear force in the I = 0 channel is too short-ranged (∼ 2
fm) to support any excited bound states of a proton and neutron with higher orbital angular
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momentum. So the deuteron is rather weakly bound and lucky to exist. Indeed, the helium
nucleus is much more tightly bound with a binding energy of about 28.3 MeV. However, nuclei
with baryon number more than two do possess rotational excitations.

• To estimate the spatial dependence of the deuteron wave function, we could work in the
approximation where non-central forces are ignored, then we simply have to solve the non-
relativistic Schrodinger eigenvalue problem in a Yukawa potential −ge−µr/r and find the spher-
ically symmetric g.s. wave function ψ(r) . Since it is a short ranged potential, the wave function
should vanish exponentially fast for large r . For small r the Yukawa potential is the same as
the Coulomb potential so we expect the g.s. wave function to approach a non-zero constant
at r = 0 , as for the hydrogen atom where ψ1S(r) ∝ e−r/2a0 . Though an analytical gs wave
function for the Yukawa potential is not available, excellent approximate solutions are possible,
though we do not discuss them here.

• As another application of isospin conservation in the strong interactions, consider the pro-
duction of deuterons in nucleon-nucleon scattering. There are three strong interaction processes
resulting in a deuteron and pion (to conserve charge) in the final state (a) pp → dπ+ and (b)
pn → dπ0 and (c) nn → dπ− . The first two happen when protons are fired at a hydrogen
or other nuclear target while the third requires a neutron beam. In all cases, the final state has
I = 1 , due to the pion. Since isospin is conserved in strong interactions, the reactions can only
proceed via the I = 1 channel even if the initial state has both I = 1 and I = 0 components
present. In the pp and nn reactions (a) and (c) , the initial state is necessarily one with I = 1
and the two are simply related by a rotation in isospin space (i.e. application of I− twice). So
we should expect their cross sections to be equal (as is found experimentally). In collision (b)
the tensor product initial state |p〉|n〉 = (|I = 1, I3 = 0〉+ |I = 0, I3 = 0〉)/

√
2 could be either

in an I = 0, I3 = 0 (pn−np)/
√

2 state or in an I = 1, I3 = 0 , (pn+np)/
√

2 state with equal
probability. But the reaction proceeds exclusively through the I = 1 channel. Thus we expect
σpp : σpn : σnn = 2 : 1 : 2 as is experimentally observed. An analogous calculation is discussed
in more detail in the context of πN scattering in the next section.

• The three proton nucleus Li33 with all protons in S wave states does not exist. Such a state
would be symmetric under exchange of positions and isospins. But there are only two possible
spin projections for a proton and one cannot accommodate a third proton in the same orbital by
Pauli exclusion. Remarkably, analogous three quark states exist. ∆++ = uuu (and similarly
Ω− = sss) is made possible because the state of the three quarks is anti-symmetric in color but
symmetric in position, spin and isospin (flavor).

• α4
2(nnpp) is a 4 nucleon bound state with J = I = 0 and a large binding energy of 28.3

MeV. Nuclei with I = 0 are particularly tightly bound and stable, they are called magic nuclei.

6.8 Isospin symmetry applied to strong interactions of pions and nucleons

• A classic application of isospin invariance of the strong interactions concerns cross sections
for π -nucleon elastic scattering, which played an important role in the discovery and analysis
of the I = 3/2 multiplet of excited states of the nucleon (∆ resonances) in 1952 by Fermi
and collaborators at the 450 MeV Chicago synchrocyclotron. They measured cross sections
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for scattering of charged pions off a hydrogen target using pion beams of energy up to a few
100 MeV. At these energies, they expected three types of reactions for negative pions: elastic
scattering (π−p → π−p), charge exchange (π−p → π0n) and radiative capture (π−p → nγ )
but only elastic scattering for π+ , π+p → π+p . So they expected the cross sections to satisfy
σπ−p � σπ+p . However, they found the opposite! Let us analyze the reactions using isospin
invariance.

• Consider the 6 possible strong scattering processes between charged pions and nucleons
πN → πN , some are elastic while others involve charge exchange

(a) π+p→ π+p (b) π−n→ π−n (c) π−p→ π−p
(d) π−p→ π0n (e) π+n→ π+n (f) π+n→ π0p (129)

An expression such as π+p for the colliding particles means that π+ is the projectile and p is
the target. We regard this state as living in the tensor product Hilbert space C3 ⊗ C2 . In fact
|π+〉 ⊗ |p〉 is one of the 6 basis vectors in the uncoupled basis (labelled by I

(π)
3 , I

(N)
3 ) for this

Hilbert space. Since Iπ = 1 and IN = 1
2

, a pion nucleon system can have total I = 1
2

or I = 3
2

.
E.g., in (a) and (b) both LHS and RHS must have I = 3/2 since I3 = 3/2,−3/2 in these two
cases. On the other hand the other 4 combinations π−p, π0n, π+n, π0p are linear combinations
of I = 1

2
and I = 3/2 states, as determined by their Clebsch-Gordan coefficients, which relate

uncoupled basis states to coupled basis states |I, I3〉 .

|π+p〉 = |3
2
,
3

2
〉, |π+n〉 =

√
1

3
|3
2
,
1

2
〉+

√
2

3
|1
2
,
1

2
〉, |π0p〉 =

√
2

3
|3
2
,
1

2
〉 −

√
1

3
|1
2
,
1

2
〉,

|π0n〉 =

√
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3
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2
,−1

2
〉+

√
1

3
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2
,−1

2
〉, |π−p〉 =

√
1
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2
,−1

2
〉 −

√
2
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2
,−1

2
〉, |π−n〉 = |3

2
,−3

2
〉.

Since strong interactions are invariant under rotations in isospin space, they can only depend
on I , not I3 . So pion nucleon scattering is described by just two isospin amplitudes (or matrix
elements) A3/2 and A 1

2
. These amplitudes are not fixed by consideration of isospin invariance,

but depend on the detailed dynamics (space-time, isospin and spin dependence of hamiltonian).
We say that each reaction can proceed through either the I = 3/2 or I = 1/2 channel. More
precisely, the amplitude for a process i → f is the matrix element Mfi = 〈f |H|i〉 and the
cross section σ is proportional to |Mfi|2 . Here |i〉 and |f〉 are initial and final states such as
|π−p〉 and |π0n〉 etc., and the proportionality factor K is the same for all reactions (at the same
collision energy) ignoring mass differences within an isospin multiplet. The initial and final
states are uncoupled basis states, but based on isospin rotation invariance, we know somethings
about the matrix elements of the interaction hamiltonian between coupled basis states. So we
write the uncoupled basis states as linear combinations of I = 3/2 and I = 1

2
states. Due to

isospin conservation the strong interaction hamiltonian H has zero matrix elements between
states of different I . So the only two amplitudes that could be non-zero are

A 1
2

= 〈1
2
, ∗|H|1

2
, ∗〉 and A3/2 = 〈3/2, ∗ ∗ |H|3/2, ∗∗〉. (130)

where ∗, ∗∗ are any values of I3 (the amplitude cannot depend on them since [H, I±] = 0).
Now we may express the cross sections σa for the 6 reactions in terms of these two amplitudes.
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For example, the first two reactions π+p → π+p and π−n → π−n can only proceed via
the I = 3/2 channel, so σa = σb = K|A3/2|2 . For (c) π−p → π−p , (d) π−p → π0n (e)
π+n→ π+n and (f) π+n→ π0p we get

σc = K

∣∣∣∣13A3/2 +
2

3
A 1

2

∣∣∣∣2 , σd = K

∣∣∣∣∣
√

2

9
A3/2 −

√
2

9
A 1

2

∣∣∣∣∣
2

,

σe = K

∣∣∣∣13A3/2 +
2

3
A 1

2

∣∣∣∣2 , σf = K

∣∣∣∣∣
√

2

9
A3/2 −

√
2

9
A 1

2

∣∣∣∣∣
2

. (131)

In the 1952 Rochester conference, Fermi reported on measurements of cross sections of three
of these reactions at the 450 MeV Chicago synchrocyclotron

(1 = a) π+p→ π+p (2 = d) π−p→ π0n and (3 = c) π−p→ π−p. (132)

These are selected since it is easier to have a proton target (liquid hydrogen) than a neutron
target. They found that the cross sections were in the ratio σ1 : σ2 : σ3 ≈ 9 : 2 : 1 (the
measured cross sections in millibarns are 195 : 45 : 22). From our calculation (which was first
done by Heitler in 1946), we know that

σ1 : σ2 : σ3 = |A3/2|2 :
2

9
|A3/2 − A 1

2
|2 :

1

9
|A3/2 + 2A 1

2
|2. (133)

Fermi concluded that the scattering proceeded primarily through the I = 3/2 channel, i.e., that
A 1

2
≈ 0 .

• The cross section was measured from the attenuation of a pion beam while traversing a liquid
hydrogen target. There were several peaks in the cross section, with the first at an invariant mass
of 1232 MeV (see fig 3.8 in Perkins 4th ed. p.92) which was interpreted as the ∆ resonance.
The measured ratio of cross sections at the ∆ resonance was

σ1

σ2 + σ3

=
σ(π+p→ π+p)

σ(π−p→ π−p or π0n)
= 3. (134)

This too is consistent with the assumption that in the neighborhood of the resonance, scattering
proceeds through the I = 3/2 channel, since if we ignore A 1

2
, then σ1/(σ2 + σ3) = 3 .

• The πp scattering was analyzed using partial waves. At the low energies considered one
expects contributions primarily from s(l = 0) and p(l = 1) waves. If pions and nucleons
have spin zero and half, then there are three possibilities for the spectroscopic terms of the
πp state: lj : s 1

2
, p 1

2
, p3/2 and two possible isospin channels I = 1

2
, 3/2 . The phase shifts

were determined from the angular distribution35 and it was found that the phase shift in the
l = 1, J = 3/2, I = 3/2 channel changed by π around a pion beam kinetic energy of 200
MeV (or total energy 340 MeV) corresponding to the ‘3, 3′ (I = 3/2, J = 3/2) resonance ∆
with an invariant mass of 1236 MeV.

35Phase shift calculations we done with the aid of the MANIAC (Mathematical Analyzer Numerical Integrator
And Computer designed by von Neumann and built by N Metropolis) at Los Alamos by N Metropolis and E Fermi.
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6.9 Alpha decay

• Alpha decay N(A + 4, Z + 2) → N ′(A,Z) + α4
2 is the most common type of radioactive

decay of heavy unstable nuclei including naturally occurring U-238, Thorium-232 and Radon-
222. Decay half lives t 1

2
vary greatly from billions of years to a few micro seconds even

though the range of alpha particle kinetic energies is relatively narrow 5-10 MeV. Moreover
the t 1

2
increases rapidly with decreasing alpha particle kinetic energies. This is encoded in the

empirical Geiger-Nuttal rule/law proposed in 1911

log t1/2 =
aZ√
E

+ b or logW = − aZ√
E

+ c (135)

where W = Γ
~ = 1

τ
= log 2

t1/2
is the decay rate (equal to the exponential decay constant λ) and Γ

the energy width of the decay and τ the mean lifetime. a, b are approximately constant and Z
is the atomic number of the daughter nucleus.

• Gamow and independently Condon and Gurney proposed a model for alpha decay based on
quantum mechanical tunneling, and explained the Geiger-Nuttal law in 1928. First, the pro-
cess may be treated non-relativistically since the alpha particle k.e. of 5-10 MeV is much less
than its rest energy. The alpha particle is held inside the nucleus by the strong nuclear force,
which however is short ranged. Outside the nucleus the doubly charged alpha particle sees an
electrostatic Coulomb barrier due to the charged daughter nucleus. The nuclear potential is
complicated, but it is sufficient for our purposes to model it as a finite attractive square well.
Suppose r0 is the maximum distance between the daughter nucleus and the alpha particle over
which the nuclear force operates. Then the potential seen by the alpha particle is taken as
V (r) = −V0 for r ≤ r0 and V (r) = ZαZde

2/4πr for r > r0 . Here Zα = 2 and Zd is
the atomic number of daughter nucleus. The height of the barrier seen by the alpha particle
was known to be at least twice as high (& 20 MeV) as the typical k.e. E of an emitted alpha
particle. However, there is a non-zero probability that it may tunnel through the barrier. Let
r1 be the distance at which the alpha particle emerges after tunneling out. Then E = ZdZαe

2

4πr1
.

The classically forbidden region is r0 ≤ r ≤ r1 and the maximum height of the potential is
V (r0) = ZdZαe

2/4πr0 . Since the tunneling probability is small we use the semi-classical for-
mula obtained via the WKB approximation. A simple way of obtaining this formula is to recall
that the semi-classical approximation to the time-independent Schrodinger equation is given by
the time-independent Hamilton-Jacobi equation. It is obtained by putting ψ = eiW/~ and work-
ing to leading order in ~ . One obtains the time-independent HJ equation for Hamilton’s charac-
teristic function W (x) , E = H(x,W ′(x)) where p = W ′(x) . If H(q, p) = p2/2m+V (x) then
W ′(x)2/2m+V (x) = E . The solution is W (x) =

∫ x
x0

√
2m(E − V (x))dx . Now if we are in a

classically forbidden region E < V , the WKB amplitude becomes e−γ ≡ e
− 1

~
∫ x
x0

√
2m(V−E)dx .

The transmission probability for tunneling in 1d across a classically forbidden interval from r0

to r1 is therefore

e−2γ = exp

[
−2

~

∫ r1

r0

√
2m(V (r)− E)dr

]
. (136)

To find the decay probability per unit time or decay rate W , we must multiply this probability
with the number of times per unit time that the alpha particle arrives at r0 . If we suppose that
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the alpha particle is simply bouncing between the walls of the nucleus 2r0 apart with a speed
determined by 1

2
mv2 = E + V0 , then it arrived at r0 v/2r0 times per unit time. Thus

W = e−2γ

√
2
m

(E + V0)

2r0

. (137)

The integral for γ may be expanded for small r0/r1 in a Laurent series in
√
E . Show that

2γ = παZαZd

√
2mc2

E
− 4
√
αZαZd

√
2mc2r0

~c
+O(

√
E) =

2K1Zd√
E
− 2K2

√
Zdr0 (138)

Here K1 = 1.98 MeV1/2 and K2 = 1.485 fm−1/2 (see Griffiths, Intro to QM Ch. 8). It is
clear that logW behaves like 1/

√
E to leading order, plus a constant plus a term proportional

to logE coming from log(v/2r0) . In estimating logW we may take V0 = 0 , its value affects
the speed of the alpha particle inside the potential well but only has a sub-leading effect on the
energy dependence of logW . A numerical estimate for r0 may be obtained from the empirical
law of approximate constant density of nuclear matter, A/r3 = constant. The radius of a
nucleus of atomic mass A is r ≈ (1.07fm)A1/3 . Use this to estimate the constants in the
Geiger-Nuttal law for U-238.

6.10 Brief introduction to nuclear beta decay

• Nuclear beta decay was discovered by H. Becquerel (1896) long before the discovery of the
nucleus (1909-13) or the discovery of the neutron (1932). Though discovered by chance in the
context of natural radioactivity of uranic salts (at that time, the name ‘uranic salts’ was applied
to salts of several nearby elements in today’s periodic table, not just isotopes of uranium), beta
decay is the prime example of a weak interaction process and provides a window into the sub-
nuclear world of elementary particles. Its theoretical understanding contributed greatly to the
theory of weak interactions, parity violation and the electroweak standard model.

• In beta decay, a nucleus with mass number B and atomic number Z decays to a nucleus
with same mass number B and atomic number Z + 1 along with an increase in nuclear charge
by +e and the emission of two particles, an electron (β− particle) and an anti-neutrino. The
(anti)neutrino was not initially detected and current constraints suggest that its mass is less than
an eV/c2 . The basic reaction is the decay of a neutron inside the nucleus n → p+ + e− + ν̄ ,
so the number of protons and charge increase by one. E.g. Thorium(234,90) beta decays to
Protactinium(234,91) with a half life of 24 days. Carbon(14,6) decays to Nitrogen(14,7) +e−+
ν̄e with a half life of 5730 years.

• Free neutrons beta decay with a half-life of 10.5 minutes. The mass difference mn −mp −
me = .782 MeV manifests as kinetic energy of decay products. But neutron beta decay in a
nucleus may or may not happen depending on the nuclear binding energies. Typically, replacing
a neutron by a proton in a nucleus costs energy, since the proton is less strongly bound than a
neutron, due to electric repulsion by other protons. The binding energy of a neutron in a nucleus
is usually of order of a few MeV, and more than that of a proton. This tends to inhibit β− decay.
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Indeed, neutrons in a Helium(4,2) nucleus (α particle) or any other stable nucleus do not decay.
But beta decay does take place if the cost of replacing a neutron with a proton in the nucleus is
outweighed by the mass difference mn −mp −me = .782 .

• More precisely, following Gottfried and Weisskopfs’s notation, let Φj(N,Z) denote a nucleus
with N neutrons and Z protons in a state labelled by j (j refers to other quantum numbers
like angular momentum, as in an atom). Its total mass is denoted Mj(N,Z) . The beta decay
Φj(N,Z)→ Φj′(N −1, Z+ 1) + e−+ ν̄e is energetically allowed if the mass of the initial state
exceeds that of the final state

Mj(N,Z)−Mj′(N − 1, Z + 1) > me +mν (139)

This condition can be written in terms of binding energies. Denote the binding energy of a
nucleus with N neutrons and Z protons in state j by BEj(N,Z) . BE > 0 is the energy
required to dissociate the bound nucleus into its far separated constituent nucleons, so

BEj(N,Z) = Nmn + Zmp −Mj(N,Z). (140)

Thus the condition for beta decay to occur is also

BEj(N,Z)−BEj′(N − 1, Z + 1) < mn − (mp +me +mν) ≈ 0.782MeV. (141)

In other words, if the daughter is more tightly bound than the parent (this rarely happens), then
beta decay can happen. More interestingly, beta decay is energetically allowed if the daughter
is less tightly bound than the parent, but not by so much as to offset the mass difference of .782
MeV.

• Another observed reaction, related by crossing, is the capture of an (inner, typically K shell)
atomic electron by a proton in a proton-rich nucleus p+ + e− → n + νe , to produce a neutron
and neutrino. This is called K-electron capture.

• Free protons have never been observed to decay into neutrons, this reaction is energetically
forbidden since mp < mn . However, inside some nuclei, the charge lowering β+ decay p →
n+ e+ + ν̄e occurs, provided the mass increase is more than compensated by a gain in binding
energy. It is related to neutron decay by crossing. E.g., Fluorine(18,9) → Oxygen(18,8) +e+ +
νe . It often happens that replacement of a proton by a neutron lowers the energy of a nucleus,
due to the reduced electrostatic repulsion. It could also happen that the neutron can occupy a
lower nuclear energy level which was Pauli-excluded from being occupied by the proton that it
replaces [p, n are not identical particles if mass differences and EM interactions are included].

6.10.1 Need for the neutrino in beta decay

• Neutrinos were not detected till 1956. Till then, in nuclear beta decay, the only observed
outgoing particle was the electron (aside from the recoiling nucleus). Thus it seemed like a
2 body decay N → N ′ + β . We have shown using energy-momentum conservation that in
the rest frame of the parent nucleus, the energies of N ′ and β are fixed by the masses of the
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three particles. So the beta particle must be mono-energetic. However, experiments36 showed
that the spectrum of emitted beta particle energies was continuous, in apparent violation of
energy-momentum conservation. Bohr, in the wake of the recently discovered uncertainty prin-
ciple suggested that energy conservation may be true only in some statistical sense in quantum
physics, so individual beta particles could come out with any energy. But this seemed to be
inconsistent with the abrupt end-point in the beta energy spectrum. There was also a problem
with angular momentum conservation.

• In three body decay, the daughter particles have a continuous energy spectrum. In 1930 Pauli
suggested that there was in fact an undetected light uncharged (no track seen in cloud chambers)
particle that was emitted along with the electron in beta decay, it carried away the missing
energy. This particle was called the neutrino by Fermi. It is required by angular momentum
conservation as well. Consider the beta decay Φj(N,Z)→ Φj′(N − 1, Z + 1) . The initial and
final nuclei have the same number of nucleons (baryon number B = N + Z ). Since nucleons
have spin half, both nuclei have either even or odd angular momentum in units of ~/2 , according
as B is even or odd. It follows that the change in angular momentum is an integer multiple of
~ , which must be carried away by the beta particle and other decay products. In particular,
there must be an even number of fermions in the final state, aside form the daughter nucleus.
Since the electron is a spin half fermion, the simplest possibility is a three body decay with the
neutrino being the other fermion. Measurements of the energy and angular distribution in beta
decay show that the neutrino has spin half. Current experimental bounds put mν < 1 eV/c2 .

6.10.2 Neutrino vs anti-neutrino, and lepton number

• Neutrinos do interact with matter, though very weakly, with cross sections roughly of order
σν ∼ E × 10−11 mb where E is the neutrino energy in GeV37. For example, we have the
following crossed/conjugate versions of neutron beta decay: νe + n → p + e− and ν̄e + p →
n + e+ . These neutrino/anti-neutrino-nucleon scattering processes are also called inverse beta
decay. Since 1956 they have been experimentally observed.

• Since neutrinos are neutral, one wonders whether the neutrino and anti-neutrino are the same
particle, as in the case of γ, π0, Z0 . Experimental evidence against this was obtained by R.
Davis. Nuclear reactors produce a large flux of anti-neutrinos/neutrinos from decay of free
neutrons. Their interactions with matter in the vicinity was studied experimentally. It was
found that only positrons are produced in scattering with nucleons. If ν = ν̄ then both the
above scattering reactions would take place and we would expect both electrons and positrons
to be produced in the neighborhood of reactors. This indicates that the neutrino is not its own

36Experiments by Otto Hahn and Lise Meitner in Berlin (1911) (who later collaborated in the discovery of
nuclear fission), with further detailed confirmation from Charles Drummond Ellis at the Cavendish in the 1920s.
Ellis and Chadwick were together in an internment camp in World War I where they did experiments in a horse
stable. They both joined Rutherford’s Cavendish lab subsequently, Chadwick studying alpha scattering and Ellis
studying beta decay.

37This approximate formula for the cross section as a function of neutrino energy is valid for E less than the
energy scale of electroweak mixing/unification (80 GeV). Cross sections cannot indefinitely increase with energy,
that would violate unitarity (essentially, probabilities cannot exceed one).
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anti-particle, which is assumed in the standard model.

• In weak processes, electrons or muons are always accompanied by neutrinos, e.g., beta decay
n→ p+ e− + ν̄e and muon decay µ→ e+ ν̄e + νµ and pion decay π− → µ− + ν̄µ .

• Assuming ν 6= ν̄ we may assign a quantum number L (lepton number) that is conserved in all
particle reactions. We put L(e−) = L(ν) = L(µ−) = L(τ−) = 1 , L(e+) = L(ν̄) = L(µ+) =
L(τ+) = −1 for the leptons and anti-leptons and L = 0 for the nucleons (and mesons). Lepton
number is the analogue of baryon number for leptons. We see that beta decay n → p + e + n̄
conserves lepton number (zero on either side) as do all reactions related to it by crossing. On the
other hand, lepton number violating processes such as π− → µ−γ have never been observed.
The experimental limit on mean lifetime of the L-violating process of neutrinoless double beta
decay is τ(76Ge→76 Se+ 2e−) > 1026 y (see Perkins).

• Refined versions of lepton number. Interestingly, many lepton number conserving reactions
that are otherwise not forbidden, e.g. µ→ eγ have not been seen. So conservation of individual
electron, muon and tau lepton numbers Le, Lµ, Lτ was proposed. E.g., Le = 1 for e−, νe ,
Le = −1 for their anti-particles and Le = 0 for all other elementary particles of the SM. Le,µ,τ
are conserved in the perturbative SM.

• With the discovery of neutrino flavor oscillations such as νµ ↔ νe , we have to accept that the
individual lepton numbers cannot be exactly conserved. However, no process involving charged
leptons that violates Le , Lµ or Lτ has been seen till now, though it is expected that the Le and
Lµ violating process µ→ eγ will be experimentally detected in careful searches in future.

6.10.3 Fermi’s current-current interaction vertex for beta decay and weak interactions

• The typically long half-lives (minutes to years) of nuclei that undergo beta decay attest to
the weakness of the force involved, which could not be purely electromagnetic, since neutrinos
are uncharged. Alpha decay, could be treated using non-relativistic QM (as Gamow-Condon-
Gurney did) since the alpha particle kinetic energies are much less than rest energies. By con-
trast, beta decay is a relativistic process since neutrinos travel at close to the speed of light and
beta particle energies usually exceed their rest mass. So beta decay requires a quantum field
theoretic treatment. Fermi proposed a theory of weak interactions in 1934. It was based on
an analogy with the tri-linear photon-electron interaction vertex of quantum electrodynamics
qjµAµ where q is the electron charge. jµ = ēγµe is the electron-positron electromagnetic cur-
rent. It can annihilate an electron and create an electron or create an electron-positron pair etc.
(recall that the field e acting on the vacuum annihilates an electron or creates a positron, while
e† creates an electron or annihilates a positron and that ē = e†γ0 ). We say the electromagnetic
current jµ is a neutral current. It cannot change charge since the photon field Aµ to which it
couples, is uncharged). By analogy with the e+e− electromagnetic current, Fermi introduced
‘charge changing’ weak currents for pairs of particles participating in the weak interactions, e.g.
p̄γµn is the charge raising proton-neutron weak current.

• In 1934, it was not necessary to invoke a force carrier (boson like pion or photon) for weak
interactions since they seemed to occur on length scales small compared to nuclear dimensions
(now we know the length scale of weak interactions is the Compton wavelength of the W
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boson, 10−18 m). So weak interactions were modeled as point or ‘contact’ interactions by
Fermi. Since there are four fermions involved in n → p + e− + ν̄e , Fermi’s theory involved a
4-fermion current-current vertex given by the interaction Lagrangian

L =
GF√

2
((p̄γµn)(ēγµν) + (n̄γµp)(ν̄γµe)) =

GF√
2

(jµJ†µ + Jµj†µ) (142)

The 2nd term is the hermitian conjugate of the first ( p̄ = p†γ0 etc). GF is the Fermi coupling
constant.

• Since the four Dirac fields p, n, e, ν have dimensions M3/2 (coming from kinetic terms∫
d4xp̄γµ∂µp + . . . in the action, which must be dimensionless), the Fermi coupling has di-

mensions [GF ] = M−2 . Based on measured decay rates (W = ~/Γ , which are proportional
to G2

F ) one finds GF = 1.16 × 10−5 GeV−2 = 1.02 × 10−5/m2
p [see Perkins]. jµ = p̄γµn

is called the charge raising proton-neutron weak current since it can annihilate a neutron and
create a proton. J†µ = ēγµν is the charge lowering electron-neutrino weak current since it can
annihilate a neutrino and create an electron (or annihilate a positron and create an anti-neutrino).
So the current-current interaction jµJ†µ can correspond to the process νn→ p+ e . Beta decay
is related to this reaction by crossing, removing the ν from the lhs and replacing it with a ν̄ on
the rhs. The second term in L corresponds to processes like K -electron capture p+ e→ n+ ν
and crossed versions thereof.

• There are similar weak currents that we may associate to other pairs of particles that partic-
ipate in weak interactions, e.g. the µνµ charge lowering weak current is J†λ = µ̄γλνµ . The
vertex that governs muon decay µ→ e+ νµ + ν̄e is

L =
GF√

2

[
(ēγλνe) (ν̄µγλµ) + h.c.

]
. (143)

Remarkably, the same Fermi constant GF determined by beta decay rates also gives the cor-
rect muon decay rate. The charge changing weak interactions are universal in the sense that
they involve a single coupling constant. To include all the charge-changing weak interactions
(involving leptons and hadrons), we may define a total charge-raising weak vector current

Jλ+ = p̄γλn+ ν̄eγ
λe+ ν̄µγ

λµ+ . . . (144)

The charge lowering weak current is J− = J†+ and the interaction Lagrangian is L = GF√
2

(
ηµνJ

µ
+J

ν
− + h.c.

)
.

This governs various weak interactions including muon capture by a nucleus µ−p+ → nνµ .

• For example the decay rate of the muon W = Γ/~ = 1/τ (τ is the life-time and Γ the
energy width) can be calculated by treating the 4-Fermi interaction to first order in perturbation

114



theory. W is equal to the square of the transition matrix element times phase space factors,
so to leading order, W ∝ G2

F . Since the electron kinetic energy usually much exeeds its rest
mass it is reasonable to treat it as massless. Then the only other dimensional quantity in the rest
frame of the muon is the muon mass mµ (quantities like the energy of the outgoing electron and
neutrinos are summed over to arrive at the total decay rate). W being a probability per unit time
has inverse mass dimensions, by dimensional analysis we must have W ∝ G2

Fm
5
µ . Evaluation

of the matrix element and phase space factors yields τ−1 = G2
Fm

5
µ/192π2 in the approximation

where the electron mass is neglected.

• Subsequent discoveries (experimental and theoretical) necessitated two important modifica-
tions to Fermi’s theory. Discovery of parity violation along with other experiments showed that
weak currents involved in the current-current interaction are not quite vector currents but vector
minus axial vector, e.g. p̄γµn − p̄γµγ5n . This was the work of R Marshak and E C G Sudar-
shan as well as Feynman and Gell-Mann in the late 1950s. The second modification replaced
the point-like 4-fermi interaction vertex by a finite range interaction mediated by intermediate
vector bosons, the weak gauge bosons W± . A theoretical reason for this is that the zero range
4-Fermi interaction leads to a non-renormalizable quantum theory. Attempts to calculate decay
rates and cross sections beyond 1st order perturbation theory give infinite answers. Models with
coupling constants with negative mass dimension (e.g. GFermi and GNewton ) are perturbatively
non-renormalizable. On the other hand, the weak interaction is not quite of zero-range. It was
fruitful to introduce heavy force carriers called intermediate vector bosons (W± ) to mediate
the short-ranged charge changing weak interactions. Like the tri-linear qJµEAµ electromagnetic
vertex, the weak interaction vertex is g(Jµ+W

+
µ + Jµ−W

−
µ ) . g is the dimensionless weak cou-

pling constant like the electromagnetic coupling q . J± are the charge raising and lowering
weak currents introduced above. Like the photon field Aµ , W±

µ are the gauge fields associated
to W± gauge bosons. Photon emission and absorption are replaced by emission and absorption
of W± . W+

µ can annihilate a W+ or create a W− while W−
µ can annihilate a W− or create a

W+ .

• Beta decay n→ p + e + ν̄e previously thought of as a single vertex 4-fermion interaction is
now viewed as two weak vertices n→ p+W− and W− → e− + ν̄e (each proportional to g ),
separated by the propagator for an exchanged virtual W , as shown in the Feynman diagram.

• However, W± are very heavy, mW± = 80.4 GeV. At low momentum transfers relevant
to beta decay, muon decay etc, the W propagator 1

m2
W−q2

≈ 1
m2
W

. Comparing with the 4-

Fermi vertex, GF =
√

2
8

g2

M2
W

(the factors are conventional). Viewed from this perspective, the
weak interactions are weak since they are mediated by very heavy intermediaries. From the
numerical value of GF , the weak ‘fine-structure constant’ g2/4π ≈ .03 is not very different
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from Sommerfeld’s electromagnetic α = e2/4π ≈ 1/137 ≈ .007 , indeed the two interactions
are mixed in the standard model. To understand these ideas more precisely we will need to
develop some field theoretic concepts.

6.11 Gamma decay and absorption

A third type of radioactive decay is gamma decay of a nucleus by photon emission. Rather
than discuss gamma decay of nuclei, we will discuss the simpler but analogous topic of gamma
decay of excited atoms. Atomic levels and wave functions are known better than nuclear energy
levels and wave functions. To do so, we need to understand the quantum theory of the photon
field and then the coupling of the photon field to bound atomic electrons. While the photon field
must be treated relativistically, it suffices to treat the atomic electrons non-relativistically.

7 Quantum theory of the photon field

• Photons in the form of light are the elementary particles we are most familiar with. So let us
begin with a look at the classical and quantum theory of light (radiation).

• The earliest ideas of quantization arose from Planck’s attempt to fit the spectrum of black
body electromagnetic radiation. The photoelectric effect and Compton scattering reinforced the
need to treat light quantum mechanically, light, like electrons and atoms, displayed both wave
and particle-like behavior.

• Heisenberg’s and Schrödinger’s development of point particle non-relativistic quantum me-
chanics shows that the position and momentum of a particle are subject to quantum fluctuations.
This is also motivated by Heisenberg’s microscope thought-experiment which suggests that the
determination of position with greater accuracy would make the determination of momentum
more uncertain. The electromagnetic field is also subject to quantum fluctuations. This can
be motivated by Weisskopf’s microscope thought-experiment. Here, we try to pin point the
position of a charged point particle by measuring the electric field it produces, and fix its mo-
mentum by measuring the magnetic field produced by the current of the moving charge. If the
electric and magnetic fields could be simultaneously determined, then we might be able to fix
the instantaneous position and momentum of the particle, violating the Heisenberg uncertainty
principle. To avoid this problem, we expect the electric and magnetic fields to display quantum
fluctuations. This gives us a reason to quantize the radiation field. Once quantized, we will be
able to identify the photon as a state of the quantized radiation field. However, it is harder to
quantize the radiation field than a point particle. This is primarily because a non-relativistic par-
ticle or system of non-relativisitc particles has a finite number of degrees of freedom, while the
EM field has an infinite number of degrees of freedom (the electric and magnetic fields at each
point in space). The quantization of the EM field had to wait till the late 1920s and 1930s work
of Dirac, Pauli, Heisenberg, Jordan, Fermi etc., while the quantum theory of a point particle
was already formulated by Schrödinger and Heisenberg by 1926-27.

• Another new feature is the possibility for photons to be created or absorbed. The number of
atomic electrons in Schrodinger’s treatment is fixed. But in radiative transitions the number of
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photons is not conserved. So the Hilbert space must include a vacuum state of no photons, states
with one photon of a definite energy hν , states with two photons etc as well as creation and an-
nihilation operators that connect these states. These states, which can be labelled by the wave
vector and polarizations ~ελ of the photons |k1λ1; k2λ2; · · ·〉 realize the particle-like character
of photons seen in the photoelectric and Compton effects. The quantum theory also realizes the
wave-like character of light familiar from EM waves. The quantized electric and magnetic field
operators do not commute with the Hamiltonian H = 1

2

∫
(E2 + B2)dr (recall the Weisskopf

microscope). They are in fact linear combinations of photon creation and annihilation opera-
tors, and their eigenstates do not contain a definite number of photons or have definite energy.
However, as we will see, the matrix element of E(r, t) (or B) between a one photon state |k, λ〉
and the vacuum takes the form of a plane wave of wave vector k and frequency ω = ~|k| with
polarization ελ (or k̂ × ελ )!

• The quantum theory of the EM field is based on Maxwell electrodynamics, to which it must
reduce in the classical limit. So we begin by expressing the radiation field of Maxwell theory in
a manner that makes quantization straightforward by analogy with particle mechanics.

7.1 Classical radiation from Maxwell’s equations in radiation gauge

• Maxwell’s equations for the vacuum electric and magnetic fields in rationalized Heaviside-
Lorentz units are

∇ ·B = 0, ∇× E = −1

c

∂B

∂t
, ∇ · E = ρ and ∇×B =

j

c
+

1

c

∂E

∂t
. (145)

where for consistency of the two inhomogeneous equations the charge and current density must
satisfy the continuity equation ∂ρ

∂t
+∇ · j = 0 . The first two homogeneous Maxwell equations

state the absence of magnetic monopoles, and Faraday’s law of induction. The second pair of
inhomogeneous equations are Gauss’ law and Ampere’s law with Maxwell’s correction term
involving the time derivative of the electric field (the displacement current). Gauss was Ger-
man, Ampere French, Faraday English and Maxwell Scottish. The motion of a charge e in an
electromagnetic field is governed by the Lorentz force law

F = e
[
E +

v

c
×B

]
. (146)

• The first pair of homogeneous Maxwell equations are identically satisfied if the fields are
expressed in terms of scalar and vector potentials (φ,A)

E = −∇φ− 1

c

∂A

∂t
and B = ∇×A. (147)

However, the gauge potentials (φ,A) are not uniquely determined by the E and B fields, more
on this momentarily. In terms of the gauge potentials, the Ampere-Maxwell equation becomes
(use ∇× (∇×A) = −∇2A +∇(∇ ·A))

−∇2A +∇(∇ ·A) =
j

c
− 1

c
∂t∇φ−

1

c2

∂2A

∂t2
. (148)
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So introducing the scalar and vector potentials means that the first pair of homogeneous Maxwell
equations have already been solved. The gauge potentials play a very important role in the quan-
tum theory. The hamiltonian for the interaction of a charged particle with the EM field is written
in terms of A , rather than in terms of E or B .

• The inhomogeneous Maxwell equations can be written in a relativistically covariant form by
introducing the 4-vectors Aµ = (φ,A) and jµ = (cρ, j) and the field strength tensor F µν =
∂µAν − ∂νAµ . Then the inhomogeneous Maxwell equations become ∂µF µν = 1

c
jν along with

the consistency condition ∂µjµ = 0 which expresses local charge conservation.

• However, A and φ are not uniquely determined by the measurable electric and magnetic
fields. Two gauge potentials (φ,A) and (φ′,A′) which differ by a gauge transformation

A′ = A +∇θ, φ′ = φ− 1

c

∂θ

∂t
. (149)

correspond to the same electromagnetic fields. Gauge transformations form a group G which
acts on the space of gauge potentials A = {(φ,A)} . Each orbit (equivalence class of gauge
potentials) corresponds to an electromagnetic field (E,B) and the space of electromagnetic
fields is the quotient A/G . A choice of orbit representatives is called a gauge choice. It is
obtained by imposing condition(s) on the gauge potentials which are satisfied by one set of
gauge potentials from each equivalence class.

• A convenient gauge choice is Coulomb gauge ∇ · A = 0 . Given a vector potential A′ we
find its representative in Coulomb gauge by making the gauge transformation A = A′ − ∇θ
with θ chosen to satisfy Poisson’s equation ∇2θ = ∇ ·A′ .
• Gauss’ law simplifies in Coulomb gauge: ∇ ·E = −∇2φ− ∂∇·A

∂t
= 0 becomes −∇2φ = ρ ,

whose solution involves the Coulomb potential (this is why ∇ · A = 0 is called the Coulomb
gauge!) φ(r, t) = 1

4π

∫
d3r′ ρ(r′,t)

|r−r′| . In particular, in Coulomb gauge, the scalar potential φ(r, t)
is not a dynamical quantity, it is entirely fixed by the instantaneous charge density. Now let
us specialize to the case where there are no charges present in the interior and boundary of the
region of interest, so that ρ = 0 . Then φ = 0 . In the absence of charges, Coulomb gauge
is called radiation gauge (φ = 0 , ∇ · A = 0), since electromagnetic radiation is most easily
described in this gauge. Indeed, ∇·A = 0 or k · Ãk = 0 in Fourier space means there are only
two (transverse) components of the vector potential that are dynamical. These correspond to the
two independent polarizations of electromagnetic radiation. In radiation gauge, the Ampere-
Maxwell equation becomes

1

c2

∂2A

∂t2
= ∇2A +

j

c
, (provided ∇ ·A = 0, φ = ρ = 0). (150)

This is the vector wave equation in the presence of a current source j . One is often interested in
EM waves in vacuum, in which case j = 0 and we get the homogeneous vector wave equation.

�A ≡ 1

c2

∂2A

∂t2
−∇2A = 0, (provided ∇ ·A = 0, j = 0, φ = ρ = 0). (151)
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7.1.1 Fourier decomposition of A(r, t) , transversality condition and polarization

The wave equation describes EM waves, including traveling plane waves. Since the equation is
linear, a super position of plane waves is also a solution. This suggests that we may express the
general solution of the wave equation as a superposition of plane waves. This is what Fourier
analysis does for us. We first imagine that the EM field is considered in a large cubical box of
volume V and write the vector potential as a Fourier series

A(r, t) =
c√
V

∑
k

Ak(t)eik·r (152)

The Fourier coefficient Ak(t) is called the Fourier mode corresponding to wave vector k .
The pre-factors c/

√
V are not very important and for later convenience: the formula for the

electric field −1
c
∂A
∂t

becomes simpler. The allowed values of k are determined by the boundary
conditions, but are not important to us since we will eventually let V → ∞ so that all k are
allowed. For simplicity, we consider the radiation field in a cubical cavity of volume V with
periodic boundary conditions. This allows us to work with Fourier series. We will eventually
let the sides of the box go to infinity, and the Fourier series will become Fourier integrals. The
distinction is not important for us here.

• The advantage of the Fourier expansion is that the wave equation �A = 0 reduces to a
system of ODEs, for each mode k

Äk(t) + c2k2Ak(t) = 0 ⇒ Äk(t) = −ω2
kAk(t). (153)

Thus each mode Ak evolves independently in time like a classical oscillator of angular fre-
quency ωk = c|k| . We anticipate that the time dependence of the vector potential may be
written as a linear combination of eiωkt and e−iωkt . However Ak is a vector, not a scalar, so it
has a direction. Which way does it point? This brings in the concept of polarization.

• The Coulomb gauge condition ∇ ·A = 0 becomes

∇ ·A =
ic√
V

∑
k

k ·Ak(t)eik·r ≡ 0. ⇒
∑
k

k ·Ake
ik·r = 0 for all r (154)

The only way for this to happen is for the individual Fourier coefficients to vanish, i.e., k ·Ak =
0 for each k . In other words, the Fourier modes Ak must each be transversal (orthogonal) to the
corresponding wave vectors. Thus the Coulomb gauge condition is also called the transversality
condition. We will soon see that k is the direction of propagation of the corresponding EM
wave, so we see that Ak must be transverse to its wave vector.

• So we may write Ak =
∑

λAk,λελ as a linear combination of two basis polarization vec-
tors ~ε1,~ε2 , which are perpendicular to k . For convenience we choose them to be mutually
orthogonal so that ε1, ε2, k̂ form an orthonormal system:

k̂ · ελ = 0, ελ · ελ′ = δλ,λ′ , ε1 × ε2 = k̂ =
k

k
(155)

ε1,2(k) of course depend on k , but for brevity, we do not display the k-dependence explicitly.
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• A single-mode EM field with Ak,λ ∝ ελ would correspond to an EM wave with the electric
field Ek ∝ −1

c
Ȧk pointing along (“polarized along”) the ελ direction. The corresponding

magnetic field is Bk ∝ k×Ak . We see that for a fixed Fourier mode k , the electric Ek ∝ Ȧk

and magnetic fields Bk ∝ k×Ak are both orthogonal to k , i.e., k·Ek = 0 and k·Bk = 0 . This
is the statement that EM waves are transversely polarized. One choice of basis for polarization
vectors is38

ε1 = x̂, ε2 = ŷ and k̂ = ẑ. (157)

Since ε1, ε2, k̂ form an orthonormal basis for 3d Euclidean space, we may write the identity
matrix as a sum of projections to the subspaces spanned by each

I = ε1ε
t
1 + ε2ε

t
2 + k̂k̂t or δij = (ε1)i(ε1)j + (ε2)i(ε2)j +

kikj
k2

(158)

Thus the transverse projection operator (it appears in the Poisson brackets below) may be ex-
pressed as

δij −
kikj
k2

=
∑
λ=1,2

ελi ε
λ
j . (159)

7.1.2 Electromagnetic energy, Lagrangian, conjugate momentum and Poisson brackets

• The energy in the electromagnetic field in the radiation gauge becomes

H =
1

2

∫ (
E2 + B2

)
d3r =

1

2

∫ (
1

c2
Ȧ2 + (∇×A)2

)
d3r ≡

∫
H d3r. (160)

The instantaneous configuration of the radiation field is specified by the vector potential A(r, t) ,
subject to ∇ ·A = 0 . Comparing with the point-particle energy H = 1

2
mq̇2 + V (q) = T + V ,

the electric energy is the kinetic energy and the magnetic energy is a potential energy. The
corresponding Lagrangian is T − V :

L =
1

2

∫ (
E2 −B2

)
d3r =

1

2

∫ (
1

c2
Ȧ2 − (∇×A)2

)
d3r ≡

∫
L d3r. (161)

Recall that the momentum conjugate to a coordinate q is ∂L
∂q̇

. So the momentum conjugate to
Ai is πi = ∂L

∂Ȧi
= −1

c
Ei . It is tempting to write Poisson brackets {Ai(r, t),−1

c
Ej(r, t)} =

δijδ
3(r− r′) . However, this would not be consistent with the radiation gauge condition, which

requires that the divergence of the lhs must vanish. In fact the divergence of the lhs in both r
and r′ must vanish since ∇ ·A = 0 and ∇ · E = 0 in the absence of charges.

38It is also interesting to choose a complex basis of ‘right’ and ‘left’ circular polarization vectors. E.g. if
~ε1 = x̂,~ε2 = ŷ ,

ε+ =
1√
2

(x̂+ iŷ) and ε− =
1√
2

(x̂− iŷ), while k̂ = ẑ. (156)

These are orthonormal in the sense ε∗λ · ελ′ = δλ,λ′ , ẑ · ε± = 0 .
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• Poisson bracket relations that respect the transversality constraints are{
1

c
Ei(r, t), Aj(r

′, t)

}
= δTij(r−r′), {Ai(r, t), Aj(r′, t)} = {Ei(r, t), Ej(r′, t)} = 0. (162)

Here δTij(r− r′) is the transverse projection of the delta function:

δTij(r− r′) =

∫
d3k

(2π)3

(
δij −

kikj
k2

)
eik·(r−r

′) =
1

V

∑
k

(
δij −

kikj
k2

)
eik·(r−r

′). (163)

The transverse delta function is symmetric and divergence-free ∂
∂ri
δTij(r − r′) = − ∂

∂r′i
δTij(r −

r′) = 0 .

• These Poisson brackets may seem a bit ad hoc. The justification for any set of Poisson
brackets is that they must give the correct equations of motion with the appropriate hamiltonian
(and satisfy anti-symmetry and the Jacobi identity). We will verify later that these p.b. imply
the vector wave equation for A (this is easier to check in Fourier space).

• Let us return to the Fourier expansion of the vector potential and write the electromagnetic
energy in terms of the modes Ak

39

A(r, t) =
c√
V

∑
k

Ak(t)eik·r (165)

• The electric and magnetic fields are

E = − 1√
V

∑
k

Ȧke
ik·r and B =

ic√
V

∑
k

(k×Ak)eik·r. (166)

• The electric (kinetic) energy is (we use
∫
d3r ei(k−k

′)·r = V δkk′ and A−k = A∗k )

K.E. =
1

2

∫
E2d3r =

1

2V

∑
k,k′

ȦkȦk′

∫
d3rei(k+k′)·r =

1

2

∑
k

ȦkȦ−k =
1

2

∑
k

|Ȧk|2. (167)

While the magnetic (potential) energy is

P.E. = −1

2

c2

V

∑
k,k′

(k×Ak)·(k′×Ak′)

∫
ei(k+k′)·rd3r =

c2

2

∑
k

(k×Ak)·(k×A−k) =
c2

2

∑
k

|k×Ak|2.

(168)

39Since A is real, the Fourier coefficients must satisfy the symmetry A∗−k = Ak . Why is this true? This is a
general fact about Fourier series. Suppose f(x) =

∑∞
n=−∞ fne

inx . Then f∗(x) =
∑
n f
∗
ne
−inx . But now let us

relabel the dummy index of summation as n′ = −n , then f∗(x) =
∑∞
n′=−∞ f∗−n′ein

′x =
∑
n f
∗
−ne

inx . But this
must equal f(x) for all x , and this is possible only if the Fourier coefficients are all the same, i.e., if fn = f∗−n .
To make the reality of A(r, t) manifest, we could also write

A(r, t) =
1

2

c√
V

∑
k

(
Ak(t)eik·r + A∗k(t)e−ik·r

)
(164)
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Thus the electromagnetic energy is

H =
1

2

∑
k

(
|Ȧk|2 + ω2

k|k̂ ×Ak|2
)

where ωk = c|k|. (169)

Comparing with the hamiltonian of a particle of mass m = 1 in a harmonic oscillator potential,
Hsho = 1

2
q̇2 + 1

2
ω2q2 we see that the electromagnetic energy is a sum of energies of a collection

of oscillators Ak . This may also be seen from the equation of motion �A = 0 .

7.1.3 Solution of vector wave equation as superposition of polarized plane waves

• Indeed, the advantage of the Fourier expansion is that the wave equation �A = 0 reduces
to a system of decoupled ODEs, for each mode k and each independent polarization λ . Upon
dotting with ~ελ ,

Äk(t) + c2k2Ak(t) = 0 becomes Äk,λ(t) = −ω2
kAk,λ(t) where ωk = c|k|. (170)

Thus each mode Ak,λ evolves independently in time like a classical oscillator of angular fre-
quency ωk

Ak,λ(t) = ck,λe
−iωkt + c∗k,λe

iωkt. (171)

The real and imaginary parts of ck,λ are the two constants of integration. Thus

Ak(t) =
∑
λ

~ελ
[
ck,λe

−iωkt + c∗k,λe
iωkt
]
. (172)

If we were working with complex polarization vectors ε± we would have

Ak(t) =
∑
λ

[
ck,λ~ελe

−iωkt + c∗k,λ~ε
∗
λe
iωkt
]
. (173)

For simplicity, let us stick to real polarization vectors. Using these Fourier coefficients we syn-
thesize the vector potential that is the general solution of the vector wave equation incorporating
the Coulomb gauge condition40

A(r, t) =
c√
V

∑
k,λ

~ελ
[
ck,λe

i(k·r−ωkt) + c∗k,λe
−i(k·r−ωkt)

]
(175)

A has been expressed as a linear combination of plane waves ελei(k·r−ωt) traveling in the di-
rection of their respective wave vectors k , and with polarization λ . The corresponding electric
field is (here and elsewhere + c.c. denotes addition of the complex conjugate)

E(r, t) = −1

c
Ȧ =

i√
V

∑
k,λ

~ελωk
(
ckλe

i(k·r−ωt) − c.c.
)

(176)

40• When V → ∞ , these Fourier series become integrals 1
V

∑
k →

∫
d3k
(2π)3 with k taking all values. For

instance,

A(r, t) = c

∫
d3k

(2π)3

∑
λ

[c(k, λ)ελe
(k·r−ωt) + c.c] where c(k, λ) =

√
V ck,λ. (174)
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Here the constant Fourier coefficients ck,λ, c∗k,λ are determined by initial conditions on A,E .
With a slight abuse of notion, it is convenient to define

ck,λ(t) = ck,λe
−iωkt, c∗k,λ(t) = c∗k,λe

iωkt where ck,λ, c
∗
k,λ are the initial values. (177)

7.1.4 Change of phase space variables from A,E to Fourier modes ck,λ, c∗k,λ

It is clear that the Fourier modes ck,λ(t), c∗k,λ(t) of definite wave number and polarization have
a simpler (simple harmonic) time-dependence than the position space E,A fields (which are
linear combinations of several modes). Moreover, the hamiltonian does not couple distinct
Fourier modes. This motivates a change of phase space variables from A and E to c, c∗ . We
define41

A(r, t) =
c√
V

∑
k,λ

~ελ
[
ck,λ(t)e

ik·r + c∗k,λ(t)e
−ik·r]

E(r, t) =
i√
V

∑
k,λ

~ελωk
(
ckλ(t)e

ik·r − c∗kλ(t)e−ik·r
)

(178)

These changes of variables are chosen so that the transversality constraints on A and E are
automatically satisfied. Note that the electric field is not obtained by differentiating A in time,
it is an independent field. On the other hand, the magnetic field is obtained by taking curl of A ,
it is a dependent field.

• A significant advantage of c, c∗ over A,E is that they have simpler p.b. than A and E . Upon
quantization c, c∗ are related to annihilation and creation operators for photons with definite
wave vector and polarization.

• The equal-time Poisson brackets among the components Ai and Ej are satisfied if the modes
ck,λ(t), c

∗
k,λ(t) satisfy the following equal time p.b.

{
ck,λ(t), c

∗
k′,λ′(t)

}
=

1

2iωk
δkk′ δλλ′ , {ck,λ(t), ck′,λ′(t)} =

{
c∗k,λ(t), c

∗
k′,λ′(t)

}
= 0. (179)

Apart from some constant factors, this must remind us of commutators between SHO annihila-
tion and creation operators [a, a†] = 1, [a, a] = [a†, a†] = 0 . Let us indicate how this is verified
in one case. All dynamical variables A,E, c, c∗ are evaluated at the same time t which we
suppress{

1

c
Ei(r), Aj(r

′)

}
=

i

V

∑
k,λ,k′,λ′

ωk

{
ck,λ(ελ)ie

ik·r − c.c., ck′λ′(ελ′)je
ik′·r′ + c.c

}
=

i

iV

∑
k,λ,k′,λ′

ωk
2ωk

[
δkk′δλλ′ελiελ′je

i(k·r−k′·r′) + c.c.
]

41Of course, we know the time dependence of c(t), c∗(t) from solving the equations of motion. But that explicit
time-dependence is not needed now, it simply motivates the following change of phase space dynamical variables.
Equal time Poisson brackets between dynamical variables do not depend on their time-dependence nor on what the
hamiltonian is.
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=
1

2V

(∑
k

(
δij −

kikj
k2

)
eik·(r−r

′) + c.c.

)
=

1

2V
2V δTij(r− r′) = δTij(r− r′).

We used the completeness/transverse projection formula
∑

λ ελiελj = δij − k̂ik̂j . In the last
line, the Fourier series is a real function of r − r′ , since δij − k̂ik̂j is an even function of
momentum. So the addition of the complex conjugate just doubles it. One may similarly check
that the components of the electric field Poisson commute with each other and so too do the
components of the vector potential.

7.1.5 Hamiltonian in terms of Fourier modes ckλ, c∗kλ

• Let us express the classical hamiltonian in terms of the Fourier modes. We will show below
that

H =
1

2

∫
(E2 + B2)d3r = 2

∑
k,λ

ω2
kc
∗
k,λck,λ (180)

• To obtain this formula for the hamiltonian, let us work for simplicity with a real o.n. basis for
polarizations ε1 × ε2 = k̂ . The expressions for A,E,B in terms of c, c∗ are

A(r, t) =
c√
V

∑
k,λ

~ελ
[
ck,λ(t)e

ik·r + c∗k,λ(t)e
−ik·r]

E(r, t) =
i√
V

∑
k,λ

~ελωk
(
ckλ(t)e

ik·r − c∗kλ(t)e−ik·r
)

B(r, t) = ∇×A =
i√
V

∑
k,λ

ωkk̂ × ~ελ
(
ckλ(t)e

ik·r − c∗kλ(t)e−ik·r
)

(181)

Now we compute the electric energy using orthogonality
∫
ei(k−k

′)·rd3r = V δk,k′ and ελελ′ =
δλ,λ′ .

1

2

∫
E2d3r = − 1

2V

∑
k,k′,λ,λ′

ελ · ε′λωk ωk′

∫ [
ckλe

ik·r − c∗kλe−ik·r
] [
ck′λ′e

ik′·r − c∗k′λ′e−ik
′·r
]
d3r

= −1

2

∑
kλ

ω2
k

[
ckλc−kλ + c∗kλc

∗
−kλ − 2|ckλ|2

]
. (182)

The magnetic energy is

1

2

∫
B2d3r = − 1

2V

∑
k,k′,λ,λ′

ωkωk′(k̂×ελ) ·(k̂′×ε′λ)

∫ [
ckλe

ik·r − c∗kλe−ik·r
] [
ck′λ′eik

′·r − c∗k′λ′e−ik
′·r
]
d3r.

It is clear that the spatial integrals will produce either δk,−k′ or δk,k′ in the various terms. Now
we use k̂ = ±k̂′ , orthogonality of wave and polarization vectors, and the scalar and vector triple
product identities to simplify

(k̂× ελ) · (k̂′ × ε′λ) = k̂′ · (ε′λ × (k̂× ελ)) = k̂′ · [k̂(ελ′ · ελ)− ελ(ελ′ · k̂)] = (k̂′ · k̂) δλλ′ . (183)
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So the magnetic energy becomes

1

2

∫
B2d3r = −1

2

∑
k,λ

ω2
k[−ck,λc−k,λ − c∗k,λc∗−k,λ − 2|ck,λ|2]. (184)

We see that the cc and c∗c∗ terms cancel between the electric and magnetic energies giving
H = 2

∑
k,λ ω

2
kc
∗
k,λ . To make the energy look like that of a collection of harmonic oscillators,

we define rescaled Fourier modes

ck,λ =

√
~

2ωk
ak,λ, and c∗k,λ =

√
~

2ωk
a∗k,λ. (185)

Then the hamiltonian and p.b. become

H =
∑
k,λ

~ωk
(
a∗k,λak,λ

)
,

{
ak,λ, a

∗
k′,λ′

}
=

1

i~
δk,k′δλ,λ′ ,

{
ak,λ, ak′,λ′

}
=
{
a∗k,λ, a

∗
k′,λ′

}
= 0.

(186)
Note that the introduction of factors of ~ does not make this a quantum theory, we are simply
choosing to measure the energy of each mode in units of ~ωk . We will quantize this hamilto-
nian dynamical system soon by replacing classical dynamical variables by operators on Hilbert
space and p.b. by commutators {., .} → 1

i~ [., .] . These re-scalings ensure that the quantum
hamiltonian and commutators take a standard form.

• Simple as the hamiltonian and p.b. are, we must still check that they imply the correct
time dependence for a and a∗ , previously obtained by solving the vector wave equation, i.e.,
ak,λ(t) = e−iωktak,λ(0) . Hamilton’s equation for evolution is

ȧkλ = {ak,λ, H} =

{
ak,λ,

∑
l,µ

~ωla∗lµalµ

}
=
∑
lµ

~ωlalµ
δk,lδλ,µ
i~

= −iωkakλ. (187)

The solution of this equation is ak,λ(t) = ak,λ(0)e−iωkt . Thus we have verified that the Hamil-
tonian and p.b. we have postulated for the classical radiation field lead to the correct time-
evolution. This justifies the ‘ad-hoc’ introduction of the transverse delta function in the p.b.
between A and E .

• Let us motivate the passage to the quantum theory by recalling how to ‘canonically’ quantize
a harmonic oscillator using creation and annihilation operators.

7.2 Quantization of the harmonic oscillator using creation and annihilation operators

• Newton’s equation for a particle of mass m executing simple harmonic motion is mq̈ =
−ω2q . The energy of such a harmonic oscillator is E = 1

2
mq̇2 + 1

2
mω2q2 . In terms of the

momentum p = mq̇ , the hamiltonian is H = p2

2m
+ 1

2
mω2q2 . Position and momentum satisfy

the p.b. {q, p} = 1 , {q, q} = {p, p} = 0 .

• Since ~ω has dimensions of energy, even classically we may write H = ~ω( p2

2m~ω + 1
2
mωq2

~ ) .
Defining a constant with unit of inverse length β =

√
mω
~ we have the dimensionless coordinate
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and momentum ξ = βq and p = p
~β with p.b. {ξ, p} = 1

~ and H = 1
2
~ω(ξ2 + p2) . We now

define the complex combinations

a =
ξ + ip√

2
and a∗ =

ξ − ip√
2

with {a, a∗} = − i
~

and H = ~ωa∗a = ~ω|a|2.
(188)

In the quantum theory, q, p become operators. In the Schrodinger representation p = −i~ ∂
∂q

and the p.b. {q, p} = 1 is replaced by the commutator [q, p] = i~ (i.e., multiply the rhs by i~).
It follows that [ξ, p] = i . In the Schrodinger representation p = −i ∂

∂ξ
, check that this gives the

desired commutator [ξ, p] = i .

• Now if a† = (ξ − ip)/
√

2 denotes the hermitian adjoint of the operator a (quantum version
of a∗ ), then [a, a†] = 1 . Moreover,

a†a =
1

2

(
ξ2 + p2 + i[ξ, p]

)
=

1

2

(
ξ2 + p2 − 1

)
(189)

• The hamiltonian operator

H =
p2

2m
+

1

2
mω2q2 =

1

2
~ω(ξ2 + p2) (190)

may be written as H = ~ω(a†a + 1
2
) . We have used that fact that aa† − a†a = 1 . N = a†a is

the number operator. We may check using the commutation relations that

[N, a] = [a†a, a] = [a†, a]a = −a and [N, a†] = [a†a, a†] = a†[a, a†] = a†. (191)

It follows that
[H, a] = −~ωa and [H, a†] = ~ωa†. (192)

a, a† are called the annihilation and creation operators (or lowering and raising operators) be-
cause of the way we may interpret these relations. Suppose |ψ〉 is an energy eigenstate with
energy eigenvalue E . Then assuming a|ψ〉 is not the zero vector, a|ψ〉 is also an energy eigen-
state with a little lower energy E − ~ω , since

H(a|ψ〉) = aH|ψ〉 − ~ωa|ψ〉 = (E − ~ω)(a|ψ〉) (193)

Similarly, a†|ψ〉 is also an energy eigenstate with a slightly higher energy E + ~ω .

• Now the SHO hamiltonian is a positive operator, in the sense that its diagonal matrix element
in any state is positive:

〈φ|H|φ〉 =
1

2
~ω + 〈φ|a†a|φ〉 =

1

2
~ω + 〈aφ|aφ〉 =

1

2
~ω + |||aφ〉||2 ≥ 1

2
~ω. (194)

Since eigenvalues are simply expectation values in normalized eigenstates, the energy eigen-
values must all be ≥ 1

2
~ω . Now, if there is one energy eigenstate |ψ〉 with eigenvalue E ,

then by repeated application of the lowering operator a , we may produce an energy eigenstate
with negative energy, contradicting the positivity of H . To avoid this problem, successive ap-
plication of a must result in a state |0〉 (taken to have unit norm) which is annihilated by the
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lowering operator. This state is the ground state of the hamiltonian H|0〉 = 1
2
~ω|0〉 with energy

E0 = 1
2
~ω . |0〉 is also called the vacuum state. The first excited state is |1〉 = a†|0〉 , with an

energy E1 = 3
2
~ω .

• Note that the ground or vacuum state is not the zero vector. The zero vector ψ(x) = 0 is not
a state describing a particle, since it has zero probability to be found any where. But the simple
harmonic oscillator describes one particle at all times, so every physical state of the SHO must
satisfy the normalization condition

∫∞
−∞ |ψ(x)|2dx = 1 . One may find the position space wave

function of the ground state, i.e., 〈x|0〉 = ψ0(x) using the condition aψ(x) = 1√
2
(ξ+∂ξ)ψ = 0 .

This implies ψ′/ψ = −ξ or ψ = Ae−ξ
2/2 = Ae−β

2x2/2 . Find the value of constant A to ensure
the ground state is normalized to one. Note that though the average value of x in the ground
(vacuum) state is zero on account of evenness (parity symmetry) of ψ0(x) , the position does
suffer fluctuations, 〈x2〉0 6= 0 . Similarly, one checks that 〈p〉0 = 0 but 〈p2〉0 6= 0 .

• We check using the commutation relation aa† − a†a = 1 that |1〉 has unit norm

〈1|1〉 = 〈0|aa†|0〉 = 〈0|0〉+ 〈0|a†a|0〉 = 1. (195)

Similarly, the second excited state is ∝ a†|1〉 . The square of its norm is

〈0|aaa†a†|0〉 = 〈0|a(a†a+ 1)a†|0〉 = 〈0|aa†|0〉+ 〈0|(a†a+ 1)aa†|0〉 = 1 + 1 = 2. (196)

So the normalized second excited state is |2〉 = 1√
2
a†a†|0〉 , with an energy 5

2
~ω . Proceeding

this way42, one finds that the nth excited state (normalized to one) is |n〉 = 1√
n!

(a†)n|0〉 with
an energy eigenvalue En = ~ω(n+ 1

2
) .

• In the Schrödinger picture, the states evolve with time, as specified by the Schrodinger equa-
tion i~∂|ψ(t)〉

∂t
= H|ψ(t)〉 , while observables like H, x, p are time-independent. Energy levels

are stationary, in the sense that they evolve by a phase

|n(t)〉 = e−iEnt/~|n(0)〉. (197)

• In the Heisenberg picture, states are time-independent while observables carry the time de-
pendence. By definition, the state in the Heisenberg picture is just the Schrödinger state at
t = 0 . So

|φ(t)〉s = e−iHt/~|φ(0)〉 ⇒ |φ(t)〉s = e−iHt/~|φ〉h. (198)

The Heisenberg picture operator Ah corresponding to the Schrödinger picture operator As is
defined as

Ah(t) = eiHt/~Ase
−iHt/~ = U †AsU, where we denote U = e−iHt/~. (199)

It follows that the hamiltonian is the same in both pictures Hs = Hh ≡ H . Further, the states
and operators in the two pictures coincide at t = 0 .

42The normalization factors may be obtained by first showing that a†|n〉 =
√
n+ 1|n+ 1〉 and a|n〉 =

√
n|n−

1〉 .
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• Matrix elements and expectation values (which carry physical significance) may be computed
in either picture, resulting in the same values

h〈φ|Ah(t)|ψ〉h =s 〈φ(t)|UU †AsUU †|ψ(t)〉s =s 〈φ(t)|As|ψ(t)〉s. (200)

Just as the Schrodinger equation governs the evolution of states in the Schrodinger picture, the
time evolution of an observable Ah is governed by the Heisenberg equation of motion

i~
∂Ah
∂t

= [Ah, H]. (201)

Let us derive the Heisenberg equation of motion. Recall Ah(t) = U †AsU

i~∂tAh = i~(∂tU
†)AsU+i~U †As∂tU = −HU †AsU+U †AsUH = −HAh+AhH = [Ah, H].

(202)
Here we used U = e−iHt/~ so that i~∂tU = HU = UH since H and U commute. And taking
the hermitian adjoint, −i~∂tU † = HU † .

• The Heisenberg equation of motion is the quantum version of Hamilton’s classical equations
written in p.b. form. Start with {A,H} = ∂A

∂t
and replace p.b. by commutators and multiply

the rhs by i~ .

• Let us use the Heisenberg equation of motion43 to find the time evolution of the SHO creation
and annihilation operators in the Heisenberg picture.

i~
∂ah
∂t

= [ah, H] = ([a,H])h = ~ωah ⇒ ∂ah
∂t

= −iωah ⇒ ah(t) = e−iωtah(0)

(203)
Similarly (or taking the hermitian conjugate), we get a†h(t) = eiωta†h(0) . This is the same time
evolution as in a classical harmonic oscillator.

7.3 Quantization of radiation field in radiation gauge

• We will quantize the radiation field by the canonical procedure of replacing Poisson brackets
with commutators, as we did for the harmonic oscillator. Indeed, the radiation field can be
regarded as an infinite collection of harmonic oscillators, one for each mode labelled by wave
vector and polarization (k, λ) .

H = 2
∑
k,λ

ω2
kc
∗
kλckλ (204)

where the vector potential is

A(r, t) =
c√
V

∑
kλ

~ελ
[
ckλ(t)e

ik·r + c∗kλe
−ik·r] . (205)

43We also use [H, a] = −~ωa, [H, a†] = ~ωa† and the relation [Bh, H] = [U†BU,H] = U†[B,H]U =
([B,H])h on account of [H,U ] = 0 where U = e−iHt/~ .
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Recall the p.b. among the modes of the EM field{
ck,λ, c

∗
k′,λ′

}
=

1

2iωk
δkk′ δλλ′ , {ck,λ, ck′,λ′} =

{
c∗k,λ, c

∗
k′,λ′

}
= 0. (206)

To make the Hamiltonian and p.b. look simpler and to follow a notation similar to the one used
in quantizing the SHO, we define re-scaled Fourier modes for the radiation field

ck,λ =

√
~

2ωk
ak,λ, and c∗k,λ =

√
~

2ωk
a∗k,λ. (207)

Then the hamiltonian becomes
H =

∑
kλ

~ωka∗kλakλ. (208)

Then the Fourier decomposition of the vector potential reads

A(r, t) =
c√
V

∑
k,λ

√
~

2ωk
~ελ
[
ak,λ(t)e

ik·r + a∗kλ(t)e
−ik·r] (209)

and the equal-time p.b. among the ak,λ, a∗k,λ are

{
ak,λ, a

∗
k′,λ′

}
=

1

i~
δk,k′δλ,λ′ , while {ak,λ, ak′,λ′} =

{
a∗k,λ, a

∗
k′,λ′

}
= 0. (210)

Now we canonically quantize this system by analogy with the SHO. The p.b. among the a, a∗

are replaced by commutators between a , multiplying the RHS by i~ . Thus we get the canonical
commutation relations

[ak,λ, a
†
k′,λ′ ] = δk,k′δλ,λ′ , while [ak,λ, ak′,λ′ ] = [a†k,λ, a

†
k′,λ′ ] = 0. (211)

The expansion of the vector potential operator now reads

A(r, t) =
c√
V

∑
k,λ

√
~

2ωk
~ελ

[
ak,λ(t)e

ik·r + a†kλ(t)e
−ik·r

]
. (212)

We will find its time dependence shortly. There are similar expansions for the electric and
magnetic field operators as linear combinations of creation and annihilation operators. The
quantum version of the A,E Poisson brackets are the commutators [Ei, Ej] = [AiAj] = 0 and

[Ei(r, t), Aj(r
′, t)] = i~cδTij(r− r′). (213)

• The expression for the hamiltonian operator is ambiguous in the quantum theory since a, a†

do not commute. Classically we may write several equivalent expressions, H =
∑

~ωka∗kλakλ =∑
~ωkakλa∗kλ = 1

2

∑
~ωk(a∗kλakλ + akλa

∗
kλ) . If a, a∗ are replaced by a, a† then one gets

hamiltonian operators that differ by an additive constant. If we use the first expression, then
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Ĥ =
∑

k,λ ~ωka
†
k,λak,λ . But if we use the third (symmetric expression for H , which also

corresponds to 1
2
(E2 +B2)) then the quantum hamiltonian is

Ĥ =
∑
k,λ

~ωk
(
a†k,λak,λ +

1

2

)
since ak,λa

†
k,λ = a†k,λak,λ + 1. (214)

The additive constant
∑

k,λ
1
2
~ωk is called the zero point energy. In the infinite volume limit, it

is infinite. However, this is a constant addition to the energy, and can be eliminated by redefining
the zero of energy. Henceforth, we define H =

∑
k,λ ~ωka

†
k,λak,λ . This definition is convenient

since it assigns energy zero to the vacuum state.

7.4 Hilbert space of photon states

• To find the spectrum of the hamiltonian, we proceed as we did for the SHO. Indeed, the hamil-
tonian of the quantized radiation field is a sum of harmonic oscillators, one for each ‘mode’
labelled by k, λ . From the commutation relations, we find as before, that

[H, ak,λ] = −~ωkak,λ and [H, a†k,λ] = ~ωka†k,λ. (215)

It follows that ak,λ, a
†
k,λ lower and raise the energy by ~ωk . Thus we have a vacuum state

|0〉 with energy zero, which is annihilated by all the lowering operators ak,λ|0〉 = 0 . (This
also means 〈0|a†k,λ = 0 for all k, λ .) As before, Nk,λ = a†k,λak,λ is a number operator. It
has non-negative integers as its eigenvalues, which count the number of photons with wave
vector k and polarization ελ in an eigenstate. k, λ are together good quantum numbers for
photons.Nk,λ|0〉 = 0 . The operator whose eigenvalues are the total number of photons is N̂ =∑

k,λNk,λ . We say that the vacuum state has no photons of any wave vector or polarization.
However, the vacuum state is not the zero vector, it has unit norm 〈0|0〉 = 1 . We will see that
though the average electric and magnetic fields in the vacuum state are zero, they have non-zero
fluctuations in the vacuum state. The free space around us (ignoring the EM fields from cell
phone towers etc) is to a reasonable approximation the vacuum state of the photon field. If we
measure the electric field, we will get small non-zero values which on average are zero. These
small non-zero values are due to quantum fluctuations. This is just like saying that x and p are
on average zero in the ground state of the harmonic oscillator. Nevertheless 〈x2〉 and 〈p2〉 are
non-zero in the ground state of the SHO. The position x of the particle is the counterpart of the
vector potential A , while the particle momentum p is the analog of (−1/c times) the electric
field.

• A state with one photon of wave vector k and polarization λ is |1k,λ〉 = a†k,λ|0〉 . This
1-photon state has energy ~ωk .

• Similarly, a state with two photos is

|1k,λ, 1k′,λ′〉 = a†k,λa
†
k′,λ′|0〉. (216)

It is an eigenstate of the hamiltonian with energy ~(ωk + ωk′) . Since creation operators com-
mute, it does not matter in what order we write the creation operators, so

|1k′,λ′1k,λ〉 = |1k,λ, 1k′,λ′〉. (217)
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In other words, the state function of a system of two photons is symmetric with respect to
exchange of the quantum numbers of the two photons: photons behave as bosons.

• The above two photon state has norm one if the quantum numbers are distinct, i.e., (k, λ) 6=
(k′, λ′) . If the quantum numbers are the same, then the normalized 2-photon state is

|2k,λ〉 =
1√
2!

(a†k,λ)
2|0〉. (218)

This follows from the commutation relations of creation and annihilation operators just as in
the case of the harmonic oscillator.

• More generally a normalised multi-photon state with n, n′, n′′, . . . photons with quantum
numbers (k, λ), (k′, λ′), (k′′, λ′′), . . . is

|nk,λ, n
′
k′,λ′ , n

′′
k′′,λ′′ , . . .〉 =

(a†k,λ)
n

√
n!

(a†k′,λ′)
n′

√
n′!

(a†k′′,λ′′)
n′′

√
n′′!

. . . |0〉. (219)

Again, by the commutativity of the creation operators, these multi-photon states are symmetric
under exchange of any pair, they describe bosons. These multi-photon states together span the
Hilbert space of the quantized radiation field. It is called the bosonic Fock space of photons.
The basis we have chosen to describe the Fock space is called the occupation number/photon
number basis, since the basis states have definite numbers of photons with specified wave vector
and polarization. It is in this way that the quantum theory accommodates the particle-like nature
of photons discovered by Planck, Einstein et. al. On the other hand, a linear combination such
as |1k,λ〉 − |2k′,λ′〉 is also a valid state of the radiation field, but it does not have a definite
number of photons, a measurement of the number of photons may result either in the answer
one or two. Such states play a role in the ability of the quantum theory to accommodate the
wave-like character of light, as we will see.

7.5 Fluctuations of E and B fields, EM Waves from matrix elements

• In the quantum theory the transverse photon vector potential field in radiation gauge is the
hermitian operator

A(r, t) =
c√
V

∑
k,λ

~ελ

√
~

2ωk

[
ak,λ(t)e

ik·r + a†kλ(t)e
−ik·r

]
. (220)

The time dependence of A as well as the electric and magnetic field operators is determined
by that of the creation and annihilation operators. To find their time-dependence, we use the
Heisenberg equation of motion which is the quantised version of Hamilton’s equation ȧ =
{a,H} obtained by the replacement {·, ·} → [·, ·]/i~

i~
dak,λ
dt

= [ak,λ, H] = ~ωkak,λ ⇒ ak,λ(t) = e−iωktak,λ(0) (221)

Similarly, a†k,λ(t) = eiωkta†k,λ(0) . We may regard ak,λ(t) as the annihilation operator in the
Heisenberg picture while ak,λ(0) is the annihilation operator in the Schrodinger picture. We
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will often omit the argument of a , and hope it is clear from the context. Thus our Fourier mode
expansion of the quantized vector potential is

A(r, t) =
c√
V

∑
k,λ

~ελ

√
~

2ωk

[
ak,λ(0)ei(k·r−ωkt) + a†kλ(0)e−i(k·r−ωkt)

]
. (222)

We notice that the time dependence is the same as in classical radiation theory (this is generally
true when the hamiltonian is quadratic in fields and commutators are canonical). It follows that
E and B are the hermitian field operators

E(r, t) = −Ȧ

c
= i
∑
k,λ

√
~ωk
2V

~ελ

(
akλe

i(k·r−ωkt) − a†kλe
−i(k·r−ωkt)

)
B(r, t) = ∇×A = i

∑
k,λ

√
~ωk
2V

(k̂ × ~ελ)
(
akλe

i(k·r−ωkt) − a†kλe
−i(k·r−ωkt)

)
(223)

Being linear combinations of creation and annihilation operators, the electric and magnetic
fields do not commute either with the number operator or hamiltonian (nor with each other).
Their eigenstates do not have definite energy or number of photons in general. On the other
hand, states of definite energy (like the vacuum) are not eigenstates of E or B . For instance,
acting on the vacuum the electric field operator produces a linear combination of one photon
states with all possible wave vectors and polarizations.

E(r, t)|0〉 = −i
∑
k,λ

√
~ωk
2V

~ελe
−i(k·r−ωkt)|1k,λ〉 (224)

It follows that the matrix element of the electric (or magnetic field) between the vacuum and 1
photon state 1k,λ is a transversely polarized plane EM wave

〈1k,λ|E(r, t)|0〉 = −i
√

~ω
2V

ελe
−i(k·r−ωt) and 〈1k,λ|B(r, t)|0〉 = −i

√
~ω
2V

(ελ×k̂)e−i(k·r−ωt).

(225)
Since plane waves satisfy Maxwell’s equations, we see that these matrix elements of the elec-
tric and magnetic fields in the quantum theory satisfy the same wave equations (Maxwell’s
equations) as the classical electric and magnetic fields. The wave nature of light follows from
Maxwell’s equations. So this is one of the ways in which the quantum theory of the photon
field accommodates the wave nature of light while also manifesting the particle-like nature of
photons. From the viewpoint of the quantum theory, we may regard Maxwell’s equations as
determining these matrix elements of the fields. This is a useful point of view, since it also
applies to the Klein-Gordon and Dirac equations.

• Historically, the Dirac and KG equations were introduced as relativistic quantum equations
to describe a single electron or single pion. This interpretation was inconsistent in situations
with significant relativistic effects: due to the possibility for particle creation and annihilation,
particle number is not conserved and it does not make sense to look for a theory of a definite
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number of particles. The apparent successes of the ‘1 particle’ Dirac equation (like the predic-
tion of the magnetic moment of the electron or fine structure of the hydrogen spectrum) are all
in the regime where relativistic effects are very small. In the current view, the Dirac and KG
equations are not one particle wave equations like the non-relativistic Schrodinger equation, but
rather classical wave-field equations, on the same footing as Maxwell’s equations. The appear-
ance of factors of ~ in the Dirac and KG equations does not make them ‘quantum’, but is due
to a conventional choice of units for momenta and energies. Strictly, these classical relativis-
tic field equations do not admit particle interpretation at all. However, when quantised via the
process of ‘field’ quantization (somewhat misleadingly also known as ‘second’ quantization)
that we have just carried out for the EM field, we arrive at the quantised Dirac and KG fields.
States in the Hilbert space of these quantum fields now admit physical interpretation in terms
of particles. Remarkably, the matrix elements of these quantised fields (Dirac, KG, Maxwell)
between the vacuum and 1 particle states, satisfy the classical wave-field equations that one
started with.

• By contrast, the 1 particle (or n-particle) non-relativisitic Schrodinger wave equation is al-
ready quantised. Unlike KG, Dirac or Maxwell, it is not to be regarded as a classical field
equation awaiting quantization. It already deals with operators and states in Hilbert space.

• As the Weisskopf microscope thought experiment suggested, the electromagnetic field dis-
plays quantum fluctuations. To see this, consider the simplest of states, the vacuum |0〉 with
no photons. In this state, 〈0|A|0〉 = 0 since the annihilation operators will kill the ket-vacuum
while the creation operators kill the bra-vacuum. Since E = −1

c
∂A
∂t

and B = ∇ × A , the
electric and magnetic fields also have zero expectation values in the vacuum state. However,
just as 〈0|x2|0〉 > 0, 〈0|p2|0〉 > 0 in the g.s of the SHO, one checks that 〈0|B2|0〉 > 0 and
〈0|E2|0〉 > 0 since E2,B2 include terms of the form aa† which have non-zero vacuum expec-
tation values. It follows that there are vacuum fluctuations in the electromagnetic fields, even
when their mean values are zero. E.g., free space around us (ignoring the EM fields from cell
phone towers etc) is to a reasonable approximation the vacuum state of the photon field. If we
measure the electric field, we will get small non-zero values which on average are zero. These
small non-zero values are due to quantum fluctuations.

• Question: How is 〈0|E2|0〉 > 0 and 〈0|B2|0〉 > 0 consistent with 〈0|H|0〉 = 0? Ans: our
hamiltonian H =

∑
~ωa†a differs from

∫
1
2
(E2 + B2) =

∑
1
2
~ω(aa† + a†a) by an additive

constant (‘zero point energy’
∑

1
2
~ωk ). The non-zero vacuum fluctuations in E and B , in a

sense, add up to give this ‘zero point energy’.

• Heuristically we may say that in the vacuum, though there are no real photons, there can be
virtual photons that pop in and out of existence here and there, for short periods of time. These
virtual photons are a way to visualize, for example, the evaluation of the expectation value
〈0|aa†|0〉 . Virtual photons are not directly detected, they are not present in the initial or final
state. But virtual photons have real effects such as (1) The measurable vacuum fluctuations in
the electric and magnetic fields. (2) The Casimir force between metal plates in vacuum. (3) The
spontaneous gamma decay of atoms, nuclei and hadrons from excited states. While stimulated
emission of photons from excited atoms is understandable, it was found that excited atoms can
spontaneously emit photons. In a sense, virtual photons ‘stimulate’ the atom to ‘spontaneously’
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decay.

7.6 Polarization, helicity, spin and angular momentum of the photon

• We have seen that a one photon state can have two linearly independent polarizations, say the
linear polarizations ~ε1 = x̂,~ε2 = ŷ for k = kẑ or the basis of right and left circular polarizations
ε± = 1√

2
(x̂ ± iŷ) . The circular polarization vectors have the advantage of transforming into

multiples of themselves under an infinitesimal rotation by angle θ about the z axis:

δx̂ = −θŷ, δŷ = θx̂ ⇒ δε+ = iθε+ and δε− = −iθε−. (226)

This is precisely how the |m = 1〉 and |m = −1〉 angular momentum states of the j = 1
angular momentum multiplet transform under infinitesimal rotations about the z-axis

eiθJz/~|m〉 ≈ (1 + iθJz/~)|m〉 = (1 + iθm)|m〉 ⇒ δ|m〉 = iθm|m〉 (227)

So the right and left circular polarized 1 photon states transform under rotations about the prop-
agation direction k̂ , like states having angular momentum projection m = ±1 along k̂ . In
other words, a general one photon state must be a linear combination of helicity h = +1 and
helicity h = −1 eigenstates (h = ~J · p̂). We say that the photon (when in a state of definite
helicity) has helicity ±1 . A longitudinal polarization vector pointing along the direction of
propagation would be unchanged under rotations about k and transform like the |m = 0〉 state.
So a longitudinally polarized photon would have zero helicity, it is forbidden for photons and
classical EM waves. On the other hand, phonons or massive gauge vector bosons like the W±

and Z0 can be longitudinally polarized.

• Going by the definition of the spin of a particle as the maximum value of its helicity, the
photon has spin one, though it can only be in a linear combination of |s, h〉 = |1, 1〉 and |1,−1〉
states.

• What is more, the spin of the photon (or any other massless particle) is not related to the
SO(3) rotation group (or its double cover SU(2)), but rather, to the group E(2) of Euclidean
motions (translations and rotations) in a two dimensional plane (not ordinary position space).
The ‘spin group’ is the subgroup of the Lorentz group that leaves the momentum vector of the
relevant particle invariant, it is also called Wigner’s little group or the isotropy subgroup or
stabiliser. For a massive particle the momentum vector is time like, e.g. (m,~0) and it is clear
that rotations in Euclidean space leave this momentum vector invariant. An isomorphic copy
of this group leaves any other time-like momentum 4-vector invariant. For a massless particle,
the momentum vector is light like, e.g., (E, 0, 0, E) and one may show that its stabiliser is
isomorphic to E(2) . The representations of the little group determine the allowed values of
helicity. This is responsible for the absence of the zero helicity photon. More generally, a spin
s massless particle has only two helicities ±s , nothing in between, unlike massive particles.

• So far, we have only discussed the intrinsic angular momentum (spin) of the photon. A photon
could be in a linear combination of states with definite linear momenta c1|k, λ〉 + c2|k′, λ〉 . In
this manner, it is possible to build a 1 photon state of definite orbital angular momentum l . The
total angular momentum includes both the orbital and spin contributions. However, a photon
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cannot be in a state of total angular momentum j = 0 , if it were, then the projection of the
angular momentum on any axis would be zero, and in particular, the helicity would be zero. So
there is no j = 0 monopole photon field.

• On the other hand, there are 1 photon states with higher total angular momentum j = 1, 2 · · ·
and definite parity, they are called multipole fields. These correspond to electric and magnetic
dipole (j = 1), electric and magnetic quadrupole (j = 2), octupole . . . , 2j -pole fields of clas-
sical EM. The electric multipole fields are symmetric linear combinations of helicity h = ±1
(and angular momentum j ) while magnetic multipole fields are anti-symmetric linear combi-
nations.

8 Interaction of atomic electrons with radiation

8.1 Overview of atomic structure & transitions

• Let us begin with a brief overview of atomic structure and transitions. Though weak interac-
tions do play a tiny role (especially in parity-violating effects), atomic structure is determined
to an excellent approximation simply by applying non-relativistic quantum mechanics to the
Coulomb interaction between electrons and nuclei, while imposing Pauli’s exclusion principle.
The mass of the nucleus mN is too large compared to me to affect atomic wave functions and
energies much. To a good approximation, they depend only on the charge (via the fine struc-
ture constant α = e2/4π~c) and mass of the electron me and the nuclear charge Z . There
are two length scales associated with atomic electrons, their reduced Compton wavelength
~/mc = 1/m ≈ 4×10−14 m and the atomic size (Bohr radius a0 = 1/αm). The typical atomic
size, binding energy and speed of electrons in atoms can be estimated using the Bohr model of
the H-atom, or variationally by using Heisenberg’s uncertainty principle. Heuristically (replac-
ing 〈1/r〉 by 1/〈r〉 etc.), the expectation value of energy is E ≈ (∆p)2

2m
− α

∆x
. Using ∆p∆x ∼ 1

we get E ≈ 1
2m(∆x)2

− α
∆x

. Minimizing in ∆x we get a0 ≈ (∆x)min = 1
αm

. The resulting
energy is Emin ∼ −1

2
mα2 ≡ −1Ry = −13.6 eV. Putting |E| ≈ 1

2
mv2 we find that the speed of

an electron in an atom is roughly v = α in units of c . We notice that (1) the size of the atom is
much larger than the Compton wavelength of its constituents a0 = 1/αme � 1/me � 1/mN ;
(2) the electron moves non-relativistically and (3) the binding energy 1

2
mα2 is much less than

the rest energy of the constituents (Ry � mec
2 � mNc

2 ). These are general features of a non-
relativistic bound state. To a good approximation, a nucleus is a non-relativistic bound state of
nucleons, the solar system is a non-relativistic bound state of sun and planets. A hadron is very
different: it is a relativistic bound state of quarks and gluons.

• The solution of the Schrödinger equation for the hydrogen spectrum suggests that an atom
would remain forever in an excited stationary state. In the presence of an external EM field,
atoms can be stimulated to make transitions between stationary states. The rate of stimulated
emission or absorption is proportional to the intensity of light (energy density of the stimulat-
ing EM radiation). However, spectroscopists have known for long that atoms in excited states
spontaneously decay in about a nanosecond through emission of light, even in the absence of
any stimulation. How is this to be explained theoretically? Einstein showed that to understand
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thermodynamic equilibrium between atoms and radiation (whose spectral distribution is gov-
erned by Planck’s blackbody law) in a cavity, the rate for spontaneous decay from excited states
must be non-zero. Remarkably, Einstein’s 1917 argument preceded the formulation of quantum
mechanics and the development of time dependent perturbation theory (by Dirac)! However,
Einstein’s argument does not explain how there can be spontaneous decay even in the absence
of external EM fields. The explanation for this is provided by the quantum theory of radiation.
Even in the vacuum state where the mean electric and magnetic fields are zero, there are vacuum
fluctuations which, in a sense, ‘induce’ spontaneous emission44!

• The interaction of atomic electrons with radiation leads to decay of atoms in excited states
to lower energy levels via spontaneous emission of photons. As for any non-relativistic bound
state, the reduced wavelength λ = 1/∆E of photons emitted is large compared to the atomic
size a0 . To see this, note that the energy difference ∆E ∼ 1

2
mα2 ∼ 1/2ma2

0 . So λ/a0 ∼
ma0 = 1/α = 1/v � 1 . The radiation field of the decaying atom may be expressed as a
multipole expansion in powers of the small parameter a0/λ ∼ α . We will see that the leading
term corresponds to electric dipole radiation (E1), which is followed by electric quadrupole E2
and magnetic dipole (M1) terms.

• Not all transitions between atomic levels are allowed, there are selection rules based on parity
and angular momentum conservation. In one photon emission, the angular momentum ji of
the atom in its initial state must equal the combined angular momentum of the photon (jγ ) and
final state atom (jf ). By the rules for combining angular momenta we must have |jf − jγ| ≤
ji ≤ |jf + jγ| . Dipole radiation has Jγ = 1 , so dipole transitions must satisfy the selection
rule ∆j = 0,±1 . Now a 1 photon state (dipole or not) cannot have zero angular momentum,
jγ 6= 0 . It follows that ji , jf cannot both be zero, there are no 1-photon transitions between
a pair of zero angular momentum states. Parity conservation implies Πi = ΠfΠγ . We will
see that Πγ = −1 for E1 (Πγ = 1 for M1), so it follows that parity must be reversed in E1
transitions.

8.2 Coupling of atomic electrons to the EM field

• To systematically study the interaction of electrons in an atom with the radiation field, we be-
gin with the atomic hamiltonian H0 and treat the interaction with the EM field as a perturbation
H1 . For simplicity, let us consider a one electron atom such as hydrogen, ignoring the spin of

44Note that spontaneous absorption is almost never seen to occur, an atom in its ground state in vacuum is rarely
found to spontaneously get excited. A statistical mechanics argument for this may be offered, using the principle of
equal a priori probabilities: in equilibrium, all states of a system with the same energy are equally likely. Consider
an atom in the presence of electromagnetic radiation present in the vacuum. Suppose the energy difference between
the ground and first excited state of the atom is ∆E . There is only one way in which this quantum of energy can
be possessed by the atom: by being in the first excited state. On the other hand, this energy can be kept in the
radiation field in very many ways, essentially, since the electromagnetic field has very many degrees of freedom,
the electric and magnetic fields at each point of space. Since a priori all these possibilities are equally probable, it
is infinitely more likely for the quantum of energy to be stored in the electromagnetic field than in the atom. This
explains why atoms are typically found in their ground states and are not seen to spontaneously absorb radiation
from the vacuum and get excited.
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the electron. In rationalized Heaviside-Lorentz units,

H0 =
p2

2m
− e2

4πr
(228)

We know that the eigenstates of H0 are |nlm〉 with energies

Enlm = − me4

2(4π)2n2~2
= − e2

2(4π)n2a0

= −mc
2α2

2n2
where a0 =

(4π)~2

e2m
and α =

e2

4π~c
(229)

are the Bohr radius and fine structure constant. Here the principal quantum number n takes the
values 1, 2, . . . corresponding to the K,L,M shells. The angular momentum/azimuthal quantum
number l = 0, 1, . . . n − 1 corresponds to the s, p, d, f orbitals and the magnetic quantum
number ml = −l,−l + 1, . . . , l − 1, l corresponds to the various possible projections of the
angular momentum on the z-axis. Each level has a degeneracy of n2 . If we included the spin
of the electron, then the energies are not altered but the degeneracies are doubled to 2n2 on
account of the two possible spin projections on the z-axis ms = ±1

2
. If we have a hydrogenic

atom with Z protons in the nucleus e2 is replaced by Ze2 .

• According to the Schrodinger equation, all the eigenstates |n, l,m〉 are stable if the hydro-
gen atom is considered in isolation. However, when we consider the hydrogen atom coupled
to the electromagnetic field, we find that all except the ground state |100〉 are unstable to de-
cay by emission of one or more photons, as is experimentally observed. The decay may be
either stimulated by external EM radiation or ‘spontaneous’. Even in the vacuum state, the
electromagnetic field displays quantum fluctuations and these quantum fluctuations can cause
spontaneous emission.

• The interaction of a charged particle with an EM field is given by the Lorentz force law. The
interaction of an electron (charge e) with an EM field (given by the vector potential A) may be
derived from a Hamiltonian. It is obtained by replacing the electron momentum p by p−eA/c .
This is called the minimal coupling or Lorentz prescription (it can be proved by checking that
the resulting equation of motion for r(t) is Newton’s equation with the Lorentz force). Thus

p2

2m
→ 1

2m

(
p− eA

c

)2

=
p2

2m
− e

2mc
(p ·A + A · p) +

e2

2mc2
A2. (230)

• In the quantum theory, p = −i~∇ . So p and A(r) do not commute in general, [pi, Aj] =
−i~∂iAj . In particular,

p ·A−A · p =
∑
i

[pi, Ai] = −i~∇ ·A. (231)

However, in Coulomb gauge, ∇ ·A = 0 , so p ·A = A · p . Thus the hamiltonian becomes

H =

(
p2

2m
− e2

4πr

)
− e

mc
A · p +

e2

2mc2
A2 = H0 −

e

mc
A · p +

e2

2mc2
A2 (232)

where H0 is the standard hydrogen hamiltonian including kinetic energy and Coulomb poten-
tial. The first interaction term linear in A is usually the dominant one, responsible for decay
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by single photon emission in perturbation theory (e.g. electric dipole radiation). The quadratic
term in A is usually a small correction, it is called the dielectric term. It is responsible for
simultaneous two photon emission processes. We will ignore it. It becomes more important
when the effect due to the first term vanishes (as in the decay of the 2S state of hydrogen).

• In addition to this ‘minimal’ electromagnetic coupling of the electron, there is Pauli’s mag-
netic moment interaction between the spin of the electron and the magnetic field

e~
2mc

σ ·B where B = ∇×A. (233)

Though an ad hoc addition to the hamiltonian in the non-relativistic treatment of the atom,
Pauli’s magnetic moment interaction also arises via the minimal coupling Lorentz prescription
in Dirac’s relativistic theory of the electron. The magnetic moment interaction is usually smaller
than the electric dipole interaction and we will ignore it. It is responsible for magnetic dipole
radiation from atoms.

8.3 Golden rule for radiative emission rate in first order perturbation theory

We would like to study a radiative transition of an atom from an initial (excited) state |i〉 to a
final state |f〉 while emitting a single photon with wave vector and polarization k, λ . There is
the analogous absorption process as well. The hamiltonian that governs these processes in the
leading approximation mentioned above is

H =

(
p2

2m
− e2

4πr

)
− e

mc
A · p = H0 +H1(t). (234)

A(r, t) is dependent on time. So we have a time dependent perturbation to the atomic hamil-
tonian, which we wish to treat to first order. For emission, our initial state at t = 0 , |i〉 ⊗ |0〉
consists of an atom in state |i〉 and the radiation field in its vacuum state |0〉 . After a time T ,
we ask for the amplitude to make a transition to the state |f〉 ⊗ |1k,λ〉 consisting of the atom in
state |f〉 and the radiation field in the given 1-photon state. From 1st order perturbation theory,
assuming i 6= f , the transition probability is the absolute square of the

Amplitude(f, 1kλ ← i;T ) = − i
~

∫ T

0

〈f, 1k,λ|H1(t)|i〉 e−i(Ei−Ef )t/~ dt+ · · · (235)

Recalling that

A(r, t) =
c√
V

∑
k′,λ′

√
~

2ωk′
~ελ′
[
ak′,λ′e

i(k′·r−ωk′ t) + a†k′λ′e
−i(k′·r−ωk′ t)

]
, (236)

we see that only the term involving the creation operator a†k′,λ′e
iωk′ t for k′ = k and λ′ = λ can

have a non-vanishing matrix element between the vacuum initial state and the final 1-photon
state |1kλ〉 . On the other hand, for absorption of a photon with wave vector k and polarization
λ , only the annihilation operator term ak,λe

−iωkt can contribute.
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• Thus, without loss of generality, we may factor H1(t) = H̃1e
±iωkt where H̃1 is time-

independent. The + sign is for emission and − sign for absorption. Thus the amplitude for
emission is

Amplf,1kλ←i(T ) =
1

i~
〈f, 1kλ|H̃1|i〉

∫ T

0
e−i(Ei−Ef−~ωk)t/~ =

1

~
〈f, 1kλ|H̃1|i〉

[
e−i(Ei−Ef−~ωk)T/~ − 1

]
(Ei − Ef − ~ωk)/~

(237)
The transition probability is its absolute square

Probf,1kλ←i(T ) =
|〈f |H̃1|i〉|2

~2

4 sin2(ΩT/2)

Ω2
. (238)

where Ω = (Ei − Ef − ~ωk)/~ and |eiθ − 1|2 = 4 sin2(θ/2) . Plot sin2(ΩT/2)/Ω2 as a
function of Ω for various times T and notice that this function is increasingly concentrated
around Ω = 0 as T grows. For long times T , the transition probability is significant only when
Ω = (Ei − Ef − ~ωk)/~ ≈ 0 . Recalling the representation of the Dirac δ function,

2

π
lim
T→∞

sin2 1
2
ΩT

Ω2T
= δ(Ω). (239)

we see that for long times, the transition probability is proportional to the time:

Probf,1kλ←i(T )→ 2π

~
|〈f |H̃1|i〉|2 T δ(Ei − Ef − ~ωk) (240)

We used ~−1δ(Ω) = δ(~Ω) . Dividing by T , the transition probability per unit time (or transi-
tion rate) approaches a constant for long times

Ratef,1kλ←i →
2π

~
|〈f |H̃1|i〉|2 δ(Ei − Ef − ~ωk) (241)

The same formula holds for absorption with the change −~ωk → +~ωk .

• In the case of emission, when the volume of our box V → ∞ , there is a continuous energy
spectrum of possible final state photons which could have wave vectors pointing in various
directions. So it is interesting to find the transition rate for photons emitted into an elemental
solid angle dΩ around the direction (θ, φ) and having an energy lying between ~ω and ~(ω +
dω) . This rate is given by the product of the above rate by the number of photon states in this
range. We will eventually sum/integrate over all the possible states (energies, directions and
polarizations) of the emitted photon to find the total decay rate, but we go in steps.

• Now the energy of a photon is E = ~ωk = ~c|k| . So photon states in a given energy range
lie in a spherical shell in k-space. In general, we associate one quantum state to a phase region
of volume d3rd3p/h3 . So the number of photon states in a volume V (with fixed polarization
- we will sum over polarizations later) with wave vectors in the range [k,k + dk] is (p = ~k)

dn =
V d3p

(2π)3~3
=
V d3k

(2π)3
=

1

(2π)3
V k2 dk dΩ (242)
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upon transforming to spherical polar coordinates. For photons emitted into the solid angle
dΩ , let us denote the number of photon states with energy in the interval [E,E + dE] by
ρ(E,Ω)dEdΩ . Then

ρ(E,Ω) dE dΩ = dn =
1

(2π)3
V k2 dk dΩ. (243)

Thus, the density of states (E = ~ω = ~ck )

ρ(E,Ω) dE dΩ =
1

(2π)3
V k2 dΩ

dk

dE
dE =

V k2dΩ

(2π)3~c
dE =

V ω2dΩ

(2π)3~c3
dE. (244)

Multiplying by the previously obtained rate and integrating over photon energies (which is fixed
by the energy conserving δ -function), we obtain Fermi’s Golden Rule for the emission rate of
a photon with polarisation λ and wave vector k pointing in the solid angle dΩ around the
direction defined by θ, φ:

w(Ω)dΩ = dΩ
2π

~

∫
|〈f |H̃1|i〉|2 δ(Ei − Ef − ~ωk)ρ(E,Ω)dE =

2π

~
|〈f |H̃1|i〉|2ρ(Ek,Ω) dΩ

(245)
where Ek = ~ωk = Ei − Ef . The letter w is a commonly used symbol to denote the rate of a
process in physics. This formula for w is called Fermi’s golden rule.

• Now let us apply this to the case of photon emission. The relevant interaction hamiltonian is
the coefficient of the creation operator a†k,λe

iωkt in −(e/mc)A · p:

H̃1 = − e

mc

c√
V

√
~

2ωk
e−ik·r ~ελ · p. (246)

Note that 〈1kλ|a†kλ|0〉 = 1 , so we do not indicate the photon creation operator or photon state
any more. Thus the rate for photon emission into dΩ is

w(Ω)dΩ =
2π

~
e2~

2m2ωkV
|〈f |e−ik·r~ελ · p|i〉|2

V ω2
k

(2π)3

dΩ

~c3
=

e2ωk
8π2m2~c3

|〈f |e−ik·r~ελ · p|i〉|2 dΩ

(247)
Notice that the factor of V in the density of states cancels the 1/V from the square of the matrix
element leaving a finite limit as V →∞ .

8.4 Electric dipole approximation

To determine the emission rate, we must evaluate the matrix element

〈f |e−ik·r ~ελ · p|i〉 (248)

between the initial and final atomic states |i〉, |f〉 . Here k,~ελ are the photon wave vector and
polarization while r,p are the position and momentum operators of the electron. Computing
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this matrix element between atomic energy eigenstates is in general quite difficult since it in-
volves the exponential of the position operator. To make progress we would like to expand the
exponential in a series.

e−ik·r = 1− ik · r− (k · r)2 + · · · . (249)

This is a reasonable approximation if we are considering EM radiation in the visible/UV/IR
region of the spectrum. The wave number of k = 2π

λ
of visible light corresponds to wave

lengths of several thousands of angstroms while atomic wave functions are spread over lengths
of the order of an angstrom. So the order of magnitude of

〈k · r〉 is
size of atom

wave length of light
∼ 10−3. (250)

The electric dipole approximation E1 consists in approximating e−ik·r by 1 . Retaining the next
term e−ik·r ≈ 1 − ik · r is called the electric quadrupole approximation E2. We expect the
quadrupole term to be a thousand times smaller than the dipole term.

• To compute the transition rate in the long wavelength E1 approximation, we need to find the
matrix element

〈f |~ελ · p|i〉 = ~ελ · 〈f |p|i〉. (251)

The matrix elements of position between hydrogen energy levels are somewhat easier to com-
pute (by direct integration), than the momentum matrix elements. We may relate them using a
trick: the commutator of the hydrogen hamiltonian with position is proportional to momentum:

[r, H0] = [r,
p2

2m
] = i

~
m

p (252)

Bearing in mind that |i〉 and |f〉 are eigenstates of H0 with energies Ei,f we get

i
~
m
〈f |p|i〉 = 〈f |[r, H0]|i〉 = (Ei − Ef )〈f |r|i〉 = ~ωk〈f |r|i〉. (253)

Thus

〈f |~ελ · p|i〉 = −imω~ελ · 〈f |r|i〉 and |〈f |~ελ · p|i〉|2 = m2ω2|~ελ · 〈f |r|i〉|2 (254)

So the transition rate in the E1 approximation becomes

w(Ω)dΩ =
e2ω3

8π2~c3
|~ελ · 〈f |r|i〉|2 dΩk. (255)

8.5 Selection rules for E1 transitions

• Selection rules state that the matrix element for electric dipole transitions 〈f |r|i〉 vanish for
certain initial and final states. So there can be no E1 transitions for certain quantum numbers of
the initial and final states.
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• The parity selection rule states that an E1 transition is forbidden if the initial and final atomic
levels |i〉, |f〉 have the same parity. To see this first recall that parity acts as

Pψ(r) = ψ(−r) and P2 = I ⇒ P−1 = P. (256)

It follows that parity anti-commutes with position, for

(Pr + rP)ψ(r) = −rψ(−r) + rψ(−r) = 0. (257)

Therefore P−1rP = PrP = −r . Using this, the dipole matrix element satisfies

〈f |r|i〉 = −〈f |PrP|i〉 = −PfPi〈f |r|i〉 ⇒ (1 + PfPi)〈f |r|i〉 = 0. (258)

Hence, either the matrix element vanishes or the product of parities PfPi is −1 . So the parity
must change in an E1 transition.

• Recall that the parity of the hydrogen level |nlm〉 is (−1)l . So the E1 transition |nlm〉 →
|n′l′m′〉 is forbidden if l+ l′ is odd. In particular, l′ − l = 0 is forbidden. So for instance there
cannot be E1 transitions between two S-wave states or two P-wave states or two D-wave states
etc. In fact, combining with the angular momentum selection rule (see below), this implies
∆l = ±1 .

• Angular momentum selection rule. As we argue heuristically below, in E1 transitions the
emitted photon carries angular momentum jγ = 1 in units of ~ . (See QM2 lecture notes
for a more detailed treatment or see a book on quantum mechanics) Suppose ji, jf are the
total angular momentum quantum numbers of the initial and final electronic states. Then the
selection rule states that an E1 transition is forbidden if

∆j = jf − ji 6= 0,±1. (259)

Moreover the transition from ji = 0 to jf = 0 is also forbidden. Heuristically, in the matrix
element 〈f |r|i〉 , the operator r behaves as if it has angular momentum one45. Then we are
adding the angular momentum ji of the initial state to this, ji⊗1 and we know that if ji 6= 0, 1

2
,

the resulting system behaves as if it has angular momentum jf = ji − 1 or ji or ji + 1 . So ji
and jf must differ by 0 or ±1 . If ji = 1

2
then jf must be 1

2
or 3/2 . If ji = 0 then jf = 1 , so

0→ 0 E1 transition is forbidden.

• In particular, the ‘metastable’ 2S state of hydrogen is stable to radiative decay in the E1
approximation. In fact, it is stable to decay via all 1 photon electric and magnetic multipole
transitions, it decays via 2 photon emission. This accounts for its unusually long mean lifetime
of 0.12 seconds.

8.6 Polarization and direction averaged E1 emission rate

So far we have found that the E1 transition rate i→ f accompanied by the emission of a photon
into solid angle dΩ with polarization λ is

w(Ω)dΩ =
e2ω3

8π2~c3
|~ελ · 〈f |r|i〉|2 dΩ. (260)

45To motivate this, notice that r = (x, y, z) = r(cos θ, sin θ cosφ, sin θ sinφ) so 1
r (z, x ± iy) =

(cos θ, sin θe±iφ) which we notice are proportional to the l = 1 spherical harmonics Y10, Y1,±1 .
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From here on, we are interested in the rate of emission, irrespective of the direction or polariza-
tion of the outgoing photon. To do this averaging, it is convenient to write the square of the dot
product in terms of the angle Θλ between the unit polarization vector ~ελ and the dipole vector
matrix element 〈f |r|i〉 ≡ rfi

|rfi · ελ| = |rfi| cos Θλ. (261)

Then

w(Ω) dΩ =
e2ω3

8π2~c3
|rfi|2 cos2 Θλ dΩ (262)

To do the sum over polarizations λ , let us work in a real right-handed orthonormal basis ε1, ε2, k̂
with ε1× ε2 = k̂ and define spherical polar coordinates θ, φ: rfi makes an angle θ with k and
the projection of rfi onto the ε1 − ε2 plane makes an angle φ with ε1 . Then

cos Θ1 = sin θ cosφ and cos Θ2 = sin θ sinφ. (263)

Then the sum over polarizations just gives a sin2 θ factor

2∑
λ=1

w(Ω)dΩ =
e2ω3

8π2~c3
|rfi|2 (cos2 Θ1 + cos2 Θ2)dΩ =

e2ω3

8π2~c3
|rfi|2 sin2 θ dΩ (264)

• There is another way of summing over polarizations to show that∑
λ

|~ελ · 〈f |r|i〉|2 = |rfi|2 sin2 θ (265)

where θ is the angle between the dipole matrix element and k . To do this we abbreviate
〈f |r|i〉 ≡ r = (r1, r2, r3) , write in components and use the completeness of the orthonormal
system ε1, ε2, k̂ :

∑
λ

|~ελ · 〈f |r|i〉|2 =
∑
λ

riελir
∗
j ελj =

3∑
i,j=1

rir
∗
j

∑
λ

ελiελj

=
∑

rir
∗
j (δij − k̂ik̂j) = |r|2 − |r · k̂|2 = r2 sin2 θ. (266)

• Before performing the average over directions we remark that to obtain the energy radiated
per unit time into solid angle dΩ we must multiply the above polarization averaged rate by the
energy per photon ~ω

PowerdΩ =
e2ω4

8π2c3
|rfi|2 sin2 θ dΩ (267)

The power is proportional to the fourth power of ω and to the square of the matrix element of the
electric dipole moment of the electron er . Moreover, it has a sin2 θ angular dependence where
θ is the angle between the dipole moment matrix element and the direction of propagation k̂ .
No energy is radiated along the direction of the dipole moment (‘it is darkest underneath the
candle’!). This is reminiscent of the formula for the intensity of energy radiated by an oscillating
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electric dipole46 p(t) = 2p0 cosωt ẑ in classical E & M, which may be described by the flux
of the time-averaged Poynting vector 〈S〉 across the element r2dΩr̂ . In HL units (see Griffiths
and put ε0 = 1)

〈S〉 · r2dΩr̂ =
ω4

8π2c3
p2

0

sin2 θ

r2
r̂ · r2dΩr̂ =

ω4

8π2c3
p2

0sin2 θdΩ. (268)

Here 2p0 = 2q0s is the maximum value of the dipole moment and s is the separation between
the oscillating charges ±2q(t) = ±2q0 cosωt .

• The ω4 dependence is also expected classically from the Larmor formula which states that
the power radiated is proportional to the square of acceleration [acceleration ∼ ω2 from the
formula for p(t)].

• Returning to the rate of E1 transitions wdΩ , we follow the polarization sum by the integral
over directions∫ π

0

∫ 2π

0

sin2 θ sin θ dθ dφ = 2π

∫ 1

−1

sin2 θ d(cos θ) = 2π × 2

∫ 1

0

(1− t2) dt =
8π

3
. (269)

So the polarization and direction averaged emission rate is

w =
∑
λ

∫
wdΩ =

e2ω3

3π~c3
|rfi|2 =

(
e2

4π~c

)
4ω3

3c2
|rfi|2 =

4αω3

3c2
|rfi|2 (270)

It has dimensions of inverse time. Here α = e2

4π~c is the fine structure constant. We have
computed this rate to first order in perturbation theory in the electric dipole approximation.
Multiplying by the photon energy ~ω we also get the power radiated in all directions

Power =
e2ω4

3πc3
|rfi|2. (271)

This too is reminiscent of the classical formula for the power radiated by the above oscillating
electric dipole. In HL units (see Griffiths and mind the factor of two in the definition of dipole
moment)

〈Power〉classical =

∫
〈S〉 · r̂ r2dΩ =

ω4p2
0

3πc3
. (272)

This increase in power with the fourth power of the frequency is used to explain the blueness of
sunlight scattered by the atmosphere.

• Sakurai points out that Heisenberg obtained the formula for the rate w prior to the develop-
ment of the quantum theory of radiation, by a use of the correspondence principle.

8.7 Life-time of 2p state of hydrogen: Lyman α transition

• The mean lifetime τ of state |i〉 is defined as the reciprocal of the sum of transition rates to
all possible final states |f〉 allowed by the selection rules and energy conservation

1

τi
=
∑
f

wf←i. (273)

46The factors of 2 are because eiωt + e−iωt = 2 cosωt and we used exponentials in the quantum theory.
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The sum over final states
∑

f wf←i is called the total decay rate of the state i , the summands
being the partial decay rates. Γf←i = ~wf←i is called the partial energy width, Γtot =

∑
f Γf←i

is called the total energy width of the unstable state i . The lifetime τ = ~/Γtot . Note that we
do not speak of partial life-times.

• Now consider the first excited states of hydrogen, they are of course degenerate, including
the 2s and 2p levels. The only lower level they can decay to is 1s (Note that 2p → 2s has zero
rate since ω = 0). The 2s → 1s electric dipole transition is forbidden since they have the same
parity. The 2p to 1s E1 transition is allowed by the selection rules. Spectroscopists call it the
Lyman α transition. The Lyman α transition has been a useful tool in cosmology. The Lyman
alpha ‘forest’: absorption lines in light from very far away quasars due to excitation of hydrogen
in inter-stellar gas. One sees not one line but several lines, indeed a forest of lines, because of
the shifting of spectral lines due to relative motions of the various clouds of intervening gas.
But all the lines are believed to correspond to the same Lyman α atomic transition.

• τ2p in the E1 approximation is given by

τ−1
2p = w =

4αω3

3c2
|〈1s0|r|2pml〉|2 (274)

The rate is the same for all the values of ml = 0,±1 . Let us compute it for ml = 0 . Recall that
the hydrogen wave functions are given by ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) . We have

R1s =
2√
a3
e−r/a, Y00 =

1√
4π
, R2p =

1√
24a3

r

a
e−r/2a, Y10 =

√
3

4π
cos θ (275)

Note that the R2p decays twice as slowly as R1s , excited states are more spread out. Also
R2p(r) has one more node than R1s as we expect of the first excited state. The pre-factors are
fixed by normalisation

∫
|ψ|2r2drdΩ = 1 ,

∫
|Ylm|2dΩ = 1 . So

〈1s0|r|2p0〉 =

∫
drdθdφ r2 sin θ

1√
4π

√
3

4π
cos θ

2√
a3
e−r/a

1√
24a3

r

a
e−r/2a (x, y, z) (276)

Now r = (x, y, z) = r(cos θ, sin θ cosφ, sin θ sinφ) . We see that only z component contributes
to the matrix element, the x, y components vanish since they are proportional to the integrals∫ 2π

0
cosφdφ and

∫ 2π

0
sinφ dφ . So we only need

〈1s0|z|2p0〉 =

∫ 2π

0

dφ

∫ π

0

dθ sin θ
1√
4π
·cos θ·

√
3

4π
cos θ

∫ ∞
0

dr r2 2√
a3
e−r/a·r· 1√

24a3

r

a
e−r/2a.

(277)
where a = ~

mcα
= 4π~2

me2
= .53 Angstroms is the Bohr radius. Doing the integrals we get a

matrix element that is of order of the Bohr radius

〈1s0|z|2p0〉 =
256

243
√

2
a = 0.74a = 3.9×10−9cm ⇒ |rfi|2 = 0.55a2 = 1.52×10−17 cm2.

(278)
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The energy of the emitted photon is

~ω = E2p − E1s = −mc
2α2

2

(
1

22
− 1

12

)
=

3mc2α2

8
= − e2

8πa

(
1

22
− 1

12

)
=

3e2

32πa
= 13.6× 3

4
= 10.2 eV.

(279)
Since ~ = 6.52×10−16 eV.s, ω = 1.56×1016 /s corresponding to the wave length λ = 2πc/ω =
1216 Angstroms of the Lyman α line. With α = 1/137 and c = 3 × 1010 cm/s we get the
numerical values of the 2p-1s Lyman α transition rate and mean lifetime of the 2p level

w =
4αω3

3c2
|rfi|2 = 0.6× 109 s−1 ⇒ τ2p ≈ 1.6 ns (280)

• The energy widths of excited levels that decay via E1 transitions are of order Γ = ~/τ ∼
αω3

c2
|rfi|2 . Now the dipole matrix element is of order the Bohr radius |rfi|2 ∼ a2

0 while ~ω
is of the order of a Rydberg Ry = 1

2
mc2α2 . Let us write the width in natural units, where

a0 = 1
αm

. We get Γ ∼ Ry α3 = mα5 . This gives a simple way of estimating its numerical
value, τ ∼ 1

mα
1
α4 . We can restore factors of c, ~ by not ing that cτ is a length, so it must be

a multiple of the Compton wave length of the electron, so cτ = ~
mcα

1
α4 . The first factor is the

Bohr radius a0 . Putting in a0 = .53 Angstroms, α = 1/137 and c = 3 × 108 m/s we get
τ ∼ 10−9 s.

• A similar calculation can be performed to find the rates for E1 transitions between other
hydrogen levels that are not forbidden by the selection rules. For small values of n , the dipole
matrix element |rfi| is of order the Bohr radius and ω ≈ 1016 Hz, resulting in lifetimes on the
order of nanoseconds or tens of nanoseconds. Some of these allowed decays are 2p-1s, 3s-2p,
3p-1s, 3p-2s, 3d-2p e.t.c.

• When a decay is forbidden in the electric dipole approximation we go to the next approx-
imation: the electric quadrupole approximation E2 coming from the second term in e−ik·r =
1− ik · r + . . . . One must also consider the magnetic dipole approximation M1 due to Pauli’s
coupling of the magnetic dipole moment of electrons to the radiation field. The lifetimes of
excited states that decay to leading order via E2 and M1 transitions are about a million times as
long as those that decay via E1

τE2,M1 ∼
(
λ

a0

)2

τE1 ∼ 10−3 s. (281)

• The 2s level cannot decay in the E1 approximation due to the parity selection rule, the only
lower level 1s has the same parity. In fact is is forbidden to decay even via E2 or M1. It
eventually decays via 2 photon emission. This is in fact the superposition of two amplitudes,
one coming from treating the interaction hamiltonian − e

mc
A ·p to second order in perturbation

theory and by treating the dielectric term ( e2

2mc2
A2 ) in first order perturbation theory. The 2s

level consequently has a long lifetime τ2s ≈ .12 s.
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9 Spin zero, half and one relativistic fields and their interactions

9.1 Need for quantum fields for matter particles

• We are chiefly concerned with phenomena where sub-nuclear particles have energies much
more than their rest masses, so that they travel at relativistic speeds. Moreover, these phenomena
involve length scales comparable to or less than particle de Broglie wavelengths, necessitating a
quantum mechanical treatment. The theory of quantum fields is a formalism that (among other
things) is able to incorporate both special relativistic and quantum mechanical principles.

• Classical Maxwell theory deals with propagating disturbances in electric and magnetic fields,
they involve infinitely many degrees of freedom. The concept of a propagating field was needed
to accommodate the finite speed of propagation, it replaced notions of instantaneous action at a
distance. With the discovery that light photons also displayed quantum mechanical and particle-
like behavior, it became necessary to quantize the EM field and deal with field operators for the
photon. The quantum field theory of photons was developed from 1928-29 onwards.

• On the other hand, particles like electrons in atoms had already been given a successful
quantum mechanical treatment involving finitely many degrees of freedom (described by the
coordinates xi ). Coordinates and momenta are hermitian operators satisfying Heisenberg’s
commutation relations [x̂i(t), p̂j(t)] = i~δij and time is a parameter. A familiar consequence
of [x̂, p̂x] = i~ is that if a particle can be found at all possible locations −∞ < x < ∞ , then
p̂x = −i~∂x also has a continuous spectrum −∞ < px <∞ .

• However, this framework needed to be generalized to incorporate special relativity. It may
not be obvious why a relativistic generalization would require the concept of an electron field.
Indeed, as Weisskopf and Gottfried point out, one could try to develop a relativistic quan-
tum mechanics of one electron (or a definite number of electrons) with finitely many degrees
of freedom, by defining 4-vectors of quantum mechanical operators x̂µ = (t̂, x̂, ŷ, ẑ) and
p̂µ = (Ĥ/c, p̂x, p̂y, p̂z) (perhaps parametrized by proper-time). Generalizing the Heisenberg
commutation relations in a Lorentz covariant manner leads to [x̂µ, p̂ν ] = −i~ηµν . This for-
mula takes the same form in all inertial frames x′µ = Λµ

νxν , p
′ν = Λν

ρp
ρ since ηµν does not

change under Lorentz transformations. It also reduces to the Heisenberg relations for the spatial
components. In particular, we must have [x̂, Ĥ] = 0 or d

dτ
x̂ = 0 . It appears that the particle

would have to have zero proper velocity in any state. This seems to be too stringent a dynami-
cal restriction to accommodate the observed phenomena. Moreover, if we assume that the time
operator has a continuous spectrum (as observed), then the relation [t̂, Ĥ/c] = −i~ would im-
ply that the hamiltonian must have a continuous spectrum, including arbitrarily negative values,
making the stability of matter problematic. These predictions are not borne out by the behavior
of relativistic electrons. On the other hand, what is observed is that at relativistic speeds, the
number of electrons is not conserved due to pair production and annihilation, necessitating a
framework with an indefinite number of degrees of freedom.

• This attempt at elevating time to an operator so that Lorentz transformations could transform
position and time operators into each other does not succeed. Another option is to demote x, y, z
to parameters just like time and introduce instead quantum fields φi(x, y, z, t) that depend on
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space and time parameters and transform among each other under the Poincare group. Indeed,
this is what the analogy with the electromagnetic field would suggest since E,B are functions
of x, y, z, t and transform into each other under Lorentz transformations. The field concept also
brings in an infinite number of degrees of freedom as required by experiment. As history has
shown, the quantum field concept has succeeded in particle physics far beyond the expectations
of the initiators of the subject (Dirac, Pauli, Heisenberg et. al.). Thus we embrace the field
concept both for force carriers like the photon and matter particles like the electron.

9.2 Lagrangian, equations of motion and Noether’s theorem

• The classical dynamics of fields is governed by relativistic wave equations such as the Maxwell,
Klein-Gordon, Dirac/Pauli/Weyl and Yang-Mills equations which we will study shortly. These
follow from various Lagrangian densities (the word density is often dropped) L via Hamilton’s
principle of extremal action δ

∫
d4xL = 0 . For example, if φa are a collection of fields and

L = L(φa, ∂µφa) , then the Euler-Lagrange field equation for each component a is

∂L
∂φa

= ∂µ
∂L

∂∂µφa
or

∂L
∂φa

= ∂µπ
µ
a where πµa =

∂L
∂∂µφa

(282)

φa(x, t) specify the instantaneous configuration of the system. π0
a = ∂L

∂φ̇a
is called the mo-

mentum conjugate to φa and is conserved if φa does not appear in L . The energy/hamiltonian
density H = π0

aφ̇a − L is time-independent if the Lagrangian is not explicitly dependent on
time. The canonical Poisson brackets are {φa(x, t), π0

b (y, t)} = δabδ
3(x− y) .

• Noether’s theorem: suppose L is invariant under an infinitesimal symmetry transformation
φa → φa + δφa , then

0 = δL =
∂L
∂φa

δφa +
∂L

∂∂µφa
δ∂µφa = (∂µπ

µ
a )δφa + πµa (∂µδφa) = ∂µ(πµaδφa) (283)

by use of the equations of motion. Thus the current jµ = πµa δφa is locally conserved ∂µjµ = 0

or ∂j0

∂t
+ ∇ · ~j = 0 where jµ = (j0,~j) . It follows that the ‘Noether charge’ in a region V ,

Q ≡
∫
V
j0 d3x is independent of time, Q̇ =

∫
V
j̇0d3x = −

∫
V
∇ · ~jd3x = −

∫
∂V
~j · n̂dA = 0

provided the fields are such that the flux of ~j across the boundary of V is zero. Note that
the charge Q =

∫
π0
b (y)δφb(y)d3y is a linear combination of the conjugate momenta π0

a . It
follows that {φa(x), Q} = δφa(x) . So the conserved Noether charge generates the infinitesimal
symmetry transformation via the Poisson bracket. This is as expected. We know from classical
mechanics that the p.b. of any quantity with an observable is equal to the change in the quantity
under the infinitesimal canonical transformation generated by the observable.

9.3 Klein Gordon scalar field for spin zero particles

• The simplest classical relativistic wave equation, the KG equation, describes free propagation
of classical massive scalar fields. Its quantization (upon including some interactions) describes
spin zero (scalar) particles such as the Higgs boson and π mesons. It is obtained from the
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relativistic energy-momentum dispersion relation E2 = p2c2 + m2c4 via the ‘correspondence
rule’ E = i~ ∂

∂t
, p = −i~∇ .

− ~2∂
2φ

∂t2
= −~2c2∇2φ+m2c4φ or (�+

m2c2

~2
)φ(r, t) = 0 (284)

where � = (1/c2)∂2
t − ∇2 is the d’Alembert or wave operator. ~/mc is the Compton wave-

length corresponding to the mass m . The equation is relativistically invariant if φ transforms
as a scalar under the Poincare group φ′(x′) = φ(x) . Let ηµν = diag(1,−1,−1,−1) be the
Minkowski metric. The contravariant and covariant components of the position, gradient and
momentum 4-vectors are

xµ = (x0, ~x) = (ct, ~x), xµ = ηµνx
ν = (ct,−~x), ∂µ =

∂

∂xµ
=

(
1

c

∂

∂t
,−∇

)
, ∂µ =

(
1

c

∂

∂t
,∇
)
,

pµ = (E/c, ~p) = i~
(

1

c
∂t,−∇

)
= i~∂µ and pµ = ηµνp

ν = (E/c,−~p) = i~∂µ. (285)

Then p2 = pµpµ = −~2∂µ∂µ = −~2� and the KG equation is (p2 −m2c2)φ = 0 or (∂µ∂µ +
m2c2/~2)φ = 0 . Despite the appearance of factors of ~ , this is not to be regarded as a quantum
mechanical wave equation. The quantity λ = ~/mc has dimensions of length and may simply
be regarded as a parameter of a classical field model with equation of motion (� + 1

λ2‘
)φ = 0 .

Such an equation could be used to model propagation of scalar classical EM waves (i.e. ignoring
polarization) through a plasma, where λ is a Debye length. Interpretation in terms of particles
must await quantization as in the case of Maxwell theory.

• The KG equation may be studied either for a real or complex scalar field. The complex case
is more relevant to the standard model of particle physics since the Higgs scalar field is a (pair
of) complex scalars.

• The KG equation is the Euler-Lagrange equation following from the action S =
∫
L d4x

where
L = (∂µφ)∗(∂µφ)−m2|φ|2 = |∂tφ|2 − |∇φ|2 −m2|φ|2. (286)

We regard φ, φ∗ as a pair of independent fields. Up to a 4-divergence, which does not contribute
to the action with decaying boundary conditions, this is equal to L = φ∗(−∂µ∂µ − m2)φ .
Extremization with respect to φ∗ gives the KG equation for a complex scalar φ (i.e the EL
Lagrange equation reduces to ∂L

∂φ∗
= 0 since L written this way, does not involve derivatives

of φ∗ ). Similarly, the EL equation from extermination in φ gives the complex conjugate KG
equation (�+m2)φ∗ = 0 .

• From L we get πµφ = ∂µφ∗ and πµφ∗ = ∂µφ . The momenta conjugate to φ, φ∗ are π0
φ = φ̇∗

and π0
φ∗ = φ̇ . The corresponding conserved energy density defined as H = π0

φφ̇ + π0
φ∗φ̇
∗ − L

reduces to H = |∂tφ|2 + |∇φ|2 + m2|φ|2 . We interpret T = |φ̇|2 as the kinetic energy density
and V = |∇φ|2 + m2|φ|2 as potential energy density. So L = T − V while H = T + V . The
KG equation (without a mass term and for a real scalar in one spatial dimension) is also used to
model small oscillations of a stretched string whose height is φ(x, t) . In that case, integration
by parts yields

∫
(∂xφ)2dx = −

∫
φ∂2

xφdx with suitable boundary conditions. The latter may
be interpreted as a bending energy of the string, it grows with the curvature (second derivative)
of the string. It is a potential energy in the sense that it is due to the tensional forces exerted on
a piece of string by the neighbouring pieces of string, which tend to straighten out the string.
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• One may recall from a course on relativistic QM that a complex KG field admits a local
conservation law ∂tρ(x, t) +∇ · j(x, t) = 0 for the density and current

ρ(x, t) = − ie
c2

(
φ∗φ̇− φφ̇∗

)
and ~j(x, t) = ie (φ∗∇φ− φ∇φ∗) . (287)

Note that ρ,~j are identically zero for a real scalar field. e is a constant with the physical
meaning of electric charge, as we shall see. In Lorentz invariant form, this is the conservation
of the 4-vector current. Check using KG, that

jµ =
(
cρ,~j

)
= −ie(φ∗∂µφ− (∂µφ)∗φ) ⇒ ∂µj

µ = 0. (288)

This is Noether’s conserved current for the global U(1) symmetry φ → eieθφ , φ∗ → e−ieθφ
corresponding to the infinitesimal transformations δφ = ieφ , δφ∗ = −ieφ∗ . One finds the
conserved current −ieθ(φ∗∂µφ− (∂µφ)∗φ) which is just jµ upon omitting the small parameter
θ .

• In the non-relativistic limit φ(r, t) = e−imc
2t/~ψ(r, t) , where ψ is slowly varying in time. The

KG equation reduces to the non-relativistic Schrödinger equation for ψ and the components
of −~jµ/2me reduce to (cP, ~J) where P = |ψ|2 and ~J = ~

2mi
(ψ∗∇φ − ∇φ∗ψ) are the

conserved Schrodinger probability density and current. However, the conserved KG density ρ
is not always positive and we cannot interpret φ as a probability amplitude. Pauli and Weisskopf
reinterpreted the KG equation as a scalar field equation and the current jµ as the electromagnetic
current of charged spinless particles, such as pions. (Note: jµ needs to be modified to be
conserved in the presence of an EM field, see the next section). When quantized, the creation
and annihilation operators of the scalar field create/destroy scalar particles. The ‘charge’ e
should be the eigenvalue of the conserved charge operator Q =

∫
j0d3x in a one-scalar particle

state.

• A self-interacting scalar field (such as the Higgs field) is obtained by including a real poten-
tial V (φ∗, φ) in the Lagrangian L = |∂φ|2 −m2|φ|2 − V (φ∗, φ) leading to the eqn of motion
(∂2 + m2)φ + ∂V

∂φ∗
= 0 (some times the m2|φ|2 mass term is included in V ). To retain the

above U(1) global symmetry, V must only be a function of the combination φ∗φ . Of particular
interest is the quartic ‘Mexican hat’ potential V = (λ/4)(|φ|2 − v2)2 which is minimal when
|φ| = v , the so-called vacuum expectation value of the scalar field. The field equation for a mas-
sive real scalar field (∂2 + m2)φ + V ′(φ) = 0 follows from L = 1

2
∂µφ∂µφ− 1

2
m2φ2 − V (φ) .

Why the factor of two difference between complex and real scalar fields?

9.4 Complex scalar coupled to EM field

Though the above complex scalar field possesses a global U(1) symmetry, the lagrangian
(∂µφ)∗(∂µφ)−V (φ∗φ) isn’t invariant under local U(1) phase transformations φ′ = eieθ(x)φ(x) ,
where θ(x) is a function on Minkowski space. This is because ∂µφ does not transform in the
same way as φ does. There is an extra additive term (inhomogeneous transformation) in the
partial derivative of φ′ :

∂µφ
′ = eieθ [∂µφ+ (ie∂µθ)φ] . (289)
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The reason to seek invariance under local phase changes is that it naturally leads to coupling
to the electromagnetic field. Indeed. this extra term can be gotten rid of by introducing an
additional field Aµ which transforms to A′µ = Aµ + ∂µθ . In other words, the Lagrangian may
be made local U(1) invariant by ‘minimally coupling’ the scalar field to an electromagnetic
vector gauge potential Aµ = (ϕ,A) (note that ϕ is the electric potential, distinct from the
scalar field φ . φ is a scalar while ϕ transforms as the time component of a 4-vector). This
is done by replacing partial derivatives by covariant derivatives in the Lagrangian of the scalar
field

Dµφ = (∂µ − ieAµ)φ and L = |Dµφ|2 − V (φ∗φ). (290)

Under a local U(1) gauge transformation, the covariant derivative of φ transforms in the same
way as the field itself. Check that

A′µ = Aµ + ∂µθ and φ′ = eieθφ ⇒ (Dµφ)′(x) = eieθ(x)Dµφ(x) (291)

so that L is gauge invariant. The number e is the charge of the scalar field, and we have
described the interaction of a charged scalar field (necessarily complex) with an external elec-
tromagnetic field. It is instructive to write out the Lagrangian

L = (∂µ+ieAµ)φ∗(∂µ−ieAµ)φ−V (φ∗, φ) = |∂µφ|2+ieAµ(φ∗∂µφ−∂µφ∗φ)+e2AµA
µ|φ|2−V (φ∗φ).

(292)
The tri-linear ‘charge interaction’ terms ieAµ(φ∗∂µφ − ∂µφ∗φ) are derivative interactions. A
scalar that does not have such a derivative interaction with the gauge potential is said to be
uncharged (neutral). The Higgs is a neutral scalar particle. π± are charged scalar particles.

• The resulting equation of motion for the scalar is(
∂2 − 2ieA · ∂ − ie(∂ · A)− e2A2

)
φ+

∂V

∂φ∗
= 0 or DµD

µφ+
∂V

∂φ∗
= 0 (293)

and its complex conjugate. The second form is manifestly gauge covariant, both terms transform
by multiplication by eieθ(x) .

• The gauge-invariant generalization of the conserved current is

jµ = −ie (φ∗Dµφ− (Dµφ)∗φ) = −ie(φ∗∂µφ− (∂µφ)∗φ)− 2e2Aµ|φ|2 (294)

Check using the eom that ∂µjµ = 0 . jµ is called the electromagnetic current of the charged
scalar field. We will see that it enters as a source in Maxwell’s equations47, ∂µF µν = jν so that
its conservation is crucial to the consistency of Maxwell’s equations.

9.5 Maxwell field equations for massless spin one particles

• The photon field Aµ coupled to the complex scalar in the last section was an external field, it
did not have any dynamics of its own. The dynamics of the EM field is governed by Maxwell’s

47Technical aside: Note that the coupling of the scalar to the gauge field in the Lagrangian cannot simply be
written as L = |∂φ|2 − 1

4F
2 − jµAµ due a factor of 2 in jµ . Since jµ depends on Aµ this does not lead to the

correct equation of motion.
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equations. In rationalized Heaviside-Lorentz units they are

∇ ·B = 0, ∇× E = −1

c

∂B

∂t
, ∇ · E = ρ and ∇×B =

j

c
+

1

c

∂E

∂t
. (295)

where for consistency of the two inhomogeneous equations the electric charge and current den-
sity must satisfy the continuity equation ∂ρ

∂t
+∇ · j = 0 . For example, ρ,~j may be the electro-

magnetic current due to a charged scalar field. The first two homogeneous Maxwell equations
state the absence of magnetic monopoles, and Faraday’s law of induction. The second pair of
inhomogeneous equations are Gauss’ law and Ampere’s law with Maxwell’s correction term
involving the time derivative of the electric field (the displacement current).

• The first pair of homogeneous Maxwell equations are identically satisfied if the fields are
expressed in terms of scalar and vector potentials (ϕ,A)

E = −∇ϕ− 1

c

∂A

∂t
and B = ∇×A. (296)

• The inhomogeneous Maxwell equations can be written in a relativistically covariant form
by introducing the real 4-vectors Aµ = (ϕ,A) and jµ = (cρ, j) and the field strength tensor
F µν = ∂µAν − ∂νAµ . Then the inhomogeneous Maxwell equations become ∂µF

µν = 1
c
jν

along with the consistency condition ∂µjµ = 0 which expresses local charge conservation.

• The electric and magnetic fields B = ∇×A and E = −1
c
∂A
∂t
−∇ϕ with cartesian components

Ei, Bi = εijk∂jA
k are then the components of the field strength F 0i = ∂0Ai − ∂iA0 = −Ei

and

F ij = ∂iAj−∂jAi = −∂iAj+∂jAi = −εijkBk ⇒ Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (297)

The covariant components are given by Fµν = ηµρηνσF
ρσ . So F0i = −F 0i and Fij = F ij .

• However, A and φ are not uniquely determined by the measurable electric and magnetic
fields. Two gauge potentials Aµ = (φ,A) and A′µ = (φ′,A′) which differ by a gauge transfor-
mation

A′ = A +∇θ, ϕ′ = ϕ− 1

c

∂θ

∂t
or A′

µ
= Aµ + ∂µθ (298)

correspond to the same electromagnetic fields and therefore leave Maxwell’s equations invari-
ant.

• The gauge transformations may be composed by addition θ1(x) + θ2(x) . So we have a
group of gauge transformations g(x) = eieθ(x) with θ(x) living in the Lie algebra. The group
elements g(x) appeared in the gauge transformation of the scalar field φ′ = eieθ(x) φ . The
gauge transformation of the photon field may also be written as A′µ = gAµg

−1 − 1
ie
g∂µg

−1 .
At any one space-time point, g = eieθ is just a phase living in the abelian group U(1) and
θ is a real number living the Lie algebra of the circle group U(1) . The gauge group (also
known as structure group) of Maxwell theory is U(1) . A related concept is the group of gauge
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transformations, it is defined as the set of functions g(x) from Minkowski space to the group
U(1) , which tend to the identity at infinity (θ(x) → 0 as x → ∞). By replacing the real θ(x)
by a hermitian N ×N matrix θab (x) at each x we will get a U(N) non-abelian (or Yang-Mills)
gauge theory for the hermitian N × N matrix-valued gauge field [Aµ(x)]ab . In this case, the
single complex scalar field is replaced with an N -component (φ1, · · · , φN)t complex scalar
which transforms as φ → eieθ(x)φ(x) under gauge transformations. For N = 2 we get the
complex doublet of Higgs scalar fields that appears in the the standard model.

• If we restrict to traceless hermitian matrices we get an SU(N) gauge theory. The gauge
group of the standard model is U(2)× SU(3) corresponding to the electroweak and strong
interactions. U(2) is a 4d group with a 4d Lie algebra generated by the identity and Pauli
matrices. Certain linear combinations of these 4 generators correspond to the photon, W± and
Z fields. SU(3) is the color group with generators corresponding to 8 gluons.

• If we replace the indices a, b in the internal space of the Lie algebra of the gauge group with
space-time indices, then the gauge potential [Aµ]ab (x) becomes Γρµσ which are the Christof-
fel connection coefficients of general relativity/Riemannian geometry. So the gauge potential
and its inhomogeneous transformation law are the analogues of the Christoffel connection and
its inhomogeneous transformation law. Moreover the group of gauge transformation is now
replaced with the space of functions g(x) from Minkowski space to Minkowski space, these
are the general coordinate transformations encountered in GR. The group of gauge transforma-
tions is the analogue of the group of space-time diffeomorphisms. Moreover, we will see that
the generalization of the EM field strength to a non-abelian gauge theory is the matrix field
[Fµν ]

a
b = ∂µ[Aν ]

a
b − ∂ν [Aµ]ab − i[Aµ, Aν ]ab . Again, replacing internal indices with space-time in-

dices we see the emergence of the Riemann curvature tensor Rρ
µνσ . So the electric and magnetic

fields (and their non-abelian generalizations) are to be regarded as the curvature of the gauge
connection in the same way as R is the curvature of the space-time Christoffel connection.

• Maxwell’s equations describe propagation of electromagnetic waves at the speed of light:
each component of E and B satisfy the d’Alembert wave equation or the massless KG equation.
When quantized, they describe massless particles (photons). Photons have spin one: in radiation
gauge (φ = 0,∇ ·A = 0) the dynamical variable is the vector potential A , and we have seen
that components of a 3d vector transform like a spin one multiplet. However, unlike a massive
spin one particle, the transversality condition ∇ ·A = 0 ensures that the photon has only two
helicities h = ±1 (or spin projections).

• Maxwell’s equations ∂µFµν = jν are the Euler-Lagrange equations following from the
Lorentz and gauge-invariant action (gauge invariance under A′µ = Aµ + ∂µθ requires current
conservation ∂µjµ = 0)

S =

∫
L d4x, where L = −1

4
FµνF

µν − jµAµ =
1

2
(E2 −B2)− jµAµ. (299)

Here we assumed that jµ does not itself depend on A (there are interesting exceptions, see
below). The sign of the Lagrangian does not affect the equations of motion, but is fixed by the
convention that it be the difference of EM kinetic (E2 ) and potential (B2 ) energies. Find the
conjugate field momenta, calculate the Legendre transform and show that the electromagnetic
energy density H = 1

2
(E2 + B2)
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• The Lagrangian for a charged complex scalar coupled to the EM field is (Dµφ = (∂µ −
ieAµ)φ)

L = −1

4
FµνF

µν+(Dµφ)∗(Dµφ) = −1

4
FµνF

µν+|∂φ|2+ieAµ(φ∗∂µφ−(∂µφ∗)φ)+e2A2|φ|2 (300)

Check that the resulting equations of motion for the gauge and scalar fields are

∂µF
µν = jν and DµDµφ = 0 where jµ = −ie(φ∗∂µφ− ∂µφ∗φ)− 2e2A2|φ|2. (301)

• If φ is subject to a self-interaction V (φ∗φ) such that |φ| is non-vanishing in the ground state,
then the e2|φ|2A2 term is like a mass term M2A2 for the gauge field. This idea is exploited in
the Higgs mechanism to give a mass e|φ| to the gauge field.

9.5.1 Magnetic monopole and charge quantization

• While Maxwell’s equations allow for electric charges (monopoles) as sources for electric
fields ∇ · E = ρ , they do not permit magnetic charges ∇ ·B = 0 . Magnetic dipoles exist (bar
magnets, magnetic moments of particles, steady current in a loop) but no magnetic monopoles
have so far been found, despite experimental searches. Remarkably, Dirac found that the ex-
istence of a magnetic monopole could explain the observed quantization of electric charge in
multiples of a basic unit. If magnetic monopoles exist, they may be very heavy and rare parti-
cles. Grand unified theories predict the existence of certain types of magnetic monopoles.

• By analogy with a point electric charge e at the origin producing an electric field E = e r̂
r2

, a
magnetic monopole of strength g produces a magnetic field B = g r̂

r2
. Since we are concerned

with the motion of charges, we use Gaussian units where 4π ’s appear in Maxwell’s equations
rather than in Coulomb’s law, and also set c = 1 . Dirac’s discovery may be explained using
Saha’s 1936 analysis of the motion of an electric charge in the field of a magnetic monopole.
The Newton-Lorentz equation for the rate of change of momentum p = mv is dp

dt
= egv× r̂

r2
.

Saha evaluated the rate of change of angular momentum of the charge and got a non-zero answer
despite the apparent spherical symmetry of the field around the monopole

dL

dt
= r× ṗ + v ×mv = eg r× (v × r

r3
) = eg

1

r3
r× (v × r). (302)

It turns out that to find a conserved angular momentum one must include the contribution of the
electromagnetic field. We may find this conserved total angular momentum without evaluating
the field angular momentum ( 1

4π

∫
r× ( ~E × ~B) d3r ) by noticing that the RHS is in fact a total

time derivative 1
r3

r× (v × r) = dr̂
dt

! Indeed,

1

r3
r× (v × r) =

1

r3
[r2v − (r · v)r] =

v

r
− ṙ

r2
r =

d

dt

(r

r

)
. (303)

In the penultimate equality we used r2 = r · r to write ṙ = r · v . Thus we have a conserved
total angular momentum J = r× p− egr̂ = L− eg r

r
.

• Now the component of total angular momentum along the line joining the monopole to the
charge is J · r̂ = −eg . In quantum mechanics, the component of angular momentum in any
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direction is quantized to be an integer or half odd integer multiple of ~ . Thus eg = n~ where
n ∈ {0,±1

2
,±1,±3

2
,±2, . . .} . So if the least non-zero strength of a magnetic monopole is g ,

then all electric charges must be integer multiples of ~/2g .

9.6 Pauli-Weyl equation for massless spin half particles

• Spin half particles have two spin projections so it is natural to look for a wave equation for
two component spinors. The Schrodinger hamiltonian for a free massive spin half particle (like
the electron) H = p2

2m
⊗ I2×2 is proportional to the identity in spin space. Notice that it can be

written as H = 1
2m

(~σ · p)2 where ~σ = (σ1, σ2, σ3) is the vector of Pauli matrices, (the vector
spin observable is S = 1

2
~~σ ). This follows from the identity σiσj = δijI + iεijkσk . Note that

σ · p =

(
p3 p1 − ip2

p1 + ip2 −p3

)
and det(σ · p) = −p2. (304)

Since S and p transform as vectors under rotation, the Schrodinger-Pauli equation i~∂tψ =
(σ · p)2ψ is rotation invariant. However, it is not Lorentz covariant: it is second order in space
derivatives but first order in time derivatives.

• We seek a wave equation for a two component spinor that is first order in space and time
derivatives, which nevertheless has the property that each component satisfies the relativistic
scalar wave equation (KG equation). Notice that the first order operator ~σ · p is a square-root
of the operator p2 ⊗ I . Pauli found a relativistic generalization by defining σµ = (I, ~σ), pµ =
(E/c,−p) and considering the Minkowski inner product

σ · p = σµpµ = p0I − ~σ · p =

(
p0 − p3 −(p1 − ip2)
−(p1 + ip2) p0 + p3

)
= i~σ · ∂ = i~

(
∂t − ∂z ∂x − i∂y
∂x + i∂y ∂t + ∂z

)
.

(305)
σ · p is a hermitian operator. The Pauli wave equation for a massless spin half particle is

(σ · ∂)ψ = 0 or (∂t + ~σ · ∇)ψ = 0 or p0ψ = (~σ · p)ψ. (306)

In components, if

ψ =

(
ψ1

ψ2

)
then ∂tψ1 +∂zψ1 +∂xψ2− i∂yψ2 = 0 and ∂tψ2−∂zψ2 +∂xψ1 + i∂yψ1 = 0.

(307)
So the Pauli equation couples the two components. Nevertheless each component satisfies the
massless KG equation. Indeed (E2−p2)Iψ = (E2−(~σ ·p)2ψ) = (E+σ ·p)(E−σ ·p)ψ = 0 ,
the last equality following from the Pauli equation. Thus ~2�ψ = 0 .

• In the 1930s, Pauli proposed his equation (∂t + ~σ · ∇)ψ = 0 for neutrinos, which were
believed to be massless. However, he found that the equation is not invariant under parity
E → E,p → −p, ~σ → ~σ (spin is an axial-vector like angular momentum). Under parity
the Pauli equation (E − ~σ · p)ψ = 0 turns into (E + ~σ · p)ψ = 0 . Till 1957, parity was
mistakenly believed to be a symmetry of the weak interactions, so Pauli rejected his equation
for the neutrino.
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• Note that a positive energy solution of the Pauli equation (~σ · p)ψ = Eψ must have positive
helicity. On the other hand, positive energy solutions of the parity reflected Pauli equation (~σ ·
p)ψ = −Eψ have negative helicity. The two Pauli equations are on a common footing. When
quantized, they describe parity-violating massless spin-half particles of positive or negative
helicity. Together we write them as

(E − ~σ · p)ψ+ = 0 and (E + ~σ · p)ψ− = 0. (308)

For E > 0 , ψ+, ψ− are positive and negative helicity Pauli spinors. Sometimes, they are also
called right and left-handed Pauli spinors. Weyl also considered the same pair of equations so
Pauli spinors are also called Weyl spinors.

9.7 Dirac field equation for massive spin half particles

• Dirac discovered a parity-invariant relativistic wave equation for massive spin half particles.
This equation is relevant for the propagation of charged leptons (Dirac had the electron in mind),
quarks, nucleons and possibly neutrinos. Rather than follow his reasoning (which is similar to
the one used in arriving at the Pauli equation above; see Dirac’s book or our notes on relativistic
QM or QM3), we will arrive at Dirac’s equation from Pauli’s equation. Since a massive particle
can have either helicity, we expect a Dirac spinor to be made from two Pauli spinors of opposite
helicity. We can get a parity invariant equation by combining Pauli equations for two Pauli
spinors ψ−, ψ+ of opposite helicity, which are exchanged under parity (Πψ± = ψ∓)

(E − ~σ · p)ψ+ = 0 and (E + ~σ · p)ψ− = 0. (309)

To describe a massive spin half particle, we include mass terms that couple the two Pauli spinors,
since a massive particle can have either helicity. Putting E = i~∂0 and p = −i~∇ , the simplest
possibility we can concoct is the Dirac equations

i(∂0 + ~σ · ∇)ψ+ −
mc

~
ψ− = 0 & i(∂0 − ~σ · ∇)ψ− −

mc

~
ψ+ = 0

or (E − ~σ · p)ψ+ = mψ− and (E + ~σ · p)ψ− = mψ+ (310)

~/mc is the Compton wavelength corresponding to the mass m . We put ~ = c = 1 in the sec-
ond line above. The sign of the mass terms can be fixed by studying the physical consequences,
the energy of the particle should be a little more than mc2 at low speeds, for instance. These
can be combined as an equation for a 4-component spinor(

0 i(∂0 + ~σ · ∇)
i(∂0 − ~σ · ∇) 0

)(
ψ−
ψ+

)
= m

(
ψ−
ψ+

)
. (311)

If m = 0 the two Pauli spinors evolve independently. Each of the components of ψ+ and ψ−
satisfies the massive KG equation. For example,

(E2 − p2)ψ+ = (E + ~σ · p)(E − ~σ · p)ψ+ = (E + ~σ · p)mψ− = m2ψ+. (312)
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These equations may be compressed by introducing the 4-component Dirac spinor and 4 × 4
Dirac matrices

ψ =

(
ψ−
ψ+

)
, γ0 =

(
0 I
I 0

)
and γi =

(
0 σi

−σi 0

)
. (313)

Then the Dirac equation takes the familiar form (iγµ∂µ −m)ψ = 0 . We are free to choose a
different basis for Dirac spinors and matrices. The above basis is called the Weyl or chiral basis
since for m = 0 the upper and lower components of the Dirac spinor are Pauli spinors with
definite (negative and positive) helicity and also because the chirality matrix γ5 (see below) is
diagonal. The chiral representation is convenient for studying parity, chirality, helicity and the
ultra-relativistic m→ 0 limit.

• For example, under parity xµ → x′µ = (x0,−x) . We had noted that if ψ± are exchanged
under parity, then the two Pauli equations go into eachother. This exchange is implemented by
γ0 . Check that ψ′(x′) = γ0ψ(x′) satisfies the parity transformed equation i(γµ∂′µ−m)ψ′(x′) =
0 . We are also free to multiply by a phase in defining the parity transformed Dirac spinor.

• The condition that the components of the Dirac spinor each satisfy the 2nd order KG equation
imposes the anti-commutator conditions {γµ, γν} = 2ηµν which define the Dirac or Clifford
algebra. Distinct Dirac matrices anti-commute while (γ0)2 = −(γi)2 = I . It follows that
γµ are traceless (e.g. take the trace of γ0γµγ0 = −γµ ). Hermiticity of the Dirac hamiltonian
(H = α · p + βm , look up Dirac’s approach) implies that γ0 is hermitian while γi are anti-
hermitian. Verify that these relations are satisfied in the chiral representation. The γ matrices
are unique up to changes of basis γ′ = S−1γS where S is an invertible 4× 4 complex matrix.
For example (γµ)∗ and −(γµ)∗ also satisfy the Dirac algebra and so each set must be related to
the γµ by a change of basis.

• Dirac’s original basis for his matrices is different from the chiral basis. In his basis γ0 is
diagonal, it facilitates passage to the non-relativistic limit.

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
in Dirac’s basis. (314)

What is γ5 in Dirac’s basis?

• The chirality matrix is defined as γ5 = iγ0γ1γ2γ3 . Use the anti-commutation relations to
show that γ5 anti-commutes with γµ , γ2

5 = I and that it is traceless. So the eigenvalues of γ5

are ±1 with multiplicity two each. In the chiral basis γ5 =

(
−I 0
0 I

)
is diagonal. Eigenspinors

of γ5 with eigenvalue +1 are called right-handed, while eigenspinors with chirality −1 are

called left-handed. In the chiral basis ψR =

(
0
ψ+

)
and ψL =

(
ψ−
0

)
are the right- and left-

handed spinors

γ5ψR = ψR or
1

2
(I + γ5)ψR = ψR and γ5ψL = −ψL or

1

2
(I − γ5)ψL = ψL. (315)

PR,L = 1
2
(I ± γ5) are projections to right and left handed spinors. Notice that chirality is

defined independent of the value of mass m . If m = 0 , then ψ+ and ψ− satisfy Pauli equations
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(E−~σ ·p)ψ+ = 0 and (E +~σ ·p)ψ− = 0 and are seen to have positive and negative helicities
for E > 0 . So for massless Dirac particles, helicity and handedness are equivalent notions:
RH (+1 chirality) is the same as positive helicity and LH (-1 chirality) is the same as negative
helicity.

• Adjoint of the Dirac equation: Just as we have the KG equation for φ and its complex
conjugate for φ∗ (for a complex scalar field), we have the Dirac equation for ψ and the adjoint
equation for ψ† adjoint. The adjoint equation is more conveniently written in terms of ψ̄ =
ψ†γ0 , which is called the Pauli adjoint spinor. It is obtained by taking the complex conjugate
transpose of the Dirac equation and then right multiplying by the invertible matrix γ0 and using
hermiticity/anti-hermiticity of γ0/γi and the anti-commutation relations

−i(∂µψ†)(γµ)† = mψ† ⇒ −i(∂0ψ
†γ0−∂iψ†γi) = mψ† ⇒ −i(∂0ψ̄γ

0+∂iψ̄γ
i) = mψ̄.

(316)

• The Dirac equation (iγ · ∂ −m)ψ = 0 (and its adjoint −iψ̄γ · ∂ −mψ̄ = 0) (the derivative
is understood to act to the left) follow from the Lagrangian L = ψ̄(iγ · ∂−m)ψ upon varying
with respect to the Pauli adjoint ψ̄ = ψ†γ0 and ψ respectively.

iγ · ∂ψ = mψ and − i∂µψ̄γµ = mψ̄ or ψ̄(−iγ · ∂ −m) = 0. (317)

• The Dirac equation admits a conserved ‘vector’ current jµ = ψ̄γµψ . This follows from
the Dirac equations for ψ and ψ̄ :

∂µj
µ = ∂µψ̄γ

µψ + ψ̄γ · ∂ψ = imψ̄ψ + ψ̄(−im)ψ = 0. (318)

As a consequence the total charge Q =
∫
j0d3x is independent of time. This is the conservation

law that follows from Noether’s theorem applied to the global ‘vector’ U(1) symmetry ψ →
ψ′ = eieθψ of the Dirac Lagrangian.

• Examples of conserved charges arising from such global U(1) symmetries are quark number
(one third of baryon number) and lepton number, corresponding to global phase changes in the
quark and lepton fields, which are Dirac spinors in the standard model. Neutrinos were modeled
as massless Dirac fields (in effect satisfying the Pauli equations aside from interactions), but
now we know that they too are massive. It is still not established whether massive neutrinos are
Dirac fields, they could be Majorana fields.

• Under a Lorentz transformation x′ = Λx (where Λ = e−(i/2)ωµνJµν and Jµν generate boosts
and rotations) a Dirac spinor transforms to ψ′(x′) = S(Λ)ψ(x) where S(Λ) = e−(i/4)ωµνσµν

and σµν = i
2
{γµ, γν} .

• It can be shown that ψ̄ψ transforms as a scalar field under Lorentz transformations while
ψ̄γ5ψ is a pseudo scalar scalar field. A scalar field φ transforms as φ′(x′) = φ(x) . To see
the behavior under parity, recall that parity is implemented on Dirac spinors via γ0 : ψ(x) →
ψ′(x′) = γ0ψ(x′) . Thus under parity ψ̄ψ → ψ̄γ0γ0ψ = ψ̄ψ while ψ̄γ5ψ → ψ̄γ0γ5γ0ψ =
−ψ̄γ5ψ . ψ̄γµψ is a polar vector, called the vector current, which follows from the ψ → eiθψ
symmetry of the Lagrangian. A polar vector is one that transforms as j′µ = Λν

µjν under Lorentz
transformations, while under parity Π(j0,~j) = (j0,−~j) . Check that ψ̄γµγ5ψ is an axial vector
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(under parity its spatial components retain their signs while the time component reverses its
sign). It is called the axial vector current (to be discussed below). If we define σµν = i

2
[γµ, γν ] ,

then ψ̄σµνψ transforms as a rank two antisymmetric tensor field.

• The Dirac L may be expressed in terms of left and right-chiral projections

L = ψ̄Li/∂ψL + ψ̄Ri/∂ψR −m(ψ̄LψR + ψ̄RψL) (319)

Notice that the mass terms couple the different chiralities. The weak interactions treat the LH
and RH quark and lepton fields differently, they transform as LH doublets and RH singlets under
weak isospin. It follows that mass terms for quarks and leptons violate gauge invariance. So in
the SM, all quarks and leptons are massless. They get their mass through their interactions with
a scalar field via the Higgs mechanism. The Yukawa interaction of Dirac spinors and scalars
also couples LH and RH spinors but in a gauge invariant manner.

• When m = 0 , the Lagrangian posses an additional U(1) ‘chiral’ symmetry under which
the RH and LH spinors transform via complex conjugate phases ψR,L → e±iφψR,L or in short
ψ → eiγ5φψ . The axial vector current jµ5 = ψ̄γµγ5ψ is conserved as a consequence. Of course,
when m = 0 we are free to change the phases of ψR,L by unrelated angles. The vector and
axial-vector U(1) symmetries are a convenient way of formulating these two symmetries, since
U(1)V survives as a symmetry even when m 6= 0 .

9.8 Interactions of Dirac fields with Dirac, EM and scalar fields

• Terms which involve a product of more than two fields may be introduced into the Lagrangian
density to describe interactions (‘interaction vertices’ where three or more lines meet in a Feyn-
man diagram). A minimal requirement is that the interaction term must be Lorentz invariant,
which is ensured if Lorentz indices are contracted. Additional requirements (like gauge in-
variant, behavior under parity, renormalizability etc.) may be imposed on possible interaction
terms, depending on the system we wish to model.

9.8.1 Four Fermi interaction

• Fermi’s theory of beta decays involved a point interaction among four Dirac spinor fields
(neutron, proton, electron and neutrino). It was a vector current-current interaction of the form
Lint = GF (p̄γµn)(ēγµν)+ h.c. Each parenthesis contains a vector current. The 4-Fermi inter-
action preserves the parity invariance of the Dirac Lagrangians of the four particles.

• Following the discovery of parity violation in beta decay in 1956, the Fermi theory had to be
modified. Since the interaction among the four particles was very short-ranged, it was modeled
as an interaction between a pair of ‘currents’, each of which is quadratic in Dirac spinors.
Lorentz covariance permits five bilinears constructed from Dirac spinors: scalar, pseudoscalar,
polar vector and axial vector and tensor. Marshak and Sudarshan (with contributions from
Feynman and Gell-Mann etc.) found that the experimental data on weak decays is consistent
with vector minus axial vector (V-A) weak currents. Since vector and axial vector currents
transform differently under parity, their difference does not have a definite parity. This allows
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for a parity violating interaction. For example, the eνe current is jµeνe = ēγµ(1 − γ5)νe and
similarly for the µνµ , pn and each pair of quarks in a generation. The interaction Lagrangian is
a contraction of two such currents, e.g. GFηµνj

µ
eνej

ν
µνµ + h.c. is relevant to muon decay. Since

PL = 1
2
(1−γ5) projects to LH spinors and ēγµ(1−γ5)ν = ē(1+γ5)γµν = ((1−γ5)e)†γ0γµν ,

we see that the weak currents only involve the LH fields. The charge changing weak interactions
couple only to the LH quark and lepton fields. The RH components of these particles simply
do not participate in the charge-changing weak interactions. This is incorporated in the SM by
making the LH fields transform as doublets under weak isospin while the RH fields are singlets
do not transform at all (so they do not feel the charge changing weak force at all). E.g. the
RH electron eR does not participate in the charge changing weak interactions. An extreme
case of this are the RH neutrinos, not only do they not participate in the charge changing weak
interactions, they do not even find a place in the standard model. They either do not exist or,
more likely, are very heavy and have not been detected so far.

9.8.2 Dirac field coupled to photons

• As in the case of complex scalars, we may couple the Dirac field to the EM field by gauging
the above U(1) global symmetry (minimal coupling): ∂µψ → Dµψ = (∂µ − ieAµ)ψ . The
covariant derivative of ψ transforms in the same way as ψ → eieθψ provided Aµ → Aµ +
∂µθ(x) . The Dirac equation in the presence of an external EM field is

(iγ ·D −m)ψ = 0 or (iγµ(∂µ − ieAµ)−m)ψ = 0 (320)

It follows from the Lagrangian

L = ψ̄(iγ ·D −m)ψ = ψ̄(iγ · ∂ −m)ψ + ejµAµ (321)

jµ = ψ̄γµψ is the electromagnetic current of the Dirac field. e is called the gauge coupling,
the strength of the interaction between the Dirac particles and the gauge field. e is also (up to
a sign!) the electric charge of the particle annihilated by ψ or the anti-particle created when
ψ acts on the vacuum. To find out, one must compute the eigenvalue of the conserved charge
operator Q = −e

∫
j0d3x = −e

∫
ψ†ψd3x when acting on the 1 anti-particle state created

when ψ acts on the vacuum. [Check whether the signs are chosen so that we may interpret ψ
to annihilate electrons of charge −e (and create positrons of charge e) by checking whether
Q = −e is the eigenvalue of the conserved charge operator Q = −e

∫
j0d3x = −e

∫
ψ†ψd3x

in the one electron state.]

• If we include the dynamics of the gauge field we arrive at the Lagrangian of quantum elec-
trodynamics

LQED = ψ̄(iγ ·D −m)ψ − 1

4
FµνF

µν = ψ̄(iγ · ∂ −m)ψ − 1

4
FµνF

µν + ejµAµ. (322)

The Maxwell equations in the presence of the charged Dirac field are ∂µF µν + eψ̄γνψ = 0 .
LQED is Lorentz and gauge-invariant by construction. Check that it is also invariant under
parity. The mass dimensions of A,ψ are M1,M3/2 . It follows that e is dimensionless. A
dimensionless coupling leads to a perturbatively renormalizable quantum theory.
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9.8.3 Coupling of Dirac field to scalars

• Coupling of Dirac field to scalar particles is called Yukawa coupling since Yukawa considered
a related model for nucleon-pion interactions. The Dirac equation modified in the presence of a
real scalar,

iγ · ∂ψ = mψ + gφψ, (323)

follows from the Lagrangian

L = ψ̄(iγ · ∂ −m)ψ − gψ̄ψφ. (324)

ψ̄γ ·∂ψ, ψ̄ψ, φ are all Lorentz scalars, so the Lagrangian is Lorentz invariant. It is also invariant
under U(1)V phase changes of ψ . The phase of φ cannot be changed since φ is a real scalar.
The Yukawa coupling constant g is dimensionless since [φ] = M, [ψ] = M3/2 , leading to a
perturbatively renormalizable model. g measures the strength of the scalar-fermion coupling
(tri-linear vertex). Notice that if φ is a constant, then the Yukawa coupling term behaves like a
mass term for the Dirac field. This idea is used in the Higgs mechanism to give masses to the
quarks and charged leptons.

• If we include the Klein-Gordon dynamics of the scalar, the Lagrangian becomes

L = ψ̄(iγ · ∂ −m)ψ − gφψ̄ψ +
1

2
|∂φ|2 − 1

2
µ2|φ|2. (325)

The Dirac field appears as a scalar source term ψ̄ψ in the KG field equation for φ

(�+ µ2)φ = −gψ̄ψ. (326)

The Yukawa coupling −gφψ̄ψ is a (true) scalar coupling since ψ̄ψ transforms as a true scalar
under parity. One can similarly consider coupling of Dirac fields to pseudoscalars.

9.8.4 Pseudo-scalar coupling of Pion triplet to nucleon doublet

• Attempts to model the inter-nucleon interaction using pions to match nucleon-nucleon scat-
tering data and deuteron properties lead to a pseudo-scalar meson coupling to nucleons. Let
us write a Lagrangian for pion-nucleon strong interactions, it must be invariant under SU(2)-
isospin rotations and of course Poincare invariant. Pions are not true scalars but pseudo-scalars,
they couple with opposite sign to the right and left handed components of nucleons (which are
spin half Dirac particles). To begin with, we ignore isospin and treat the nucleon field as a single

Dirac spinor and the pion field as a single real scalar field. Since γ5 =

(
−I 0
0 I

)
in the chi-

ral basis, this opposite sign coupling to RH and LH nucleons is modeled by the pseudo-scalar
coupling

iγ · ∂ = mψ − gφγ5ψ and (�+ µ2)φ = −gψ̄γ5ψ. (327)

These equations follow from the Dirac-Yukawa Lagrangian

L = ψ̄(iγ · ∂ −m)ψ − g(ψ̄γ5ψ)φ+
1

2
(|∂φ|2 − µ2|φ|2). (328)
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Now let us incorporate isospin. The nucleon field ψi has two components i = 1, 2 , each of
which is a Dirac spinor. ψ†1 creates a proton while acting on the vacuum while ψ†2 creates a
neutron. The pion field is an isospin one real triplet ~φ = (φ1, φ2, φ3) . The physical pions
of definite charge are π0 = φ3, π

± = 1√
2
(φ1 ± iφ2) . The pseudo-scalar coupling of pions to

nucleons is given by

L = ψ̄i(δijiγ
µ∂µ −MNδij)ψj +

1

2

(
∂µ~φ · ∂µ~φ− µ2~φ · ~φ

)
− g(ψ̄iγ5~τijψj) · ~φ. (329)

MN is the nucleon mass, the proton and neutron must have a common mass for isospin to be a
symmetry. We have used vector notation for the isospin triplet and indices 1 ≤ i, j ≤ 2 for the
isospin doublet. The contraction of indices and dot products make it clear that this Lagrangian
is a scalar under rotations in isospin space, thus implementing the isospin symmetry. Note that
the combination of two I = 1

2
nucleon doublets in N †~τN transforms as an I = 1 triplet which

can then be dotted with the iso-triplet ~φ to get a scalar under isospin. This should not come as
a surprise 1

2
⊗ 1

2
= 1⊕ 0: N †~τN is the iso-triplet while N †N is the iso-singlet.

• Note that in natural units ψ and φ have dimensions of M3/2 and M1 while g has mass
dimension zero; the model is perturbatively renormalizable. However g2/~c is not small (it
can be as large as ≈ 40 based on the strength of the inter-nucleon force). So perturbation
expansions in g cannot be trusted in general for pion nucleon interactions.

9.9 Charge conjugation for the Dirac field

• Under charge conjugation, the Dirac equation (iγ · (∂ − ieA) − m)ψ = 0 for a spinor ψ
annihilating a particle of electric charge e turns into the Dirac equation for the charge conjugate
spinor ψc (to be found below), which describes particles of opposite electric charge −e but
same mass (anti-particles), (iγ · (∂ + ieA) −m)ψc = 0 . Based on this observation, Weyl and
Oppenheimer pointed out that the anti-electron could not be the proton, as originally proposed
by Dirac.

• To find ψc we take the complex conjugate of the Dirac equation (−iγ∗ ·(∂+ieA)−m)ψ∗ = 0
and try to make it look like the Dirac equation with e → −e . Since −(γµ)∗ satisfy the same
Dirac algebra as γµ , they are related by a similarity transformation −γµ∗ = S−1γµS with S
conventionally written as S = Cγ0 where C is called the charge conjugation matrix. Then left
multiplying the complex conjugate equation by S we see that ψc ≡ Cγ0ψ∗ satisfies the Dirac
equation with e→ −e:

(iγµCγ0(∂µ + ieAµ)− Cγ0m)ψ∗ = 0 ⇒ (iγ · (∂ + ieA)−m)ψc = 0. (330)

To find C we must solve the equation Sγµ∗ = −γµS . S is of course defined only up to a
phase. The explicit matrix C = Sγ0 depends on the basis chosen. C can be found in the
same way in both the Dirac and Weyl bases as in both these bases, γ0, γ1, γ3 are real while γ2

is purely imaginary. So in any such basis, the condition on S is that it commute with γ2 but
anti-commute with γ0,1,3 . A choice that does the job is S = γ2 (up to a phase). Thus in the
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Dirac and Weyl bases ψc = γ2ψ∗ and C = γ2γ0 . Explicitly,

CDirac =

(
0 −σ2

−σ2 0

)
and CWeyl =

(
σ2 0
0 σ2

)
. (331)

We may now check that charge conjugation takes LH spinors to RH spinors and vice versa. For

example, in the Chiral basis a LH spinor is of the form ψL =

(
ψ−
0

)
and its charge conjugate

spinor ψLc = γ2ψ∗L =

(
0

−σ2ψ
∗
−

)
is right-handed. Upon quantization we may say that the

anti-particle of, say a left-handed neutrino νL is a right-handed anti-neutrino and anti-particles

corresponding to the LH weak isospin doublet
(
ν
e

)
L

is the RH weak isospin doublet
(
ν̄
ē

)
R

.

9.9.1 Remarks on anti-particles

• Dirac introduced the anti-particle concept in 1929-31 using holes in the filled negative energy
sea [look at a field theory or relativistic QM text for this]. The name was given by de Broglie in
1934. Anti-particles are just like particles, they can possess position, energy, momentum (and
therefore fall in a gravitational field) and charge (and so leave tracks in detectors) etc.

• For each particle discovered so far, there is a corresponding anti-particle with the same mass
and spin. Relative to a particle, the anti-particle’s quantum numbers like electric charge, electric
and magnetic moment, strangeness, baryon and lepton number etc. have opposite sign, colors
are also reversed red to anti-red, so to speak or more precisely anti-quarks transform under the
conjugate 3∗ of the fundamental representation 3 of color SU(3).

• If a particle has no attributes other than energy, momentum, spin and angular momentum,
then its anti-particle is defined to be itself. If it has any other attributes like charge, then its
anti-particle is distinct and has the opposite charge.

• The antiparticle of the electron e− is the positron denoted e+ or ē , it was the first anti-
particle to be discovered, in 1932 in cloud chamber photographs of C D Anderson and Blackett
and Occhialini. It is a matter of convention that we call the electron the particle and e+ the
anti-particle. π± are anti-particles of each other as are µ± . In these cases particles and anti-
particles were discovered at about the same time and they are all unstable, and have roughly
equal abundances, so there is not much meaning to calling µ− matter and µ+ anti-matter. Anti-
quarks are distinct from quarks and most of matter is made of u, d quarks. Some electrically
neutral particles are their own anti-particles, e.g. the photon, neutral π0 meson, η0 meson
and the Z0 boson. However, not every neutral particle is its own anti-particle, for example
the anti-neutron is distinct from the neutron as is evident from the valence quark content n =
udd, n̄ = ūd̄d̄ . Moreover neutron and anti-neutron have opposite magnetic moments and most
spectacularly, a neutron and anti-neutron can annihilate producing energy, while this does not
happen when a pair of neutrons are brought nearby (as in a nucleus or in a neutron star).

• Particle-antiparticle annihilation produces a state with energy and possibly momentum, but
no charge, baryon or lepton number etc. Before they annihilate, particle and anti-particle can
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form short-lived bound states (e.g. π0 which is made of uū and dd̄ .). Particle-anti particle
collisions at high energy are a way of creating new particles. E.g., this was done with e+e− at
SLAC (Stanford) and LEP (CERN) and with pp̄ at CERN and Fermilab.

9.10 Yang-Mills field for spin 1 particles

Recall that minimal coupling of the EM field to a Dirac field (or complex scalar) could be
obtained by gauging a global U(1) symmetry ψ′ = eieθψ of the matter field Lagrangian, say
L = ψ̄(iγ · ∂ − m)ψ . Invariance under local gauge transformations ψ′ = g(x)ψ where g =
eieθ(x) ∈ U(1) and θ is a function on space-time, is ensured by replacing partial derivatives
by covariant derivatives Dµ = ∂µ − ieAµ with the associated gauge transformation A′µ =
Aµ + ∂µθ which leaves the field strength Fµν = ∂µAν − ∂νAµ invariant48. The equations of
electrodynamics ∂µF µν = −ejν then follow from the Lagrangian L = −1

4
F µνFµν+ψ̄(iγ ·D−

m)ψ where jµ = ψ̄γµψ . We will now generalize from the abelian gauge group U(1) , to gauge
transformations g(x) = eieθ(x) living in a non-abelian gauge group G , such as SU(N) . Here
θ(x) is an N ×N hermitian matrix field. The construction works for any compact semi-simple
G such as SU(2)× SU(3) as well as a group that has U(1) factors. The resulting non-abelian
gauge theory was first proposed by R Shaw and independently by C N Yang and R L Mills in
1954 for the isospin group G = SU(2) . As it turns out, isospin is only an approximate global
symmetry (neutron and proton are not exactly degenerate in mass) and is not the one that nature
has ‘gauged’ (i.e., made a local symmetry). But the resulting framework of non-abelian gauge
theory does work in nature when applied instead to weak isospin SU(2) and color SU(3) (as
well as the abelian gauge groups: U(1) weak-hypercharge and U(1) of electric charge).

• It is helpful to simplify notation by absorbing the coupling e into θ(x) and Aµ(x) so that
g = eiθ(x) , ψ′ = gψ , A′µ = gAµg

−1 + ig∂µg
−1 , Dµψ = (∂µ − iAµ)ψ and L = − 1

4e2
FµνF

µν +
ψ̄(iγ ·D −m)ψ . Though we do not do so here, one may work with the purely imaginary field
Aµ(x) = −iAµ which lives in the Lie algebra of U(1) .

• Suppose there are N matter fields (say Dirac spinors) that transform under the fundamental
representation of SU(N) (ψ′ = gψ where g is an N × N special unitary matrix) leaving the
Dirac Lagrangian invariant. This may be made a local symmetry ψ′ = g(x)ψ(x) by defining the
covariant derivative Dµψ = (∂µ− iAµ)ψ . The gauge potential Aµ(x) is a traceless hermitian
N×N matrix-valued field. Let ta be a basis (with a = 1, . . . dimSU(N) = N2−1) of traceless
hermitian N ×N generators for the Lie algebra, satisfying the commutation relations [ta, tb] =
iCc

abtc with real structure constants, and conventionally normalized according to tr tatb =
1
2
δab . Then we may expand Aµ = Aaµta , where Aaµ(x) are real. The ta span a linear space

of dimension n = N2 − 1 which carries the adjoint representation of the Lie algebra. So for
a gauge group of dimension n , there are n independent gauge fields or gauge bosons. The
gauge field Aµ at a fixed location xµ is said to live in the adjoint representation. The adjoint
representation of a Lie algebra or group always has dimension equal to the dimension of the
group or algebra.

• The covariant derivative transforms in the same way as ψ , i.e., (Dµψ)′ = g(Dµψ) provided

48Notice that we may express the transformation of the gauge potential as A′µ = gAµg
−1 + i

eg∂µg
−1 .
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the gauge field transforms as A′µ = gAµg
−1 + ig∂µg

−1 . This ensures that the matter field
Lagrangian L = ψ̄(iγ ·D −m)ψ is gauge invariant as the following calculation shows.

L → ψ̄g−1(iγ · (∂ − igAA−1 + g∂g−1))gψ
= ψ̄g−1(iγ · ∂g + igγ · ∂ + γ · gAg−1g + iγ · g(∂g−1)g)ψ
= ψ̄

(
ig−1γ · ∂g + iγ · ∂ + γ · A+ iγ · (∂g−1)g

)
ψ = L. (332)

In the last equality we used g−1∂g + (∂g−1)g = 0 which follows from ∂(g−1g) = ∂(I) = 0 .
Thus, the Dirac Lagrangian minimally coupled to Aµ is gauge invariant if ψ,A transform in
the above manner.

• To find the gauge field dynamics we must find a non-abelian generalization of the field
strength tensor since ∂µAν − ∂νAµ is not gauge invariant nor homogeneous under gauge trans-
formations. Check this for an infinitesimal gauge transformation

g(x) ≈ I + iθ(x), δψ = iθψ, δAµ = ∂µθ − i[Aµ, θ] ≡ Dµθ. (333)

Here we have defined the covariant derivative of the matrix field θ by the last equality. The
formula for the covariant derivative of a field depends on the representation of the gauge group
to which the field belongs, it is different for the matter fields that live in the fundamental rep and
for fields like θ or A that live in the adjoint rep. This is similar to the different formulae for the
covariant derivatives of various tensor fields in Riemannian geometry: ∇µf = ∂µf for scalar
functions, ∇µV

ν = ∂µV
ν +ΓV for components of a vector field, ∇µgρσ = ∂µgρσ +ΓΓg−ΓΓg

for the components of a covariant second rank tensor field, etc. Here Γabc are the Christoffel
connection coefficients. Fill in the indices in the formulae for covariant derivatives!

• To find the correct generalization of the electromagnetic field strength, notice that in the
abelian case, we may express the field strength ∂µAν − ∂νAµ as the commutator of covariant
derivatives, check that Fµνψ = i[Dµ, Dν ]ψ . The field strength measures the departure from
‘flatness’ of the connection Aµ , and just as in Riemannian geometry, the curvature is given by
the commutator of covariant derivatives. In the non-abelian case, the hermitian matrix field

Fµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ − i[Aµ, Aν ], Fµν = F a
µνta. (334)

transforms homogeneously under a gauge transformation. This follows from the behavior un-
der gauge transformation (Dµψ) → gDµψ,DµDνψ → gDµDνψ , so that Fµνψ → gFµνψ =
gFµνg

−1gψ . So we infer that Fµν → gFµνg
−1 transforms homogeneously by conjugation. Un-

der an infinitesimal gauge transformation g ≈ I + iθ(x) , δFµν = −i[Fµν , θ] . Unlike in the
abelian case, the field strength Fµν is not gauge invariant. But we can easily find a gauge in-
variant quantities, they are quantities constructed from Fµν that are invariant under conjugation,
for instance by taking the trace of a polynomial in F . The simplest possibility is tr Fµν , how-
ever this is zero in an SU(N) gauge theory since Aµ is traceless and the trace of a commutator
vanishes. A gauge-invariant and Lorentz invariant Lagrangian that is quadratic in derivatives
and reduces to 1

2
(E2 −B2) in the abelian case is the Yang-Mills Lagrangian

L = − 1

2e2
tr FµνF

µν = − 1

4e2
F a
µνF

aµν since tr tatb =
1

2
δab. (335)
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The pre-factor of 1/e2 would be absent if we did not absorb e into the gauge potentials. e
is called the gauge coupling, it is a measure of the strength with which the gauge fields A
couple to themselves and to the matter fields ψ . Thus the Lagrangian of an SU(N) non-abelian
Yang-Mills gauge theory coupled to Dirac spinors in the fundamental representation of SU(N)
is

L = − 1

2e2
tr FµνF

µν + ψ̄(iγµ(∂µ − iAµ)−m)ψ (336)

An example is Quantum Chromodynamics, an SU(3) Yang-Mills theory coupled to quarks,
which transform in the fundamental representation of the color group SU(3).

• The classical Yang-Mills field equations that follow are a generalization of Maxwell’s equa-
tions

DµF
µν = ∂µF

µν − ie[Aµ, F µν ] = −e(ψ̄γνtaψ)ta. (337)

Unlike Maxwell’s equations, but like Einstein’s equations, these are non-linear equations even
in the absence of quark matter sources on the RHS. Indeed DµD

µν is cubically non-linear
in the gauge fields A . The non-abelian gauge fields Aaµ (e.g. a = 1, · · · 8 gluons in QCD)
interact with themselves, unlike photons in an abelian gauge theory. The interaction vertices are
obtained by expanding the Lagrangian and identifying terms that involve products of more than
two fields. Omitting some indices and displaying the coupling constant e explicitly,

L = − 1

2e2
tr (e∂A− e∂A− ie2[A,A])(e∂A− e∂A− ie2[A,A]) + iψ̄(iγ · (∂ − ieA)) (338)

The quadratic terms in L ∼ ∂A∂A, ψ̄(iγ · ∂ −m)ψ describe free propagation of the massless
gauge fields Aaµ (say 8 gluons in the case of SU(3)) as well as the massive Dirac fields ψ
(say quarks). We see that there are 3-gluon ‘cubic/trilinear’ vertices of strength e coming
from ∂A[A,A] terms (these are derivative interactions) as well as 4-gluon vertices of strength
e2 coming from the [A,A][A,A] terms. The possibility of self-interactions of gauge fields is
due to the non-abelian nature of the gauge group, for an abelian group like U(1) of EM, the
commutator terms vanish. Photons do not self-interact, while gluons, weak gauge bosons (and
gravitons) do self-interact. In addition, we have the cubic vertex eψ̄Aψ where a gluon can pair
produce a quark and anti-quark.

• The local gauge symmetries that have so far been identified in nature are SU(3)C for color,
U(1)Q for electric charge, SU(2)W for weak isospin, U(1)Y for weak hypercharge and Diff(M)
space-time diffeomorphisms (general coordinate transformations in general relativity). It turns
out that U(1)Q is a combination of U(1)Y and the third component of SU(2)W . More on this
later. It is often said that the electroweak gauge symmetry SU(2)W × U(1)Y is spontaneously
broken to U(1)Q . What this means is that the ground state of the theory does not display the
full gauge symmetry, only the U(1)Q of electric charge. Nevertheless, the theory as a whole
still possesses the full gauge symmetry.

• A key difference between the abelian gauge theory QED and the non-abelian gauge theory
QCD is that QED (as we know it) does not confine electrons and positrons and photons inside
bound states like positronium. Positronium can be split (actually, it decays spontaneously)
liberating electrons and positrons as well as photons. On the other hand, QCD in the phase
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that describes hadrons (as we know them) confines quarks and gluons inside hadrons. Hadrons
may be unstable (like positronium), but the decay or induced breakup of hadrons produces more
hadrons or leptons and photons, but not quarks and gluons.

• Not every non-abelian gauge theory is confining in the phase of interest. The SU(2)× U(1)
electroweak theory does not confine the W,Z, γ , leptons or quarks. In part, this is because the
gauge symmetry is spontaneously broken in the ground state.

• Even QCD may have a phase where quarks and gluons are not confined, a ‘deconfinement’
transition is hypothesized at sufficiently high temperatures.

10 Hadrons, quark model and the strong interactions

10.1 Nucleons are not elementary; Pion exchange does not quite explain strong interactions

• The Dirac equation for a charged spin half particle minimally coupled to the EM field gives
the correct value for the magnetic moment of the electron. The magnetic dipole energy is
H = −~µ · ~B where ~µ = gµB

~S
~ . The electron Bohr magneton is µB = e~

2mec
and g = 2

according to the Dirac equation. Small deviations from g = 2 could be explained by including
quantum fluctuations in the EM field (QED - Schwinger 1948).

• If the proton and neutron were also spin half elementary Dirac particles, then we expect
that the neutron should have zero magnetic moment since it is neutral while the proton should
have a magnetic moment obtained by replacing the electron Bohr magneton with the nucleon
Bohr magneton (replace me → mp and reverse the sign of charge) µN = e~/2mpc . But the
measured value (O Stern, 1933, Nobel prize 1943, also measurements by I I Rabi 1934 onwards
leading to development of NMR) µp = 2.79µN is significantly different. The neutron, being
uncharged should have no magnetic moment according to the Dirac theory, but µn = −1.9µB .
So nucleons cannot be elementary spin half particles in the same way as electrons.

• Electron proton elastic scattering (carried out especially by R Hofstadter at SLAC) showed
that the charge of the proton is spread over a charge radius of about a fermi, it is not point-
like. Electric ‘form factors’ which are, loosely, Fourier transforms of charge distributions, were
measured, and a charge radius could be extracted. Nucleons were certainly non point-like,
unlike electrons which are point-like down to 10−18 m.

• The discovery by E Fermi, H Anderson et. al. (Chicago, 1954) that the proton has an excited
state (the Delta resonance) suggests that it is not elementary. In fact there is a whole tower
of nucleon resonances with increasing angular momenta and masses. By analogy with excited
atoms, it appeared that excited hadrons might result for instance, from additional orbital motion
of the constituents of the lowest lying hadrons.

• What is more, through the 1940s, 50s and 60s hundreds of strongly interacting particles
were discovered (1432 hadrons had been identified by 1967!). Most of them were short lived
resonances that decayed in 10−23 s while others were more stable and decayed weakly or elec-
tromagnetically. In 1968, R Hagedorn found exponential growth by plotting the density of
hadronic states as a function of mass! [see plot in Huang] It was hard to believe that all the
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hadrons were elementary. Moreover, if the density of hadronic states ρ(E) ∝ eE/E0 grows
exponentially fast, then the statistical mechanical partition function Z(T ) =

∑
E ρ(E)e−E/kT

would cease to exist for kTh > E0 . So a statistical mechanical treatment of a system of hadrons
would not make sense at sufficiently high temperatures. One possibility is that the statistical
mechanical treatment does hold, but that there is a phase transition around Th , above which
the density states grows more slowly. This is the hypothetical Hagedorn transition. If hadrons
have more elementary constituents, then it is possible that they may organize themselves in a
different way at higher temperatures.

• Though pion exchange gives a first approximation to inter-nucleon forces relevant to low
energy scattering, at higher energies and at short distances, pion exchange is not adequate.
Among other things, heavier (spin 1) vector mesons like the ρ±, ρ0 could also mediate the
strong force and indeed they lead to corrections to the inter-nucleon potential, including a short
range repulsion (due to their vector nature, like photons between like charges) that is measured.
In fact, the force between like charges changes sign as the spin of the exchanged boson is
increased by one. Spin zero scalar pion exchange leads to an attractive force, spin one photon
exchange is repulsive, and spin two graviton exchange is attractive (all between like charges).
In fact, if one wishes to explain strong interactions using meson exchange, there is no reason to
exclude other mesons from being exchanged. It was clear that Yukawa’s simple picture was not
the whole story, and attempts to fix it became rather more complicated.

• These and other features of hadrons motivated the search for composite models for hadrons
and other possible dynamical principles to explain the forces between hadrons. These inves-
tigations eventually lead to quarks as constituents of hadrons, with gluons as mediators of the
strong force, summarized in QCD in the 1970s. This development took many decades, we
discuss some steps along the way.

10.2 Excitation energy, sizes and strong decay widths of hadrons

• Let us begin by recalling some of the characteristic orders of magnitude associated with strong
interactions of hadrons. The excitation energies of baryons and mesons are typically 100s of
MeV. E.g. ∆(1232) is the lowest lying baryonic excitation (J = 3/2) above the nucleons
p(938), n(939) which have J = 1

2
. Similarly, the ρ(776) mesons (J=1) are excited states of

J = 0 pions π(140) . So the excitation energies are comparable to the masses of the ground
states. So the quark and gluon motions responsible for increase in angular momentum that give
rise to hadronic excitations are relativistic in such hadrons49 Now, the radius R of a hadron
is about a fermi or a fraction thereof. If this is taken as the uncertainty in position of quarks
∆x = R , then by the uncertainty principle we would estimate ∆p ∼ ~/R ≈ 200 MeV/c ,
which is of the order of the excitation energy ∆E = 300 MeV for N − ∆ . Furthermore, the
mean life-times of hadrons that decay via the strong interactions is τ ≈ 10−23s . τ is simply
the time it takes light to traverse a hadron. Check that τ ≈ R/c where R ≈ 1/200 − 1/300
MeV−1 or equivalently that the energy widths of these resonances are Γ = ~/τ ≈ 300 MeV. In

49There are also mesons built of heavy quark-anti-quark pairs such as ψ = cc̄ and Υ = bb̄ , where the excitation
energies are much less than the rest energy of the ground state, in these cases the quarks can be treated non-
relativistically.
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summary, excitation energies, widths and characteristic (inverse) hadron radii are all of order a
few hundred MeV.

10.3 Fermi-Yang composite model

• Shortly after the experimental discovery of (charged) pions in 1947 (Powell et. al.), Fermi
and Yang (1948-49) suggested that the three pions be regarded as bound states of nucleons and
anti-nucleons, this time in the isotriplet spin zero (I = 1, J = 0) combination as opposed to the
isosinglet spin-triplet combination that produces the deuteron. They found that the charges and
isospin quantum numbers of the pions follow from those of the constituents if we define three
spin zero states

(I3 = 1) π+ = n̄p, (I3 = −1) π− = p̄n, (I3 = 0) π0 = n̄n− p̄p. (339)

Here (n, p) form an isospin half doublet while (n̄,−p̄) form another isospin doublet. The
negative sign is due to the Condon-Shortley phase convention for charge conjugation. (p, n)
transforms in the 2 representation and (n̄,−p̄) also transforms in the same way, for SU(2) the
fundamental representation 2 and its conjugate 2̄ are equivalent.

• The odd parity of pions cold also be accommodated, since nucleons have even parity and
an anti-fermion has opposite parity compared to a fermion. Thus the Fermi-Yang proposal
explains the pseudo-scalar nature of pions. However, the dynamical details of this idea did not
work since the inter-nucleon force in the iso-triplet channel does not lead to bound states. It
would also have to be a very peculiar bound state since the masses of the constituent nucleons
(938-939 MeV) are so much greater than the pion masses (135-140 MeV) and very large binding
energies would be needed to make the pions so light. However, the Fermi-Yang model did get
the quantum numbers right. In a sense, some group-theoretic aspects were correct though n
and p aren’t the correct constituents of pions. With the benefit of hindsight, the Fermi-Yang
idea is correct if we replace the nucleon iso-doublet (n, p) with the fractionally charged quark
iso-doublet (u, d) subject to gluon interactions. However, this was not realized till the early
1970s. The next step was to include strange particles in the scheme of Fermi and Yang.

10.4 Discovery of strange particles, GNN relation

• V particles (which are among the strange particles) were discovered in cosmic ray events
seen in cloud chamber tracks that looked like a V : e.g., some charged V ± particles decayed
into a charged + neutral particle (e.g. K+ → µ+νµ , Σ− → nπ− ) leading to a bend in the
track while some neutral V 0 particles decayed to two charged particles (e.g. Λ0 → pπ− ) in
a V shaped cloud chamber photograph. Some V ± decayed to three charged particles (e.g.
K− → π−π−π+ ). As in these examples, the decay end products were pions, muons, nucleons
etc. i.e., not strange particles (and the decays were typically two body decays leaving no scope
for neutral strange daughter particles that did not leave a track). The V particles were very
long-lived (e.g. 10−10 s, for Σ+ → p+π0 ) compared to the typical time-scale τ ∼ 10−23 s of
the strong interactions. V particle events among cosmic ray events were rare: they weren’t
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seen till the late 1940s. But interestingly, there were a lot of photographs with two V particles.
This could not be a coincidence: the probability of two V’s should be vanishingly small if they
were independently produced. Pais and Nambu conjectured that they must be produced in the
same reaction in association with each other. V particles were strange since they were copiously
produced with cross sections typical of strong interactions in pion-nucleon or nucleon-nucleon
scattering but decayed rather slowly on time scales more typical of weak interactions.

• Gell-Mann, Nishijima and Nakano proposed that strange particles carry an additive strangeness
quantum number that is conserved in strong (and electromagnetic) interactions but not in weak
interactions. Around 1953 they noticed that the centre of charge of a strange isospin multiplet
is displaced relative to a non-strange isospin multiplet. E.g. Lambda is displaced by half a unit
to left compared to center of charge of nucleon doublet when the isospin multiplets are drawn
one below the other, with charges aligned:

S\Q −1 0 1 I
0 n0 p+ 1

2

−1 Λ0 0
−1 Σ− Σ0 Σ+ 1
−2 Ξ− Ξ0 1

2

 (340)

Strangeness could be defined as twice this displacement. We also see that electric charge in-
creases with I3 . Along with the constant shift given by strangeness, this lead to GNN formula
Q = I3 + (B + S)/2 . Y = B + S was called hypercharge.

• With the benefit of hindsight, strangeness counts the number of anti-strange quarks minus
number of strange quarks. Strong interactions do not change quark flavor, so strange and anti-
strange quarks must be produced in pairs in gluonic interactions, explaining the associated
production of two V particles in the same strong reaction. The lightest strange particles do not
decay via the strong interactions since there are no lighter strange particles with the appropriate
quantum numbers. This explains the longevity of strange particles which typically decay weakly
in strangeness changing charged current weak interactions s→ uW−, s̄→ ūW+ .

• More examples of strangeness conserving strong interactions: when a secondary K− beam
of several GeV strikes a proton, several strong interactions are seen, all of which conserve
strangeness and also serve as a way of creating other strange particles

(a) K−p→ K−pπ+π−π0 (b) K−p→ Σ−π+ (c) K−p→ Λ0π0 (d) K−p→ K−ppp̄.
(341)

10.5 Sakata model for hadrons with p, n,Λ as building blocks

In 1956 S Sakata tried to extend the Fermi-Yang composite model to include strange hadrons.
Setting aside the problems with the Fermi-Yang model, he postulated that the three baryons
p, n,Λ0 make up other mesons and baryons. n, p were assigned I3 = ∓1

2
and strangeness zero,

while Λ0 was assigned I3 = 0, S = −1 . Then the charges, isospins and strangeness of pions
and kaons could be accounted for if they were composed of a baryon and anti-baryon from the
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basic triplet p, n,Λ

π+ = n̄p, π− = p̄n, π0 = n̄n− p̄p, K+ = Λ̄p, K0 = Λ̄n, K− = p̄Λ, K̄0 = n̄Λ. (342)

What is more, Sakata could accommodate the spin half strange baryons Σ,Ξ as well. Being
spin half fermions, baryons had to be composed of an odd number of baryons from Sakata’s
basic triplet (or a baryon and a meson, etc.)

Σ+ = Λπ+ = Λn̄p, Σ0 = Λπ0, Σ− = Λπ− = Λp̄n, Ξ0 = ΛK̄0 = ΛΛn̄, Ξ− = ΛK− = ΛΛp̄.
(343)

A further consequence of Sakata’s composite model was a simple explanation of the GNN
relation Q = I3 + 1

2
(B + S) . It follows by assuming that I3, B, S are additive quantum

numbers in forming the composite state. This explanation for the GNN relation survives in the
quark model.

• The Sakata model acquired even more predictive power when it was postulated that the su(2)
isospin symmetry between n, p could be extended to an approximate su(3) symmetry under
which p, n,Λ transform in the fundamental triplet representation. Then the composite states
would be expected to appear in irreducible multiplets of su(3) . For example, there are 3 × 3
states composed of a pair of baryons from Sakata’s basic trio nn, pp,ΛΛ, · · · . These 9 states
may be divided into two irreducible multiplets, 6 symmetric states pn + np, nn, pΛ + Λp etc.,
and three anti-symmetric states pn− np, nΛ−Λn, pΛ−Λp . We will see that 3⊗ 3 = 6 + 3∗ .
Of more interest is the decomposition of states of a baryon and an anti-baryon from Sakata’s
trio. We will see soon that 3 ⊗ 3∗ = 8 ⊕ 1 . This appears to be in line with the observation of
an octet of pseudoscalar mesons π,K, η = p̄p+ n̄n− 2Λ̄Λ and the singlet η′ = p̄p+ n̄n+ Λ̄Λ .
Moreover, the mass difference between the kaons and pions as well as between η′ and the octet
can be attributed to the Λ being heavier than the nucleons.

• However, Sakata’s model ran into trouble with the baryons. Like mesons, the lowest lying
baryons also appear in an octet of nearly degenerate states (N,Σ,Ξ,Λ), while Sakata’s model
placed three of these (p, n,Λ) in a triplet and treats them differently from the remaining 5 .
Moreover, there is no 5d representation of su(3) to accommodate the Σ±,Σ0,Ξ−,Ξ0 .

• Though the Sakata model had to be abandoned, several key features of the model survive in
the quark model of Gell-Mann and Zweig, including the manner in which the GNN relation
is explained. In retrospect, the idea of three basic constituents is correct (at least for hadrons
with zero charm, beauty and topness), as is the idea of an su(3) symmetry among them. Rather
than try to construct all hadrons from a few basic hadrons, the idea that worked was to focus on
the group theory without trying to identify constituents from among existing particles. Even-
tually, nature threw up new more elementary constituents – quarks from which all hadrons are
composed.

10.6 SU(3) flavor symmetry

• The mass spectrum of hadrons displays multiplets of nearly degenerate (a few percent) par-
ticles with the same spin and parity (e.g. nucleons, pions, ∆ baryons). These multiplets could
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be interpreted as carrying irreducible representations of the su(2) isospin symmetry Lie alge-
bra. The states within a multiplet are labelled by their I3 values. I3 can be taken to generate
the Cartan subalgebra of su(2) . A Cartan subalgebra is a maximal abelian subalgebra (i.e. all
its elements commute), all its generators can be simultaneously diagonalized, so their values
for each of the states of an irreducible representation can be specified simultaneously. A Cartan
subalgebra is not unique. I1, I2, I3, I1 +3I3 etc each span a one dimensional Cartan sub-algebra
of su(2) . Check that adding any linearly independent element to one of these results is a non-
abelian subalgebra. A basis for a Cartan subalgebra consists of the so-called Cartan generators.
BY a suitable choice of basis, the Cartan generators may all be simultaneously diagonalized in
any representation. The dimension of a Cartan sub-algebra is called the rank of the Lie algebra.
su(2) has rank one, su(3) rank 2 , su(n) rank n − 1 . This is easy to understand if we recall
that su(n) consists of traceless hermitian matrices. So by a suitable choice of basis, the Cartan
subalgebra consists of traceless diagonal hermitian matrices, and this is an n − 1 dimensional
space. Similarly, u(n) has rank n .

• Strange particles like (K+, K0) and (K̄0, K−) also form isospin multiplets. Moreover, there
appeared to be larger multiplets consisting of several isospin multiplets, all with the same JP

but differing in strangeness and masses (∼ 150 MeV separating isospin multiplets). Examples
include the pseudoscalar and vector meson octets, the 1

2

+ nucleon octet and the 3
2

+ baryon
decuplet. The degeneracy among masses is broken much more strongly (15 − 20%) than in
the case of isospin multiplets (5%). The states are shown below on I3 − Y plots. So states
in the octets and decuplets are labelled by I3 and Y , which means that both I3 and Y must
be diagonal, suggesting that they span a two-dimensional Cartan subalgebra of an enlarged
rank two symmetry algebra containing isospin su(2) as well as strangeness/hypercharge. The
simplest candidate is su(3) and it worked. The above multiplets could be regarded as carrying
irreducible representations of su(3) . We will see that while su(2) has a 1-dimensional Cartan
sub-algebra spanned by I3 , su(3) has a 2-dimensional Cartan sub-algebra spanned by I3 and
Y .

• Baryon octet: Lowest mass baryons with JP = 1
2

+ Strangeness increases vertically while I3

increases to the right. Electric charge is constant along the NW-SE diagonal. Check the GNN
relation.

I3 = −1 I3 = −1
2

I3 = 0 I3 = 1
2

I3 = 1 S I m̄ (MeV)
n p 0 1

2
939

udd uud
Σ− Σ0(uds) Σ+ -1 1 1193
dds Λ0(uds) uus 1116

Ξ− Ξ0 -2 1
2

dss uss 1318

• Anti-baryon octet with opposite I3 and S quantum numbers and identical masses.

• The spin half baryon and anti-baryon octets consist of stable baryons. They do not decay
through the strong interactions, and are long lived on the 10−23s time-scale of the strong inter-
actions. With the exception of the proton, they decay weakly or electromagnetically. E.g. the
beta decay n→ peν̄e , strangeness changing weak decays Λ0 → pπ− , Σ− → nπ− , Σ+ → pπ0
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and the EM decay Σ0 → Λ0γ .

• JP = 1
2

− singlet baryon Λ with mass 1405 MeV has the wrong parity to be included with
the baryon octet.

• Baryon decuplet: JP = 3
2

+ resonances decay via the strong interactions (e.g. ∆ → πN
with appropriate charges, Σ0∗ → Λ0π0 etc.).

I3 = − 3
2 I3 = −1 I3 = − 1

2 I3 = 0 I3 = 1
2 I3 = 1 I3 = 3

2 S m̄(MeV) I

∆−(ddd) ∆0(uud) ∆+(duu) ∆++(uuu) 0 1232 3
2

Σ−∗(dds) Σ0∗(dus) Σ+∗(uus) -1 1384 1
Ξ−∗(dss) Ξ0∗(uss) -2 1533 1

2
Ω−(sss) -3 1672 0

• Pseudo-scalar meson octet: Lowest lying mesons have spin parity JP = 0− and form the
pseudo-scalar meson octet. They are stable with respect to strong decays, are long lived and
decay weakly or electromagnetically (e.g. the weak decay π+ → µ+νµ , EM decay π0 → 2γ ,
the strangeness changing weak decays K+ → µ+νµ , K0 → π+π− ). In addition we have the
SU(3) flavor singlet pseudo scalar meson η′(uū+ dd̄+ ss̄) at 958 MeV.

I3 = −1 I3 = −1
2

I3 = 0 I3 = 1
2

I3 = 1 S I m (MeV)
K0 K+ 1 1

2
498, 494

ds̄ us̄
π− π0(dd̄− uū) π+ 0 1 140, 135, 140
dū η0(dd̄+ uū− 2ss̄) ud̄ 0 0 549

K− K̄0

sū sd̄ −1 1
2

494, 498

• Vector meson octet: JP = 1− vector meson resonances. There is also the nearby 1− singlet
φ0(1019) .

I3 = −1 I3 = −1
2

I3 = 0 I3 = 1
2

I3 = 1 S I m̄ (MeV)
K∗0(ds̄) K∗+(us̄) 1 1

2
892

ρ−(dū) ρ0(dd̄− uū) ρ+(ud̄) 0 1 776
ω0 0 0 783

K∗−(sū) K̄∗0(sd̄) -1 1
2

892

• Some features emerge from the observed multiplets of common JP . Mesons appear in nonets
consisting of an octet and a singlet with same JP and nearby masses. Baryons fall into decu-
plets, octets and singlets. There does not appear to be a 1

2

+ baryon of mass comparable to that
of the nucleon octet to form a nonet. Gell-Mann and Neeman postulated an su(3) flavor sym-
metry of hadrons, extending isospin symmetry based on the observation that su(3) has 1,8, and
10 dimensional irreps. The appearance of octets motivated Gell-Mann to call the scheme the
eight-fold way. Using su(3) flavor symmetry, the mass and decay properties of the Ω− particle
were predicted. It was discovered soon after, in 1964, with the expected properties lending sup-
port to global su(3) flavour symmetry. However, su(3) also has irreps of dimension 3, 6, 15,
24 etc., though there do not appear to be hadrons that transform in any of these representations,
this needed an explanation.
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• In 1964 Gell-Mann and Zweig independently suggested that the fundamental 3d represen-
tation of su(3) is carried by 3 hypothetical quarks, up down and strange of baryon number
1/3 and that the anti-quarks ū, d̄, s̄ transform in the conjugate 3̄ irrep. Moreover, mesons were
supposed to be made from a quark and an anti-quark while baryons and anti-baryons were
made of three quarks and three anti-quarks respectively. Recall that higher dimensional irreps
of su(2) can be obtained by decomposing tensor products of the fundamental spin half repre-
sentation into irreps. Similarly, the possible meson and baryon multiplets could be found by
decomposing 3 ⊗ 3̄ and 3 ⊗ 3 ⊗ 3 into su(3) irreps. We will find that 3 ⊗ 3̄ = 1 ⊕ 8 and
3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 , which agree with the observed multiplets of mesons and baryons.
This gave a simple explanation for the appearance of singlets and octets of mesons and singlets,
octets and decuplets of baryons.

• However, it remained a mystery why particles transforming in other su(3) flavour multiplets
(most notably the 3 and 3̄ quarks and anti-quarks) were not observed among the hadrons. This
was eventually resolved by postulating an additional su(3) color quantum number (distinct
from the approximate su(3) flavour quantum numbers) for quarks. Quarks were postulated
to transform in the fundamental representation of both su(3) flavour and su(3) color, so qαa
denotes a quark of flavor a = 1, 2, 3 = u, d, s and color α = 1, 2, 3 = red, green, blue . So
q1

1 is a red up quark. Color su(3) was postulated to be an exact local gauge symmetry for
the quark fields, along with 8 associated su(3) gauge bosons called gluons which transform
in the adjoint representation of su(3). We now believe that the dynamics of this color gauge
theory QCD conspires to confine quarks and anti-quarks within hadrons, and ensures that the
only detected hadrons are color singlets. States that transform non-trivially under color are
presumably infinitely massive in isolation, and are expelled from the spectrum of hadrons. Color
confinement has not been established in QCD, but is believed to be the reason why many of the
other su(3) flavor representations are not realized in the spectrum of hadrons, they correspond
to particles that transform non-trivially under color su(3). More on this later.

10.6.1 Remark on Cartan generators vs Casimir operators

• Note that the generators of the Cartan sub-algebra are distinct from Casimir operators. In
general, Casimir operators are not elements of the Lie algebra, they are not required to be linear
combinations of the basis generators. Casimir operators are (possibly non-linear) quantities
that commute with all elements of the Lie algebra, constructed by taking linear combinations of
products of elements of the Lie algebra. E.g. L2 = L2

1 + L2
2 + L2

3 is a quadratic Casimir of the
angular momentum Lie algebra [Li, Lj] = i~εijkLk , since it commutes with the three generators
Li . The Poincare Lie algebra has two independent Casimirs, the square of momentum P µPµ
and the square of the Pauli-Lubanski spin vector W µWµ where W µ = 1

2
εµνρσPνMρσ . The

Lorentz group also has two independent Casimirs J2
+ and J2

− where ~J± = ~L± i ~K and ~L and
~K are the angular momentum and boost generators.

• Occasionally an element of a Lie algebra may commute with all elements, then it is a Casimir.
Such a Casimir is said to lie in the center of the Lie algebra. The center of a Lie algebra is the
sub-algebra of elements that commute with all other elements.
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• Casimir operators are a multiple of the identity in an irreducible representation. If a Casimir
operator is not a multiple of the identity in a representation, then the representation is reducible:
e.g. the representation of orbital angular momentum Li = −i~εijkrj∂k on the space of functions
on the sphere L2(S2) is reducible, write out the L2 matrix in the Ylm representation and see
that it admits a block decomposition into (2l+1) dimensional blocks where it is the multiple of
the identity ~2l(l+1) for l = 0, 1, 2, . . . . Different irreps may be labeled by the values Casimirs
take in the irreps. For example representations of SU(2) are labeled by s which is related to the
eigenvalue ~2s(s + 1) of S2 . Representations of the Poincare group are labelled by mass and
spin, which are related to the eigenvalues of P 2 and W 2 . Representations of the Lorentz group
are labeled by a pair of spins s+, s− where the eigenvalues of J2

± are ~2s±(s± + 1) .

• For a given irreducible representation the basis vectors of the vector space that carries the
representation can be chosen to to be eigenvectors of Cartan generators, since Cartan generators
are simultaneously diagonalizable. The basis states can be labeled by the values of the Cartan
generators. For example L3 spans a Cartan subalgebra of su(2) and so its eigenvalues ~m can
be used to label the (2l+1) linearly independent states of the representation space.

10.6.2 su(3) Lie algebra, Gell Mann matrices, quark basis

• SU(3) consists of 3 × 3 unitary matrices of determinant one. The Lie algebra denoted
SU(3) or su(3) consists of the 8-dimensional space of traceless anti-hermitian matrices. It is
conventional to pull out an i and use the hermitian Gell-Mann matrices λa as generators for
su(3) , in terms of which, the group elements are U = exp(− i

2
θaλa) .

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 = 2I3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
√

3Y =
1
√

3

1 0 0
0 1 0
0 0 −2

 . (344)

This is the defining representation of su(3) expressed in the so-called quark basis xi = (u, d, s) .

• Note that flavor SU(3) is only an approximate global symmetry of the strong interactions, we
have seen that mass degeneracies within octets and decuplets is violated at the 20% level. In
particular, it is a symmetry of the QCD Lagrangian only in the approximation where the u,d,
and s quarks have the same mass:

L =
3∑
i=1

ψ̄i(iγ ·D −ma)ψa −
1

4e2
tr F 2. (345)

Here i = 1, 2, 3 label the three quark flavors. Under an SU(3) flavor transformation, ψi →
Uijψj and ψ̄i → (U †)ijψ̄j . So under SU(3) the mass term transforms to ψ̄U†

mu 0 0
0 md 0
0 0 ms

Uψ .

Only if the mass matrix is a multiple of the identity, can we use U †U = I to cancel the U ′s and
get an invariant L .

• In addition to the approximate global flavor su(3) we have an exact global U(1) symmetry
corresponding to baryon number conservation, which acts in the same way on all the three
quarks u, d, s , so x→ e−iθBIx . B = 1/3 for the quarks. B = −1/3 for the anti-quarks.
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• The third component of isospin I3 = λ3/2 is diagonal with the values ±1
2
, 0 for u, d, s . λ8 is

also diagonal and is chosen so that Y = λ8/
√

3 is the hypercharge. Y = B+S = (1
3
, 1

3
,−2

3
) for

u, d, s . λ3, λ8 span a maximal abelian subalgebra (a Cartan subalgebra). Check that the charge
matrix Q = I3 + Y/2 is diagonal in this basis with entries 2/3,−1/3,−1/3 corresponding to
the charges of u, d, s quarks.

• The factors in λ3 = 2I3 and λ8 =
√

3Y ensure that the λa are normalized according to
tr 1

2
λa

1
2
λb = 1

2
δab . The numerical factors also ensure that the ‘weight diagrams’ in the 1

2
λ3 -

1
2
λ8 plane for the baryon and meson octets are regular hexagons.

• Under an infinitesimal SU(3) transformation, the quark triplet vector x transforms to x′ =
Ux ≈ (I − i

2
θaλa)x .

• su(2) may be embedded in su(3) in infinitely many ways. Three of these are su(2) transfor-
mations among (1) (u, d) (I -spin, isospin), (2) (d, s) (U -spin) and (3) (u, s) (V -spin). Indeed
I1,2,3 = 1

2
λ1,2,3 give an embedding of I -spin (Pauli matrices) in the 1-2 (ud) subspace. U1 =

1
2
λ6, U2 = 1

2
λ7 and U3 = 1

2
(3

2
Y − I3) = diag(0, 1,−1) , give another embedding of U -spin

su(2) in the 2-3 (ds) subspace. V1 = 1
2
λ4, V2 = 1

2
λ5 and V3 = 1

2
(3

2
Y + I3) = diag(1, 0,−1)

give an embedding of V -spin su(2) , in the 1-3 (us) subspace.

• A general su(3) element is conventionally written u = 1
2

∑
a θaλa . Just as Ia = 1

2
σa we

sometimes write Fa = 1
2
λa .

• Up to anti-symmetry, there are 9 nonzero su(3) structure constants [1
2
λa,

1
2
λb] = ifabc

1
2
λc in

this basis:

f123 = 1, f147 =
1

2
, f156 = −1

2
, f246 = f257 = f345 =

1

2
, f367 = −1

2
, f458 = f678 =

√
3

2
.

(346)

• A more convenient basis for studying representations is the Cartan-Weyl basis consisting of
Cartan generators I3, Y and a bunch of raising and lowering operators defined by analogy with
su(2):

I± = F1 ± iF2, U± = F6 ± iF7, V± = F4 ± iF5. (347)

Due to the complex linear combinations, I3, Y, I±, U±, V± are a basis for the complexification
of the su(3) Lie algebra rather than the real su(3) Lie algebra50. Real linear combinations of
Gell Mann matrices give us the real su(3) Lie algebra. Though the complex combinations do
not live in the original Lie algebra, they are very useful to understand its representations, as we
know from angular momentum theory.

• Check the commutators [I+, I−] = 2I3 and similarly for U±, V± . Check that I± , V± and U∓
raise and lower the eigenvalue of I3 by one, half and half respectively:

[I3, I±] = ±I±, [I3, U±] = ∓1

2
U±, [I3, V±] = ±1

2
V±. (348)

On the other hand U± and V± raise and lower the eigenvalue of Y by one while I± do not

50Show that the complexification of su(2) Lie algebra is the Lie algebra of traceless complex matrices. The
complexification of the SU(2) group is the group SL2(C) of complex matrices with unit determinant.
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change it
[Y, I±] = 0, [Y, U±] = ±U±, [Y, V±] = ±V±. (349)

• To get some idea of how the raising and lowering operators act on states of a representation,
consider the 8d representation 8 on the v.s. C8 spanned by the 8 baryons of the 1

2

+ octet
N,Σ,Λ,Ξ . This turns out to be the adjoint representation, so the generators of su(3) are rep-
resented by the 8 × 8 matrices with entries (ta)bc = −ifabc . Mark the baryons on an I3 − Y
plot. Then we see that I± take Σ0 to Σ± and annihilate the isosinglet Λ0 . On the other hand,
V+ takes Σ− to n , raising I3 by half and Y by one. U− takes Σ− to Ξ− , lowering Y by one
and raising I3 by half. V+ takes Λ to p etc.

• Like the square of total isospin I2 =
∑

a I
2
a which is a Casimir of su(2) , check that su(3)

possesses the Casimir operator F 2 =
∑

a F
2
a = 1

2
{I+, I−}+I2

3 + 1
2
{U+, U−}+ 1

2
{V+, V−}+F 2

8 ,
i.e., [F 2, Fa] = 0 .

• The trace provides an inner product on the su(3) Lie algebra 〈u, v〉 = tr uv . λa are
normalized to tr λaλb = 2δab so that tr u†u = 1

4
θ∗aθb tr λaλb = 1

2

∑
a |θ2

a| .

10.6.3 Representations of su(N), su(3) on spaces of tensors

• The Gell-Mann matrices are a convenient set of generators for su(3) in its defining fundamen-
tal 3 representation on the vector space C3 . The basis vectors of C3 are u = (1, 0, 0)t, d =
(0, 1, 0)t, s = (0, 0, 1)t . The u, d, s quark vector xi ∈ C transforms in the irrep 3 (x′i′ = Ui′ixi
where Uij ≈ δij− 1

2
iθa(λa)ij ) while the anti-quarks xi transform in 3∗ (x′j

′
= (U∗)j

′jxj . So λa
are replaced with −λ∗a in the anti-fundamental representation if we retain the same convention:

x′
i ≈

(
δij − 1

2
i(−λ∗a)

ijθa

)
xj. (350)

In particular I3 and Y being real matrices in the quark basis, simply reverse signs for the anti-
quarks. Since in addition B = −1/3 for the anti-quarks, it follows that I3, Y, S and Q all
reverse sign for the anti-quarks.

• By taking tensor products of several copies of 3 , we get reducible representations of su(3)
on higher rank tensors denoted xi1···in which transform as xi1 · · ·xin :

x′i′1···i′n = Ui′1i1Ui′2i2 · · ·Ui′ninxi1···in (351)

The space of such tensors in general admits invariant subspaces allowing us to decompose these
tensor product representations as direct sums of irreducible representations. It is conventional
to denote irreps by their dimension in bold face with additional symbols to distinguish between
inequivalent representations of the same dimension. E.g. 3 ⊗ 3 = 6 ⊕ 3∗ and 3 ⊗ 3 ⊗ 3 =
1⊕ 8⊕ 8⊕ 10 .

• There is a connection between the representations of su(N) (in fact gl(N)) and those of
the permutation group Sn , called Schur-Weyl duality. Tensors can be decomposed as a sum of
those belonging to definite symmetry classes under permutation of indices (symmetric & anti-
symmetric in a manner to be specified). It turns out that tensors of a given symmetry class span
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an invariant irreducible subspace and thus carry an irrep of su(3) . The fundamental represen-
tation is carried by vectors xi . As a more interesting example, consider totally anti-symmetric
3rd rank tensors xijk . Being totally antisymmetric, xijk = λεijk is a multiple of the Levi-Civita
symbol. Moreover under su(3) , it transforms to x′i′j′k′ = λUi′iUj′jUk′kεijk = λ detUεijk =
xijk since detU = 1 . Thus totally anti-symmetric 3rd rank tensors are invariant under SU(3)
and thus carry the trivial representation 1 . All the finite dimensional irreps of su(3) may be
obtained in this way by decomposing tensor products of the fundamental representation.

• To get some idea of how permutations relate to representations of su(N) or gl(N), we note that
the permutation group acts on tensors by permuting indices (e.g. P12xijk = xjik ). su(N) also
acts on tensors as given above. These two actions commute, in other words we may permute
indices and then make a change of basis or change basis and then permute indices, the resulting
tensor is the same. For example, consider

P12UkiUljxij = UliUkjxij while UkiUljP12xij = UkiUljxji. (352)

If we relabel i↔ j then we see that the two expressions are the same. Now the ‘eigentensors’
of P12 are tensors that are either symmetric or anti-symmetric in the first pair of indices. So
an eigentensor of permutations remains an eigentensor under permutations after the action of
SU(N). So tensors with definite behavior under permutation of indices retain that behavior after
being transformed by SU(N). This makes plausible why tensors of a definite symmetry class can
be an invariant subspace for the action of SU(N), in fact they carry irreducible representations.

• Spaces of tensors also carry representations of the more familiar rotation group SO(3). We
recall from the study of orbital angular momentum in QM that the irreps of SO(3) are labeled
by l = 0, 1, 2, 3, . . . and are of dimension 2l+ 1 . The angular momentum l representation is in
fact carried by the space of real symmetric tranceless tensors of rank l . Indeed, the space of all
Cartesian tensors on R3 of rank l is 3l , since each index can take three possible values, and the
different tensors components are independent. Now the symmetric tensors among these span a
space of dimension (l + 2)(l + 1)/2 . To count these we may enumerate symmetric tensors by
saying how many of the n indices are 1’s, how many are 2’s and how many are 3’s. To find
this number, we imagine placing all the 1’s first followed by the 2’s and then then 3’s, like in
111|2|333 . Assuming there is at least one two, this is equivalent to the problem of inserting two
vertical dividers in l + 1 possible places, there are

(
l+1
2

)
ways of doing this. To this we must

add the cases where there are no 2’s. This corresponds to placing both the vertical dividers in
the same place, there are l + 1 ways of doing this. Thus the space of symmetric rank l real
tensors has dimension

(
l+1
2

)
+
(
l+1
1

)
=
(
l+2
2

)
= (l + 1)(l + 2)/2 . Now we restrict further to

traceless symmetric rank l tensors, by imposing the conditions xiii3···il = 0 . There are as many
conditions as there are symmetric rank l − 2 tensors, i.e.,

(
l
2

)
conditions. Thus the space of

rank l symmetric traceless tensors has dimension (l+ 2)(l+ 1)/2− l(l− 1)/2 = 2l+ 1 . Notice
that this is the dimension of the angular momentum l irrep of SO(3).

10.6.4 Young tableaux and symmetry classes of tensors

• Young diagrams (tableaux) give a convenient way of labelling tensors of a given symmetry
class and thus give a way of labelling irreps of su(3) , and more generally, of su(N) .
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• The table with no boxes is a tensor with no indices, i.e. a scalar, which carries the trivial 1d
representation of su(N) .

• For example, a symmetric tensor sijk···n is denoted by a row of as many boxes as there are
indices i j k · · ·n . A single box corresponds to a vector xi . A totally anti-symmetric tensor

aij···n is denoted by a column of as many boxes
i
j
·
n

. More general Young tables stand for tensors

with mixed symmetry, symmetric in some indices and anti-symmetric in others.

• We will not derive all the above statements about representations of su(3) here but will learn
to work with Young Tableaux through examples. Our presentation is based on Kerson Huang’s
book Quarks Leptons and Gauge Fields. We first define Young Tableaux for su(N) and then
specialise to su(3) .

• Tensors of a definite symmetry class are obtained from xi1···in through the following process.
We fix a partition n = n1 + n2 + · · · + nk of n with summands arranged in decreasing order
(n1 ≥ n2 ≥ · · · ≥ nk > 0) . In particular k ≤ N .

(1) We pick n1 indices from i1, · · · , in and symmetrize among them. This operation of sym-
metrization is displayed via a row of n1 boxes, with one index per box. E.g. if n1 = 2 it is
written as or with indices filled in as i j = j i . If n = n1 = 2 then the corresponding
tensor is just 1

2
(xij + xji) .

(2) Then we pick n2 of the remaining indices, symmetrize among them and display them in a
row of n2 boxes. The process is repeated for the remaining indices. The k rows of n1, n2, · · ·nk
boxes are stacked one below the other to form a Young table. E.g. if n = 5, n1 = 2, n2 =

2, n3 = 1 , then we get . The lengths of rows is non-increasing as we go down the diagram.

(3) Finally, we anti-symmetrize among the indices in each column of the table (by anti-symmetrization
we mean an average over all permutations weighted by the sign of the permutation).

• This procedure results in a tensor of a definite symmetry class, which is symbolically rep-
resented by the corresponding Young diagram. Young diagrams with n boxes are in 1-1 cor-
respondence with partitions of n . Thus there are as many symmetry classes of rank-n tensors
as there are partitions of n . As mentioned before, tensors of a given symmetry class carry an
irrep of su(N) . Note that there is no restriction on the tensor rank n in comparison to the rank
N − 1 of su(N) .

• A Young diagram with boxes left empty represents a symmetry class of tensors. When the
boxes are filled with indices, then it represents a specific tensor of that symmetry class, con-
structed from xi1···in .

• E.g. i j = 1
2
(xij + xji) are symmetric rank two tensors.

• E.g. i
j

= 1
2
(xij − xji) are anti-symmetric rank two tensors.

• E.g.
i
j
k

= 1
6
(xijk − xjik − xikj − xkji + xjki + xkij) is an anti-symmetric rank three tensor.

We sum over permutations weighted by the sign of the permutation and divide by the number
of permutations, i.e., the order of the permutation group S3 in this case. In the case of su(3),
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this tensor is a multiple of the Levi-Civita tensor εijk . For su(2) this tensor is simply zero since
each index can take only two values.

• E.g. i j
k

= 1
2

[
1
2
(xijk + xjik)− 1

2
(xkji + xjki)

]
. We first symmetrized in i, j and then

antisymmetrize the resulting tensor in k, i . The resulting tensor is anti-symmetric under k ↔ i
but is not symmetric under i↔ j .

• Remarks: Indices in any given column of a table are anti-symmetric under permutation among
themselves, e.g., i j

k
= − k j

i
. Indices in a row that do not contain any box underneath are

symmetric among themselves. E.g. i j k
l

= i k j
l

. But if an index in a row has been anti-
symmetrized with other indices below, then it does not have any particular symmetry property
under permutation with other indices in the same row, so i j

k
and j i

k
are independent tensors.

10.6.5 Young tableau and irreducible representations of su(3)

• Let us now specialize to su(3) where tensor indices can only take three values 1, 2, 3 . Since
indices in a column of a Young table are anti-symmetrized, columns cannot have length more
than three. What is more, a column with 3 boxes, which stands for a totally anti-symmetric
tensor

i
j
k

=
1

|S3|
∑
σ∈S3

(−1) sgn σxσ(i)σ(j)σ(k) =
1

6
(xijk + xkij + xjki − xikj − xjik − xkji) (353)

in fact carries the trivial representation of su(3) , i.e., is unchanged under the group action,
as we argued above. A tensor of rank zero (no indices, zero boxes) also carries the trivial 1d
representation denoted 1 . We write = 1 . In fact any column of three boxes can be omitted
from a Young table, it corresponds to a scalar. So an su(3) Young diagram for a non-trivial
irrep can have at most two rows, with m + n and m boxes respectively. The corresponding
irrep is denoted (m,n) . (0, 0) denotes the trivial representation. Thus, the general Young table
for su(3) is of the form

k1 k2 ·· kmi1 i2 ·· in
l1 l2 ·· lm = xi1···in;k1···km;l1···lm (354)

Since it is anti-symmetric in each pair (kλ, lλ) , it is convenient to contract with εjλkλlλ and
replace each (kλ, lλ) pair by a single upper index jλ . Thus, the Young table for the (m,n) irrep
corresponds to the tensor

Xj1···jm
i1···in = εj1k1l1 · · · εjmkmlmxi1···in;k1···km;l1···lm . (355)

The resulting XJ
I tensor is symmetric in the upper j -type indices and separately symmetric in

the lower i-type indices. Furthermore, the tensor is traceless in the sense that contracting an
upper with a lower index gives zero:

∑
j X

ij2···jm
ii2···in = 0 . To see why, we go back to the definition∑

j

X i1j2···jm
i1i2···in = εi1k1l1εj2k2l2 · · · εjnknlnxi1i2···im;k1k2···kn;l1l2···ln (356)
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It will help to look at the simplest case m = n = 1 , the general case is similar:

X i
i = εiklxi;k;l =

1

4
εikl[(xikl + xkil)− (xilk + xlik)]. (357)

We have written out the symmetrization in the indices of the first row of the table followed by
the anti-symmetrization in the indices of the first column. Now εikl is anti-symmetric in both
i ↔ k and i ↔ l . The first two terms in parantheses are symmetric under i ↔ k and the next
two are symmetric under i↔ l . Thus X i

i = 0 .

• By assumption, the lower indices on xJI transform in the fundamental representation of su(3) .
Remarkably, the upper j -‘type’ indices on xJI obtained by contracting xI;K;L with ε transform
in the conjugate of the fundamental representation! For instance, this means the anti-symmetric
second rank tensors carry the 3∗ representation. To see this it suffices to consider one upper
index Xj = εjklxkl . We know that this transforms to

X ′
j

= εjklUkk′Ull′xk′l′ (358)

Our claim is that this is the same as

X ′
j

= (U∗)jj̃X j̃ = (U∗)jj̃εj̃k
′l′xk′l′ . (359)

To show that these two are the same, it suffices (since xk′l′ is arbitrary) to show that

εjklUkk′Ull′
?
= (U∗)jj̃εj̃k

′l′ (360)

Now multiply by Ujj′ on either side and sum over j . This produces an equivalent condition,
since U is an invertible matrix. So it suffices to show that

εjklUjj′Ukk′Ull′
?
= (U∗)jj̃Ujj′ε

j̃k′l′

⇔ detU εj′k′l′
?
= (U †)j̃jUjj′ε

j̃k′l′

⇔ εj′k′l′
?
= δj̃j′ε

j̃k′l′ (361)

which is an identity! We use the fact that U † = U∗t and that U †U = I . Thus we have shown
that an anti-symmetric pair of lower (quark, fundamental indices) when contracted with ε and
converted to an upper index, transforms in the conjugate of the fundamental representation. So
in the irreducible tensor XJ

I , the J are anti-quark indices and I are quark indices. From here
on we will always raise anti-symmetric pairs of lower indices and rename XJ

I as xJI .

10.6.6 Dimension of irrep (m,n)

• The linear space of (m,n)-tensors xj1···jmii···in (denoted by the Young table with m+ n boxes in
the first row and m boxes in the second row) carry the (m,n) irrep of su(3) . These components
aren’t all independent since they are symmetric in the j ’s and i’s separately and also traceless.
The number of independent tensors D(m,n) is the dimension of the irrep, which we calculate
here.
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• E.g. Consider first symmetric rank n tensors, corresponding to the table 1 2 3 · · n . We
have already argued (or see below) that the space of symmetric rank n tensors has dimension(
n+2

2

)
. Thus we must have D(0, n) = 1

2
(n+ 2)(n+ 1) .

• More generally, the number of symmetric strings j1 · · · jm is the number of ways of choosing
σ1 1’s σ2 2’s and σ3 3’s with σ1 + σ2 + σ3 = m and σi ≥ 0 . This number is Pm =(
m+1

2

)
+
(
m+1

1

)
= 1

2
(m + 1)(m + 2)51. Thus the number of ways of choosing J and I is

PmPn . But these aren’t all independent due to the trace condition, which imposes Pm−1Pn−1

constraints. Thus

D(m,n) = PmPn − Pm−1Pn−1 =
1

2
(m+ 1)(n+ 1)(m+ n+ 2). (362)

The i and j indices on the tensors xJI in the (m,n) representation transform respectively in the
fundamental and anti-fundamental representations

x′
j′1···j′m
i′1···i′n

= U∗j′1j1U
∗
j′2j2
· · ·U∗j′mjm Ui′1i1Ui′2i2 · · ·Ui′ninx

j1···jm
i1···in . (363)

From this it is clear that (n,m) ≡ (m,n)∗ is the conjugate representation to (m,n) transform-
ing via the complex conjugate matrices. (n, n) is self-conjugate and has dimension (n+ 1)3 .

Weights by hooks formula for D(m,n):
• There is another way of writing the formula for the dimension D(m,n) of the (m,n) irrep of
su(3) , which we state here. It expresses D(m,n) as the quotient of the product of ‘weights’ and
the product of ‘hooks’. The weights are numbers that we put in the boxes of the Young table,
starting with N = 3 in the LH top corner box and increasing by one to the right. In the second
row, the weights start with N − 1 = 2 and increase by one in successive boxes to the right. E.g.
the weights for the 8 irrep are 3 4

2
. In general, for a Young table with m + n boxes in the top

row and m boxes in the second row, the weights in the first row are 3, 4, · · · , (m+ n+ 2) and
the weights in the second row are 2, 3, · · · ,m+ 1 .

3 4 ·· ·· ·· ·· ·· m+n+2

2 3 ·· m+1 (364)

So the product of weights is∏
weights =

1

2
(m+ n+ 2)!(m+ 1)! (365)

The hook lengths are numbers placed in each box of the Young diagram. The hook length of
a box is the number of boxes to its right plus the number of boxes below it plus one. E.g., the
hooks for the 8 irrep are 3 1

1
. In general the hooks in the lower row beginning from the left

51Imagine arranging σ1 ≥ 0 1 ’s followed by a | followed by σ2 ≥ 0 2’s followed by a | followed by σ3 ≥ 0
3 ’s where σ1 + σ2 + σ3 = m . E.g. 11|2|333 , |22|3 , 11|33 , 1|2| etc. The number of such arrangements with
σ2 > 0 is the number of ways of placing two | ’s in m + 1 possible slots, i.e.,

(
m+1
2

)
. To this we must ass the

possibilities with σ2 = 0 . For the latter we need only insert one | in one of m+ 1 locations, which may be done
in
(
m+1
1

)
ways. Adding we get Pm =

(
m+1
2

)
+
(
m+1
1

)
.
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are m,m− 1, · · · , 1 . The hooks in the upper row beginning from the left are m+ n+ 1,m+
n, · · · , n+ 2;n, n− 1, · · · , 1 .

m+n+1· · · n+2n · 2 1
m m−1·· 2 1 (366)

Thus the product of hook lengths is∏
hooks =

m!n!(m+ n+ 1)!

(n+ 1)!
=
m!(m+ n+ 1)!

(n+ 1)
. (367)

It is now easy to check that the ratio of product of weights to product of hooks is equal to the
previously computed dimension D(m,n)∏

weights∏
hooks

=
1

2
(m+ n+ 2)(m+ 1)(n+ 1) = D(m,n). (368)

10.6.7 Examples of low-dimensional irreducible reps of su(3)

• We summarise some results about su(3) irreps here. The (m,n) irrep (integers m,n ≥
0) has a Young table with first row with m + n boxes and second row with m boxes and
corresponds to a tensor xj1···jmi1···in with m upper (anti-quark) indices and n lower (quark) indices
transforming via U = e−

1
2
iθaλa and U∗ = e

1
2
iθaλ∗a respectively. Dimension of the (m,n) irrep

is D(m,n) = 1
2
(n + 1)(m + 1)(n + m + 2) . (m,n) is inequivalent to (m′, n′) if n 6= n′

or m 6= m′ . Value of the Casimir in the (m,n) irrep is F 2 = 1
3
(m2 + mn + n2) + (m + n) .

Particles transforming in the irrep (m,n) can have baryon number B = (n−m)/3 since quarks
and anti-quarks have baryon number ±1/3 . We will see that they may also have certain other
baryon numbers B = (n−m)/3 + j for some integer integer j .

• Examples: (0, 0) is the trivial 1d representation 1 carried by the space of tensors with no
indices i.e, scalar multiples of 1 . It may be represented by the Young tableau with no boxes. As
mentioned before, totally anti-symmetric 3rd rank tensors λεijk also carry the trivial represen-
tation and are labelled by .

• (0, 1) = is the defining or fundamental 3d (quark) representation 3 carried by xi . (1, 0) =
3∗ = is the anti-fundamental representation carried by xi (anti-quarks).

• (1, 1) = 8 = 8∗ = is the self-conjugate octet carried by a traceless tensor xji with one
quark and one anti-quark index (the pseudo scalar pion octet or vector meson ρ octet). The
octet is also equivalent to the adjoint representation of su(3) , where the matrix elements are the
same as the structure constants. How is this related to the baryon (nucleon) octet?

• Recall that xji was obtained by contracting the original tensor = xi;k;l by εjkl , xji =
εjklxi;k;l . In general, the totally anti-symmetric εijk can be used to lower anti-quark indices
and turn them into a pair of anti-symmetric quark indices Aij = εijkx

k with Aij transforming
as xixj . Thus we may view the upper anti-quark index in the xji as an anti-symmetric pair of
quark indices. By this process we may identify the pion octet with the baryon octet, they behave
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in the same way under su(3) . However, the process of replacing an anti-quark index with an
anti-symmetric pair of quark indices increases the baryon number of the states by one.

• Similarly, one may replace a quark index by an anti-symmetric pair of anti-quark indices by
raising using εikl . In this manner one obtains the tensors carrying the anti-nucleon octet from
those of the pion octet xji ε

ikl . As far as su(3) is concerned, the pseudo scalar mesons, vector
mesons, nucleons and anti-nucleons all transform in the octet 8 .

• The possibility to replace a quark index with a pair of anti-quark indices and an anti-quark
index with a pair of quark indices means that that (m,n) could correspond to particle multiplets
with various baryon numbers, all congruent to (n−m)/3 modulo 1 .

• (0, 3) = 10 denoted by consists of symmetric tensors with 3 quark indices xijk while
(3, 0) = 10∗ = corresponds to symmetric tensors with 3 anti-quark indices xijk . The ∆
baryon decuplet and the ∆̄ anti-baryon decuplet transform in these inequivalent irreps. More
examples of su(3) irreps are given in the table.

dim and irrep (m,n) Tableau m+n
m boxes Tensor xj1···jmi1···in , particles F 2 B (mod 1)

1=trivial (0,0) 1, singlet 0 0

3=fundamental (0,1) xi, colored quarks 4/3 1
3

3̄ =anti-fund (1,0) xi, colored anti-quarks 4/3 − 1
3

6 (0,2) xij , colored diquark 10/3 2
3

6̄ (2,0) xij , colored diantiquark 10/3 − 2
3

8 = 8̄= adjoint (1,1) xij , x
i
i = 0, pion octet 3 0

10 (0,3) xijk, 3
2

+ baryon decuplet 6 1

1̄0 (3,0) xijk , 32
+
B = −1 decuplet 6 −1

15 (1,2) xijk, xiik = 0 16/3 1
3

1̄5 (2,1) xijk , xiji = 0 16/3 − 1
3

15′ (0,4) xijkl 28/3 4
3

1̄5
′ (4,0) xijkl 28/3 − 4

3

24 (1,3) xijkl, x
i
ikl = 0 25/3 2

3

2̄4 (3,1) xijkl , xijki = 0 25/3 − 2
3

27 = 2̄7 (2,2) xijkl, x
ij
il = 0 8 0

• We notice that the su(3) irreps with non-integer baryon number are not realized in the spec-
trum of hadrons. This is not explained by flavor su(3) symmetry but by the hypothesis that
color is confined within hadrons.

10.6.8 Weight diagrams for su(3) irreps

• The generators of the su(3) Lie algebra may be divided into Cartan generators λ3, λ8 which
span a maximal abelian subalgebra and the raising and lowering operators I±, U±, V± .

• The Cartan generators 1
2
λ3,

√
3

2
λ8 are diagonal both in the fundamental representation 3 and

also in any irrep (m,n) . Thus each state of the irrep (m,n) is characterized by a pair of
eigenvalues (say I3, Y ) of the Cartan generators. A weight diagram displays the D(m,n)
states of an irreducible su(3) multiplet as points on the I3 − Y plane. The weight diagram
for 3 = (carried by xi ) is an isoceles triangle with vertex (s) ‘pointing downwards’, the
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3 vertices are u(1/2, 1/3), d(−1/2, 1/3), s(0,−2/3) . The triangle is not equilateral since I3

and Y (unlike λ3 and λ8 ) do not have the same length with respect to the Cartan metric. The
weight diagram for 3∗ carried by xi is an isoceles triangle with vertex ‘pointing upwards’. To
obtain weight diagrams for other representations, it is convenient to define a ‘diamond’ lattice
on the I3 -Y plane whose sites are integer linear combinations of the three lattice vectors x1 =
(1/2, 1/3),x2 = (−1/2, 1/3),x3 = (0,−2/3) which are the position vectors of u, d, s in the
weight diagram of 3 . Then the weight diagram of the (m,n) irrep carried by xj1···jmi1···in consists
of D(m,n) lattice sites, one each for the D(m,n) linearly independent tensor components of
the representation. Each linearly independent tensor component xj1···jmi1···in is assigned the lattice
vector xi1 + · · · + xin − (xj1 + · · · + xjm) . Several tensor components may occupy the same
site in a weight diagram. E.g. the origin of the hexagonal weight diagram of the octet 8 is
doubly occupied. Moreover, the weight diagram is purely an su(3) property, it does not know
about baryon number or spin. So the nucleon, anti-nucleon and pseudoscalar meson and vector
meson octets have the same weight diagrams.

• E.g. Weight diagram of 8 corresponding to traceless tensors xji . There are 7 distinct lattice
sites for the 8 independent states, forming a hexagon with center doubly occupied. x1

1, x
2
2, x

3
3

all correspond to the zero weight vector x1 − x1 = x2 − x2 = x3 − x3 = ~0 . By xii = 0 only
two of these are independent and it is conventional to choose the combinations 1√

2
(x1

1 − x2
2)

and 1√
2
(x1

1 + x2
2) since these transform under isospin as an isosinglet and in an isotriplet with

x1
2 and x2

1 . The lattice sites for the remaining 6 tensor components are

x1
2 → x2−x1, x2

1 → x1−x2, x2
3 → x3−x2, x3

2 → x2−x3, x3
1 → x1−x3, x1

3 → x3−x1,
(369)

Draw the weight diagram for 8 and also for 10 and 10∗ .

• Recall from the su(3) commutation relations that I±, V±, U∓ raise and lower the weight I3

by one, half and half respectively. I± leave Y unchanged while U±, V± raise and lower Y by
one. Thus the raising and lowering operators annihilate states with maximal or minimal values
of I3 and Y . Such highest or lowest weight states (also known as ‘maximally stretched states’)
lie on the periphery of the weight diagram. In the case of 8 , each of the 6 states on the periphery
of the hexagon are annihilated by one or more of the raising or lowering operators.

10.6.9 Decomposition of tensor products of su(3) representations

• Just as we have rules for decomposing tensor products of su(2) representations as direct sums
of irreps, e.g., j ⊗ j′ = |j + j′| ⊕ |j + j′ − 1| ⊕ · · · ⊕ |j − j′| there are rules for decomposing
tensor products of su(3) irreps. These rules are stated in terms of the Young tableaux (see
Georgi, Lie algebras in particle physics or other group theory books). Suppose we take the
tensor product of two representations A,B with Young tableaux A and B . A⊗B is the direct
sum of several irreps. Of course the product of the dimensions of A and B must equal the sum
of the dimensions of the irreps appearing in the decomposition. Moreover, the irreps appearing
in the decomposition A⊗B are the same as those appearing in B⊗A . However, it is easier to
find the decomposition when the second factor has a simpler Young table compared to the first,
using the following rules. The simplest cases of A ⊗ B are when B = is the fundamental.

185



Then the rule is simply to affix a box in all possible ways to A to arrive at a sum of legal Young
tables. Let us look at some examples.

• 3⊗ 3 = ⊗ = ⊕ . Thus 3⊗ 3 = 6⊕ 3∗ . The rule here is that we affix the box from
the second factor in all possible ways onto the Young tableau of the first representation to arrive
at a legal Young table. In terms of tensors, this decomposes xixj as the sum of its symmetric
and anti-symmetric part and identifies the anti-symmetric part Aij with the anti-fundamental
representation 3∗ by contracting with εkij . It follows that we do not ‘need’ the anti-fundamental
representation, it appears as a summand in the decomposition of tensor products of 3 . In fact, all
irreps arise as summands in the decomposition of tensor products of copies of the fundamental
3 . 6 does not appear in the spectrum of hadrons, it has fractional baryon number.

• 3∗⊗3 = ⊗ = ⊕ . = 8⊕1 . The dimensions are 9 on either side. In other words, by
combining a quark and an anti-quark we get an octet and a singlet. This is realised in the pion
octet along with nearby singlet η′ and the vector meson octet with nearby singlet φ .

• 6 ⊗ 3 = ⊗ = ⊕ = 10 ⊕ 8 . Soon we will use this to ‘make’ baryons from
a product of three copies of 3 using the distributivity of tensor product over direct sum. The
decomposition 6 ⊗ 3 = 10 ⊕ 8 corresponds to the decomposition of the product xijyk of a
symmetric tensor (6) and a vector (3) as the sum of a symmetric 3rd rank tensor (10) and a
tensor carrying 8 , via the identity

xijyk =
1

3
(xijyk + xikyj + xkjyi) +

1

3
[(xijyk − xkjyi) + (xijyk − xkiyj)] (370)

The first term is clearly a symmetric 3rd rank tensor (note, xij is already symmetric), say uijk
which we know carries 10 . The second parenthesis contains the rest, we write it as a sum of
two terms related by i ↔ j symmetrization. To see that xijyk − xkjyi transforms as 8 we
define a (1, 1) tensor by contracting with ε , zpj = εikp(xijyk − xkjyi) . zpj is traceless zpp = 0 ,
so it transforms in the 8 representation.

• 3 ⊗ 3 ⊗ 3 = (6 ⊕ 3∗) ⊗ 3 = 6 ⊗ 3 ⊕ 3∗ ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1 = ⊕ ⊕ ⊕ .
Note that the dimensions are 27 on either side and that 8 appears with multiplicity 2 in the
decomposition. Thus a system of three light quarks can transform as a decuplet, octet or singlet
under su(3) . Examples include the JP = 3

2

+
∆ decuplet, the JP = 1

2

+ nucleon octet and the
Λ0 singlet.

• 8⊗ 3 = ⊗ = ⊕ ⊕ = 15⊕ 6∗ ⊕ 3 . The column of three boxes corresponds
to the trivial representation and was eliminated from the last diagram. Note that the dimensions
are 24 on either side.

• Under complex conjugation A⊗B = C ⊕D⊕ . . . becomes A∗ ⊗B∗ = C∗ ⊕D∗ ⊕ . . . . In
particular we must have 3∗ ⊗ 3∗ = 6∗ ⊕ 3 = ⊕ etc.

• To decompose a tensor product of irreps A⊗ B when B has more than one box we need to
preserve the anti-symmetry in any pair of indices that appear in a common column of A or B ,
provided the indices appear in the final tableau. We state without proof (see Georgi) the rules
for decomposing A⊗ B by adding to A , the boxes of B . We place the label a in each box of
the first row of B and the label b in the second row of B . Step 1: Take the boxes labelled a
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and stick them onto A in all possible ways (to the right or below existing boxes) to form several
legal tableaux while ensuring two as do not appear in the same column. Step 2: Take the b
boxes and add them to the tables from step 1 in all possible ways (to the right or below existing
boxes) to form Young tables subject to one condition. Reading along the rows from right to left
and from top row downwards, the number of a’s must be ≥ the number of b’s at any stage.

• Apply these rules to obtain the Clebsch-Gordan decompositions (1) 3⊗ 3∗ = 8⊕ 1 (note 8 ,
1 are both self-conjugate.) (2) 3∗ ⊗ 3∗ = 6∗ ⊕ 3 and (3) 8⊗ 8 = 27⊕ 10⊕ 10∗ ⊕ 8⊕ 8⊕ 1
(both reps are 64 dimensional).

10.6.10 Mass formula of Gell-Mann and Okubo

• Isospin su(2) (spanned by λ1, λ)2, λ3 ) is a very good symmetry of the strong interactions
(masses in a multiplet are degenerate to a percent or better), and strangeness or hypercharge
(λ8 ) is conserved in all strong interactions. But the rest of flavor su(3) is not quite as good a
symmetry: masses within the baryon octet vary from 939 to 1318 MeV. Gell-Mann suggested a
division of strong interactions into those governed by hamiltonian H0 , that preserve su(3) (H0

commutes with all λa ) and those governed by H1 , that commutes only with isospin λ1, λ2, λ3

and hypercharge λ8 generators of su(3) . H1 was to be treated as a perturbation to H0 . The
idea was that H0 is responsible for the main common mass M0 of the members of an su(3)
multiplet, while H1 is responsible for the mass splittings between different isospin multiplets
within the larger su(3) multiplet. Based purely on group theoretic arguments (i.e. that H1 trans-
forms as λ8 (recall λ8 commutes with λ1,2,3 and λ8 ) and use of the Wigner-Eckart theorem,
but without detailed knowledge of H0 or H1 ), Gell-Mann and Okubo independently obtained a
formula for the masses of members of a multiplet. For the nucleon octet, the masses of various
isospin multiplets are (see Georgi)

MN = M0 −
2X√

12
+

Y√
12
, MΣ = M0 +

X√
12

+
Y√
12
,

MΛ = M0 −
X√
12
− Y√

12
, MΞ = M0 +

X

12
− 2Y√

12
. (371)

These are four predictions in terms of three unknown parameters. The constants M0, X, Y
are not determined by symmetry arguments, they depend on the detailed dynamics of strong
interactions. But M0, X and Y can be eliminated to arrive at the parameter-free Gell-Mann
Okubo mass formula

2(MN +MΞ) = 3MΛ +MΣ. (372)

Putting in the measured values MN = 940 , MΣ = 1190 , MΞ = 1320 the mass formula predicts
MΛ = 1110 which compares favorably with the experimental value MΛ = 1115 MeV.

• For the baryon decuplet the Gell-Mann-Okubo mass formula predicts equal spacing between
isospin multiplets that differ by one unit of strangeness: MΣ∗ −M∆ = MΞ∗ −MΣ∗ = MΩ− −
MΞ∗ . The measured masses M∆ = 1230,MΣ∗ = 1385 , MΞ∗ = 1530,MΩ− = 1672 are nearly
equally spaced: ∆M = 155, 145 and 142 . In the quark model this may be understood as due
to the addition of one strange quark in place of a u or d quark each time S decreases by one.
This also suggests that the strange quark has a mass of about 100− 140 MeV.
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• In fact, the Ω− had not been discovered when Gell-Mann and Okubo proposed their mass
formula. Based on the structure of the su(3) 10 representation and mass formula, Gell-Mann
and Ne’eman (independently) in 1962 predicted the existence of the S = −3 baryon Ω− at a
mass of about 1680 MeV, and also predicted that the Ω− would be long lived unlike the other
baryon resonances. This is because it is not heavy enough to decay in a strangeness conserving
strong process to two or more lighter hadrons with total baryon number one (e.g. an S = −2
Ξ∗ baryon and an S = −1 kaon). Thus they predicted that it would decay weakly in a ∆S = 1
transition to Ξ−π0,Ξ0π− or Λ0K− . The Ω−(1672) was discovered at Brookhaven by Barnes
et. al., in 1964 near the predicted mass and underwent weak decay as predicted. This was
spectacular confirmation of the approximate su(3) flavor symmetry of the strong interactions.

10.7 Gell-Mann and Zweig quark model

• In the discussion of su(3) flavor symmetry, u , d ands quarks were simply names for three
independent states of the fundamental representation 3 = . They did not have a dynamical
significance as interacting particles with mass, spin etc. Gell-Mann and Zweig (1964) suggested
that quarks may in fact be constituents of hadrons. The difficulty was that quarks had not (and
still have not) been detected as isolated fractionally charged particles. The forces among quarks
would have to be such that quarks are confined within hadrons. There was no precedent for this
in physics nor a mechanism to achieve this in the 1960s. Today, we have good empirical reasons
to believe that quarks do exist, and that they are confined within hadrons due to the strong force
mediated by gluons and described by QCD. More on QCD later.

• The quark model postulates that hadrons are bound states of particles called quarks and their
anti-particles. We will discuss their spin, mass etc later. Baryons are assumed to be made
of three quarks and mesons of a quark and anti-quark. For this to work, quarks (anti-quarks)
must have B = ±1

3
. Baryon number is the conserved qty corresponding to global U(1) phase

changes of quark fields. B is additive for a composite system of quarks and anti-quarks. U(1)B
commutes with flavor SU(3) . The u, d, s quarks are assigned quantum numbers Q , I3 and Y
and S = Y −B (and their negatives for anti-quarks) as discussed in the context of su(3) flavor
symmetry. Each of these is diagonal in the fundamental representation with diagonal elements
given below

I3 → (
1

2
,−1

2
, 0), Y → (

1

3
,
1

3
,−2

3
), S → (0, 0,−1), Q = I3 +

Y

2
→ (

2

3
,−1

3
,−1

3
).

(373)

• The su(3) irrep (m,n) carried by the space of tensors xj1···jmi1···in is regarded as a multiplet of
D(m,n) particles composed of quarks. I3 and Y (and therefore Q and S ) for a composite
system of quarks and anti-quarks is additive. This also follows from from su(3) representation
theory: if a generator λ is diagonal in the fundamental rep 3 , (e.g. the Cartan generators λ3, λ8 )
then it is diagonal in any irrep. Moreover, if the eigenvalues of λ are c1, c2, c3 in 3 , then its
eigenvalues in the irrep (m,n) carried by xj1···jmi1···in are ci1 + · · ·+ cin − (cj1 + · · ·+ cjm) .

• By requiring all the particles of an irreducible multiplet (m,n) to have a given fixed baryon
number, their quark composition can be fixed. To fix the quark composition, recall that each
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lower index i can be regarded either as a quark constituent or an anti-symmetric pair of anti-
quark constituents, by contraction with εjki . These two possibilities differ in baryon number
B = 1/3 or −2/3 . Specifically, x1 can be a u quark or an anti-symmetrized (23) = (d̄s̄)
pair. Anti-symmetrization refers to anti-symmetrization in flavor quantum numbers (23) =
1
2

(
d̄(1)s̄(2)− s̄(2)d̄(1)

)
. Similarly, x2 = d or (31) = (s̄ū) and x3 = s or (12) = (ūd̄) .

Similarly, an upper index j can be an anti-quark or an anti-symmetric pair of quarks: x1 = ū
or (23) = (ds) , x2 = d̄ or (su) and x3 = s̄ or (ud) .

• E.g. The traceless tensors xji carrying the adjoint rep 8 = refer to an octet of qq̄ bound
states (mesons) if B = 0 and to an octet of 3 quark bound states (baryons) if B = 1 . The
anti-symmetrization in two of the quarks enters the baryon wave function, as we will discuss
later. The tensors xi with baryon number 1/3 are just the triplet of quarks. The symmetric
tensors xijk with B = 1 are the decuplet of baryons etc.

• Since no hadron with non-integer B has been detected, we suppose there is some deeper
dynamical reason (color confinement in QCD) which explains why multiplets with fractional
B are not observed. The allowed multiplets are those whose Young tableaux contain a number
of boxes that is divisible by three. Recall that the irrep (m,n) has a Young table with 2m + n
boxes and corresponds to the tensor xj1···jmi1···in . The tensor has n quark and m anti-quark indices
which corresponds to a multiplet with B = (m − n)/3 modulo one. For B to be an integer,
n−m must be a multiple of 3 , or equivalently n−m + 3m = n + 2m must be a multiple of
three. Examples of such multiplets are 1,8,10,10∗,27 etc.

• Let us consider the possible quark composition of 8 , i.e. traceless (1, 1) tensors xji . This
could describe a multiplet of mesons (i.e., B = 0) since there is one quark and one anti-quark
index. The 8 states in the weight diagram of 8 then correspond to mesons with the following
quark content

x1
2 = ūd = π−, x2

1 = d̄u = π+, x2
3 = d̄s = K̄0, x3

2 = s̄d = K0,
x3

1 = s̄u = K+, x1
3 = ūs = K−, x1

1 + x2
2 = ūu+ d̄d = π0, x1

1 − x2
2 = ūu− d̄d = η (374)

These mesons have been identified with the members of the pseudoscalar pion octet, the same
quark composition also applies to the vector meson octet ρ,K∗, ω . Note that there is some
mixing between the iso-singlet ūu− d̄d which is a member of 8 and ūu+ d̄d+ s̄s , which is a
member of 1 (su(3) singlet and su(2) singlet) to form the physical states η, η′ .

• 8 could also describe a multiplet of baryons (B = 1) if we convert the upper anti-quark index
to an anti-symmetric pair of lower quark indices εjklx

j
i . It could also describe an anti-baryon

multiplet by raising the lower quark index εiklxji . To obtain the quark content of the baryons
we simply replace each anti-quark label, such as ū by the corresponding anti-symmetrized
pair of quark indices ū → (ds) where (ds) = d(1)s(2) − d(2)s(1) where 1, 2 identify the
two quarks and u(1), d(1), s(1) are a basis for the su(3) flavour states of the first quark and
similarly u(2), d(2), s(2) are a basis for the flavor states of the second quark. Thus the quark
compositions of the 8 states in the weight diagram are

x1
2 = (ds)d = Σ−, x2

1 = (su)u = Σ+, x2
3 = (su)s = Ξ0,

x3
2 = (ud)d = n, x3

1 = (ud)u = p, x1
3 = (ds)s = Ξ−,

x1
1 + x2

2 = (ds)u+ (su)d = Σ0, x1
1 − x2

2 = (ds)u− (su)d = Λ0 (375)
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We have identified these 3-quark baryons with members of the nucleon octet. Mark these on a
weight lattice.

• Similarly, find the anti-quark content of the 8 states of the anti-baryon octet and indicate them
on a weight diagram.

• 10 carried by the symmetric 3rd rank tensors xijk can have baryon number one and corre-
spond to the baryon decuplet (the lowest lying decuplet is the ∆ decuplet). The quark compo-
sitions of the states in the weight diagram are easily identified (Y increases upwards and I3 to
the right)

x222 = ddd = ∆−, x221 = ddu = ∆0, x211 = duu = ∆+, x111 = uuu = ∆++

x322 = sdd = Σ−∗, x321 = sdu = Σ0∗, x311 = sdu = Σ+∗,
x332 = ssd = Ξ−∗, x331 = ssu = Ξ0∗,

x333 = sss = Ω−. (376)

Similarly, one may arrive at the quark composition of the anti-baryon decuplet which carries
the inequivalent conjugate representation 10∗ .

• However, 10 could also correspond to a multiplet with B = 0 , by converting a quark index to
an anti-symmetric pair of anti-quark indices εlmixijk . Such a decuplet would consist of mesons
composed of two quarks and two anti-quarks (qqq̄q̄ ). Such mesons are not common at low
masses and are called exotic, they are probably very unstable, though they are allowed by color
confinement. There are several experimentally detected hadronic resonances that may be exotic,
such as X(3872),Y(3940), Y(4140),Zc(3900), Z(4430) with masses in MeV indicated. In fact,
10 could even correspond to exotic anti-baryons εnpjεlmixijk with the quark content q̄q̄q̄q̄q .
Similarly, there are exotic B = 2 states that cannot be separated into a pair of color singlet
B = 1 states (‘exotic’ deuteron) and so on for higher baryon number. These exotic hadrons are
not the same as conventional nuclei, they are probably more massive and more unstable and do
not seem to play a role in nuclear physics except possibly at the very high densities in the early
universe.

• The quark model also provides an explanation for why su(2) isospin is not quite an exact
symmetry of the strong interactions: the up and down quarks are not equally massive (3 − 7
MeV). Flavor su(3) symmetry is even less exact since the strange quark has a mass of order
100 MeV - 150 MeV. Moreover, the Gell-Mann-Okubo formula for the constancy of the mass
differences between isospin multiplets within the ∆ decuplet may simply be interpreted as due
to the addition of a strange quark as strangeness decreases by one.

10.8 Flavor and spin: su(4) and su(6)

• So far we have only discussed the quark flavor composition of hadron multiplets with given
baryon number. The relevant symmetry groups are U(1) for baryon number, su(2) for isospin
or its enlarged version flavor su(3) . Now we would like to include the other degrees of free-
dom of quarks, such as spin and location. As a first step, consider only flavor and spin, so
that the space-time dynamics is still ignored. Given the success of su(2) and su(3) there were
attempts to find enlarged (approximate) symmetry groups whose representations were realized
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on multiplets of hadrons. The simplest such possibility is su(4) which comes from combining
su(2) isospin with su(2) spin in a non-relativistic approximation. Recall from atomic physics
that spin-orbit coupling is a relativistic effect that may be derived from the Dirac equation. In
the non-relativistic approximation distinct spin projections have the same energy. su(4) sym-
metry in its defining fundamental representation is acts on the 4d vector space spanned by
u ↑, u ↓, d ↑, d ↓ with arrows indicating spin projections of the two quark flavors. It is sup-
posed that special unitary transformations in the 4d space spanned by these, are an approximate
symmetry of the strong interactions. A treatment where spin is separated from orbital angular
momentum is typically justified only in non-relativistic qm, so su(4) can only be a very approx-
imate symmetry, especially for light quarks. Similarly, Gursey, Radicati and Sakita suggested
an approximate su(6) symmetry by including the strange quark.

• If su(4) were a symmetry, then by analogy with su(3) , the mesons and baryons would come
in multiplets that appear in the decomposition of 4⊗4∗ and 4⊗4⊗4 into irreps. Interestingly,
this seems to be roughly true. Use the rules for decomposing tensor products and the weights
by hooks rules to show that

4× 4× 4 = ⊗ ⊗ = 20⊕ 20′ ⊕ 20′ ⊕ 4∗ = ⊕ ⊕ ⊕ (377)

4 ⊗ 4 ⊗ 4 includes a 20 in its decomposition, corresponding to symmetric 3rd rank tensors.
These 20 states can be identified with the 4 spin-isospin states of the nucleon doublet and the
16 spin-isospin states of the spin 3/2 ∆ quartet. These 20 hadronic states n ↑, n ↓, p ↑, p ↓
,∆−(3/2),∆−(1/2),∆−(−1/2),∆−(−3/2), · · · carry the 20 representation of SU(4).

• Similarly, for su(6) , we have the decompositions 6∗ ⊗ 6 = 1 + 35 .

⊗ = ⊕ = 1⊕ 35. (378)

The states of 35 with B = 0 can be identified with the 8 flavor states of the pseudoscalar
pion octet + 24 spin-flavor states of the spin-1 vector meson (ρ) octet and the 3 spin states of
the vector meson su(3) singlet φ . The spin-0 su(3) singlet η′ can be identified with the su(6)
singlet in the decomposition 35⊕ 1 .

• Moreover, there is a 56 carried by symmetric 3rd rank tensors with B = 1 in the decompo-
sition (use the weights by hook lengths formula to get the dimensions of irreps)

6× 6× 6 = 56⊕ 70⊕ 70⊕ 20 = ⊕ ⊕ ⊕ (379)

These 56 baryon states can be identified with the union of the 16 spin-flavor states of the spin-
half N -octet and the 40 spin-flavor states of the ∆ spin-3/2 decuplet.

• While isospin and flavor su(3) are internal symmetries, spin is a space-time symmetry (spin
SU(2) arises in the study of the representations of the Pioncare group). However, treating spin
in a manner distinct from orbital angular momentum is only justified in a non-relativistic ap-
proximation. Given the above successes, physicists tried to combine space-time and internal
symmetries in non-trivial ways (i.e. other than as a cartesian product) into larger groups that
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could be the symmetries of a relativistic quantum system. However, no non-trivial way was
found. In fact, Coleman and Mandula argued that if a Lie algebra combined both space-time and
internal symmetry generators in a non-trivial way, a field theory that possessed this symmetry
would have a trivial S-matrix in 3+1 dimensions, i.e., the fields would not interact and particles
would not scatter. This Coleman-Mandula theorem is based on some assumptions, which can be
relaxed to get non-trivial interacting field theories that are invariant under symmetry groups that
combine space-time and internal symmetries in non-trivial ways. One such possibility is pro-
vided by dropping the condition that the infinitesimal symmetries form a Lie algebra. If some
of the generators satisfy commutation relations and some satisfy anti-commutation relations,
one can get a Z2 graded Lie algebra also known as a Lie super-algebra, using which one may
circumvent the Coleman Mandula no-go theorem. This idea has been realized in supersymmet-
ric (SUSY) field theories. However, nature seems not to have chosen to unite space-time and
internal symmetries via SUSY in a relativistic theory of hadrons. Instead, nature seems to have
selected a non-trivial generalization of electromagnetism, i.e., non-abelian gauge theory [based
on a new and unexpected internal color symmetry] for the strong interactions of hadrons.

10.9 Need for colored quarks

• Now we try to extend the quark model by including translational degrees of freedom so that
quarks are described by wave functions that depend on position, spin projection and flavour.
We ignore the mass differences between u, d, s quarks and treat quarks as identical particles,
the different quarks are simply different flavor states (i.e. with different I3 or Y ). Being spin
half particles the total wave function must be anti-symmetric under exchange of space, spin
and flavour of all quarks. The simplest possibility, by analogy with multi-electron atoms or
nuclear shell models is to suppose that quarks move in a mean field produced by the other
quarks and occupy single particle orbitals that are suitably anti-symmetrized to satisfy Fermi
statistics. Now the su(4) and su(6) models say that the lowest lying baryons nucleon octet
and delta decuplet transform in the symmetric rank three tensor representations. So the wave
functions of the quarks in these baryons must be symmetric under exchange of spin and flavor.
Particularly simple examples are the Jz = 3/2 states of ∆++,∆− and Ω− which have 3 up,
3 down and 3 strange quarks respectively, all with the same flavor and spin-projection. To
satisfy Pauli exclusion, the wave function must be anti-symmetric under exchange of positions
of quarks in the baryon. In particular the quarks cannot all be in the same lowest S wave orbital
which would be expected to minimize energy. However, this is not supported by experimental
facts, to say nothing of the theoretical difficulty in constructing a rotationally-invariant model
of forces between quarks where the ground state is not spherically symmetric. For instance,
pions and nucleons have roughly the same size (charge radii). In a meson, the quark and anti-
quark can both be in the same S -wave orbital since they are not identical particles, this would
minimize energy. Since nucleons have the same charge radii as pions, the data favors all quarks
to occupy the same spatial S orbital. Moreover, if the quarks were in different spatial orbitals,
at least one of them would have a node, which would lead to a zero in the electric form factor
(a measure of the charge distribution), which is not seen in the data. Something is not right.
If we trust the su(4) and su(6) symmetries then we cannot seem to be able to satisfy Pauli
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exclusion and match experiment. It appeared that quarks behave like bosons to the extent that at
most three quarks could occupy the same state, despite having spin half. To resolve this puzzle,
it was suggested that quarks may satisfy a new kind of ‘parastatistics’ different from Bose and
Fermi or that the su(4) and su(6) arguments were not to be trusted since they relied on a
non-relativistic treatment. The resolution of this puzzle that has subsequently been confirmed
by experiment is that quarks possess an additional ‘color’ degree of freedom (having nothing
to do with color of light) and transform in the fundamental representation of su(3) color. So
each flavor of quark comes in three possible colors having the same mass and charge. SU(3)
rotates among the three color states. su(3) color is believed to be an exact symmetry, unlike the
approximate su(3) flavor symmetry. The three quarks in a baryon of the N octet or ∆ decuplet
are anti-symmetric under interchange of color, allowing all three of them to occupy the same
spatial orbital and still satisfy Fermi-Dirac statistics.

• There are several other reasons for believing that quarks come in precisely Nc = 3 colors,
both theoretical and experimental.

• The current theory of strong interactions QCD is a non-abelian gauge theory with color play-
ing the role that electric charge plays in the abelian gauge theory QED. There are good reasons
(numerical and from simpler models) to believe that quantum chromodynamics confines color
so that all hadrons must be color neutral (i.e., color singlets, transforming in the trivial repre-
sentation of su(3) color). If this were true, it would also explain why observed hadrons have
integer baryon number. This is because the trivial representation of color has the Young tables
with no boxes or a column of three or two columns of three each. The number of boxes is equal
to one third the baryon number, since each box can be regarded as coming from one quark,
which has baryon number 1/3 . Color confinement would also explain why quarks are confined
within hadrons and have not been isolated.

• Recall that the neutral pion predominantly decays to 2 photons. To leading order, the decay
amplitude is encoded in a ‘triangle diagram’ with a virtual quark loop. One must sum over all
possible quarks that can appear in the loop, and square the resulting amplitude to arrive at the
decay rate. One finds that the measured decay rate is about 9 times what is obtained if quarks
came in a single color. This is evidence for N2

c = 9 , or Nc = 3 colors.

• Ratio R of cross-sections for e+e− annihilation at a collider at CM energy of
√
s:

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

(380)

R has been measured over a wide range of CM energies, it is plotted for instance in Huang Fig
2.8 (p.39) and also Halzen and Martin Fig 11.3 (p.229) up to about

√
s = 40 GeV. To leading

order the basic scattering process is electromagnetic with e+e− annihilating to form a virtual
photon which then produces a quark anti-quark pair or a charged lepton-anti-lepton pair. The
leading order QED cross section at CM energy s is σ(e+e− → µ+µ−) = 4πα2

3s
. If we had a qq̄

pair produced in place of µ+µ− , then we would have to multiply by the square of the charge of
the quark e2

q = (2/3)2 or (1/3)2 in units of the electron charge. What is more, if each quark
came in Nc colors, then we would have to multiply the cross section by Nc to account for the
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Nc possible color-anti-color pairs in the final state, i.e.,

σ(e+e− → qq̄) = Nce
2
qσ(e+e− → µ+µ−). (381)

Thus in this leading order QED ‘hard scattering’ approximation [we ignore the corrections to
the cross section due to the process of hadronization of the qq̄ pair], R = Nc

∑
q e

2
q . Now, as

s is increased, the thresholds for production of more massive quarks like s, c, b are crossed. So
one expects R to increase like a step function at these thresholds. R is sensitive to the number
of colors and Nc = 3 is in reasonable agreement with the data. Find the predicted values of R
between the various thresholds.

10.10 Quark model wavefunctions for baryons and mesons

• BARYONS: As before, we work in the non-relativistic independent quark approximation (so
that we may use single particle orbitals and factorize the position dependence from the spin
and flavor), imposing Fermi statistics for 3 quarks in a baryon. Here we briefly describe the
structure of the wave functions, in their dependence on color, flavor, spin and position. Such
a discussion is justified in a non-relativistic approximation where the number of quarks in a
system is independent of time52.

• We argued that the spin-flavor wave function of a baryon in the N and ∆ multiplets must be
symmetric (as it belongs to 56 of su(6)). Moreover since these are the lowest lying baryons,
all three quarks occupy the same single particle spatial l = 0 S -wave orbital ψ(r1)ψ(r2)ψ(r3) .
The dependence on position can be determined when one specifies a model for the force be-
tween quarks: we do not pursue that here (in principle this is determined by QCD - the po-
tential between quarks is roughly Coulombic at short distances and linear at long distances).
So the angular momentum of these baryons arises entirely from combining the quark spins.
The color part of the wave function is completely antisymmetric, i.e., the color singlet rep-
resentation 1 that appears in the decomposition 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 (here 3 is
fundamental rep of color su(3) , not flavor). Explicitly, if ri, gi, bi refer to the three basis vec-
tors (1, 0, 0), (0, 1, 0), (0, 0, 1) for color space C3 of the ith quark, then the color wave function
is

1√
6

∑
σ∈S3

(−1) sgn σrσ(1)gσ(2)bσ(3) =
1√
6

[r1g2b3 + b1r2g3 + g1b2r3 − g1r2b3 − r1b2g3 − b1g2r3]

(382)
To understand the notation for the color wave function, observe that it is a vector in the color
Hilbert space C3 ⊗ C3 ⊗ C3 of a three quark system. For instance, it says that the amplitude
for finding the first quark to be green, second to be blue and third to be red is 1/

√
6 and that the

amplitude for the first two quarks to be red and the third quark to be green is zero etc.

• It remains to specify the spin-flavor wave functions for the baryons. It must be symmetric
under exchange of any pair of quarks. The J = 3/2 ∆ decuplet is a bit easier than the N-octet

52In a fully relativistic treatment (say, based on QCD), it would not ordinarily be consistent to speak of a wave
function of a system of three quarks, since the number of quarks is not a conserved quantity. A fully relativistic
treatment has not yet been developed, except in some simplified versions of QCD.
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since if we consider the m = 3/2 states, then all the spins must point upwards and we only
need to symmetrize in flavors (the m = 1/2,−1/2,−3/2 states can be obtained by applying the
lowering operator J− ). We have already determined the flavor composition of quarks in the 10
weight diagram. So for the m = 3/2 states of ∆++ we must have ∆++ = u↑u↑u↑ . ∆+ has 2u’s
and a d, so we must symmetrize to obtain ∆+ = 1√

3
{u↑u↑d↑ + d↑u↑u↑ + u↑d↑u↑} ≡ (u↑u↑d↑)s

where (· · · )s denotes symmetrization. Similarly we have

∆0 = (u↑d↑d↑)s, ∆− = d↑d↑d↑, Σ∗+ = (u↑u↑s↑)s, Σ∗− = (d↑d↑s↑)s

Σ∗0 = (u↑d↑s↑)s =
1√
6

(u↑d↑s↑ + s↑u↑d↑ + d↑s↑u↑ + d↑u↑s↑ + u↑s↑d↑ + s↑d↑u↑)

Ξ∗0 = (u↑s↑s↑)s, Ξ∗− = (d↑s↑s↑)s, Ω− = s↑s↑s↑. (383)

To obtain the spin-flavour wave functions for the m = 1
2

states we simply apply J− = J1− +
J2− + J3− and normalize, which would convert u↑d↑u↑ → 1√

3
(u↓d↑u↑ + u↑d↓u↑ + u↑d↑u↓) for

instance. The m = −1
2

and m = −3/2 wave functions are obtained by simply reversing the
spin projections of all the spins in the m = 1

2
and m = 3/2 wave functions.

• Next we address the spin-flavor wave functions of the J = 1
2

baryons of N -octet, again they
must be symmetric under exchange of any pair of quarks.

• To illustrate, let us focus on the proton, say in the m = 1
2

up spin state. To get an m = −1
2

proton we may reverse all spin projections. And to get the corresponding neutron states, we
may exchange u’s with d’s. To construct the proton state function we imagine combining a u
and a d into an isospin zero state and then adding another u quark to get the desired isospin
half of the proton. In more detail, let us first put one of the u, d pairs in the isospin zero state

1√
2
(ud − du) state. For the wave function to be symmetric under exchange of this pair, they

must be in an anti-symmetric spin zero (S = Sz = 0) state 1√
2
(↑↓ − ↓↑) . So the state of this

ud pair is
1

2
(ud− du)(↑↓ − ↓↑) = u↑d↓ − u↓d↑ − d↑u↓ + d↓u↑. (384)

The RHS should explain the notation of the LHS. This state has I = J = 0 . This is good since
we can now combine this with a u↑ to get an I = I3 = 1

2
, S = S3 = 1

2
state representing the

proton with Sz = 1
2

.

• Now we include an up quark in the up spin state to this so that I3 = 1
2

and J3 = 1
2

:

1

2
(udu− duu)(↑↓↑ − ↓↑↑) (385)

However, this state is not symmetric under exchanges involving the third quark; it needs to be
symmetrized (in both spin and flavor) by adding the result of interchanging quarks 2 & 3 as
well as interchanging quarks 1 & 3 . We get, upto a normalization constant,

p↑ ∝ (udu−duu)(↑↓↑ − ↓↑↑)+(uud−duu)(↑↑↓ − ↓↑↑)+(udu−uud)(↑↓↑ − ↑↑↓). (386)

These 12 terms may be combined to get

p↑ =
1√
18

[2u↑d↓u↑ + 2d↓u↑u↑ + 2u↑u↑d↓ − u↓d↑u↑ − d↑u↓u↑ − u↓u↑d↑ − d↑u↑u↓ − u↑d↑u↓ − u↑u↓d↑] .

(387)
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Reason for the normalization factor: the 9 terms in square-brackets above are mutually orthog-
onal. So the norm square is just 22 + 22 + 22 + 6× 12 = 18 . Verify that this state is symmetric
under exchange of any pair of the three quarks. Similarly write down the neutron n↑ state.
The spin-flavor wave functions of some of the other baryons in the N -octet can be obtained by
suitable replacements: Σ+(uus) by replacing d → s in p , Σ−(dds) by u → s in n , Ξ0(uss)
by d→ s in n and Ξ−(dss) by u→ s in p . Λ0 and Σ0 need to be worked out, like we did for
the proton [it should also be possible to get the Σ0 state vector by applying I+ to the one for
Σ− ].

• MESONS: For a meson composed of a quark and an anti-quark, the Pauli principle places no
restriction, since they are distinguishable particles. But the meson must be in a color singlet
state, i.e., in the trivial rep 1 in the decomposition 3⊗ 3∗ = 1⊕ 8 of color su(3) . Explicitly,
the color wave function of a meson is

1√
3

[
rqr̄q̄ + gqḡq̄ + bq b̄q̄

]
(388)

Here r̄q̄ is the first basis vector for the dual color space C3∗ of the anti-quark. The flavors of the
quark and anti-quark in the pion octet have been discussed in the context of the weight diagram
for 8 .

10.11 Magnetic moments from quark model

• Dirac’s equation for a point-like spin half particle of mass m and charge e coupled to an
electromagnetic field predicts that the magnetic moment of the particle is ~µ = e~

2mc

~S
~ where ~S

is the spin (the magnetic dipole energy is −~µ · ~B ). The coefficient of ~S/~ is often loosely called
the magnetic moment. For a nucleon m = mN so one defines the nucleon Bohr magneton as
µN = e~

2mN c
. So Dirac’s theory predicts that for the proton µp = µN and µn = 0 as the neutron

is uncharged. However, the measured values are

µp = 2.79µN and µn = −1.91µN . (389)

These values are further indication that the proton and neutron are not elementary spin half
particles. The negative value of µn says that the neutron’s magnetic moment is oriented opposite
to its spin. The nucleon magnetic moments are anomalously large. µp was first measured by O
Stern in 1933 (Stern is also famous for the Stern-Gerlach experiment). He got the Nobel prize
in 1943 for the discovery of the anomalously large proton magnetic moment. I I Rabi improved
greatly on measurements of the magnetic moments of the proton and deuteron by developing the
NMR technique, for which he got the 1944 Nobel prize. µn was first estimated from knowledge
of µp and µd treating it as a spin one bound state. The anomalous nucleon magnetic moments
remained mysterious till the static constituent quark model offered an explanation.

• Note that the electric dipole moments of the neutron and proton are zero to current experi-
mental precision. Theoretically, CP symmetry of the strong interactions prevents strong contri-
butions to the neutron EDM. CP violation in the weak interactions implies a very small non-zero
neutron EDM, but it has not been experimentally measured.

196



• In the constituent quark model for nucleons, the proton and neutron are modelled as composed
of three valence quarks, each of mass mN/3 . These are not the ‘current’ quarks whose masses
are only a few MeV. The constituent quarks may be loosely regarded as current quarks dressed
by the gluon field, which contributes most of the nucleon mass. The up and down quark charges
are qu = 2e/3 and qd = −e/3 and treating them as elementary spin half Dirac particles, their
magnetic moments are

µu =
(2e/3)~

2(mN/3)c
=

e~
mNc

= 2µN and md =
(−e/3)~

2(mN/3)c
= − e~

2mNc
= −µN . (390)

Now we need to use the rules of angular momentum addition to determine the magnetic mo-
ments of the proton (uud) and neutron (udd).

• Simpler than the proton and neutron is the ∆ . The simplest example is the spin 3/2 ∆++

which has three u↑ quarks all in the same spatial orbital. Sz for ∆++ can be 3/2(↑↑↑), 1/2,−1/2,−3/2 ,
all these states are symmetric in spin. µz∆++ = µ∆++

Sz
~ where the magnetic moment µ∆++ is

independent of Sz and must simply be the sum of the magnetic moments of the three quarks
each with the same spin projection, so µ∆++ = 3µu = 6µN .

• Next we consider the ∆+ in an Sz = 3/2 state. We have seen that its spin-flavor wave
function is 1√

3
(u↑u↑d↑ + d↑u↑u↑ + u↑d↑u↑) with all quarks in the same spatial orbital. To get

this we may imagine first combining the spins of the two u-quarks, which must necessarily be
in a symmetric (spin one, Sz = 1) state since a pair of u quarks is symmetric in flavor: the
magnetic moment of this pair is just 2µu . To this we add a d↑ to make a state with Sz = 3/2 .
Since the three quarks all have spin projection Sz = 1

2
, we may simply add their magnetic

moments to get µ∆+ = 2µu + µd = 3µN . In terms of Clebsch-Gordon coefficients for addition
of spin 1 and spin half |3/3, 3/2〉 = |1, 1〉⊗ |1

2
, 1

2
〉 . So an Sz = 3/2 ∆+ is with probability one

in a state where the up quarks have S = Sz = 1 and the down quark has S = Sz = 1
2

.

• However, the magnetic moments of the ∆ baryons are not easy to measure since they are
very short-lived. The proton and neutron are more accessible.

• So consider the proton in an Sz = 1
2

state. We first combine the spins of the two up quarks
which must be in a symmetric s1 = 1 state as the two up quarks are symmetric in flavor.
Then we must add the s2 = 1

2
of the down quark to get a spin half state belonging to the

|s = 1
2
, sz = 1

2
〉 multiplet. The CG coefficients expressing this coupled basis state as a linear

combination of the product states are familiar from π − N scattering (there we needed the
opposite decomposition!)

|1
2
,
1

2
〉 =

√
2

3
|1〉| ↓〉 − 1√

3
|0〉| ↑〉. (391)

So we may say that the proton is with probability 2/3 in a state with the two up quarks in a
state with Sz = 1 and down quark with Sz = −1/2 and with probability 1/3 in a state with
two up quarks with Sz = 0 and the down quark with Sz = 1

2
.

• Thus the magnetic moment of the proton predicted by the constituent quark model is

µp = (2/3)(2µu − µd) + (1/3)µd = (2/3)(4µN + µN) +
1

3
(−µN) = 3µN . (392)
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This is not too far from the measured value of 2.79µN .
One may also arrive at this result from our formula for the spin-flavor wave function of the

proton

p↑ =
1√
18

[2u↑d↓u↑ + 2d↓u↑u↑ + 2u↑u↑d↓ − u↓d↑u↑ − d↑u↓u↑ − u↓u↑d↑ − d↑u↑u↓ − u↑d↑u↓ − u↑u↓d↑] .

(393)
The first three terms correspond to a pair of up quarks in the Sz = 1 state and down quark in
Sz = −1

2
state, while the remaining terms correspond to a pair of up quarks in the Sz = 0

state and d quark in an Sz = 1
2

state. From the coefficients we see that the probability for two
u quarks in Sz = 1 is (22 + 22 + 22)/18 = 2/3 while the probability for two u quarks with
Sz = 0 is (6× 12)/18 = 1/3 .

• The quark model prediction for the neutron magnetic moment is obtained by exchanging
u↔ d in µp , thus

µn = (2/3)(2µd − µu) + (1/3)µu = −2µN . (394)

Again, this is in reasonable agreement with the measured µn = −1.91µN . Thus, for the pur-
poses for magnetic moments, the three constituent quarks in a baryon behave roughly as if they
are elementary spin half Dirac particles, each with a mass equal to a third of the baryon mass
and with charges as given above.

10.12 QCD

Quantum Chromodynamics (QCD) is the current microscopic theory of strong interactions. It
is an SU(3)C non-abelian gauge theory of 8 gluon fields coupled to Dirac fermions (quarks) in
the fundamental representation of color SU(3). There are Nf = 6 flavors of quarks (u,d,c,s,t,b)
with masses going from a few MeV to 175 GeV. Thus the Lagrangian of QCD is

L = − 1

2g2
tr F µνFµν +

Nf∑
i=1

ψ̄i[iγ ·D −mi]ψi. (395)

Aside from the six quark masses, which are input parameters, the gauge coupling constant g is
classically a dimensionless input parameter. In the quantum theory, it turns out that the proce-
dure of regularization and renormalization introduces a new dimensional parameter (usually the
energy scale ΛQCD ) into the theory. Suitably defined, ΛQCD ≈ 200 MeV from fits to experi-
mental data. The coupling constant g becomes a running coupling g(µ) , whose dependence on
energy scale is predicted by the renormalization group equation. Given these 7 input parame-
ters, QCD should predict all strong interaction cross sections, decay rates, masses of hadrons
and nuclei (as pure numbers times ΛQCD ), ‘wave functions’ (structure functions) of hadrons
and nuclei etc. Though much progress has been made, at present our tools to solve this theory
are very limited. Weak coupling perturbation theory is one approach, but is reliable primarily in
high energy scattering processes (e.g. some aspects of deep inelastic lepton hadron scattering)
where the quark-gluon coupling g is small due to asymptotic freedom. Perturbation theory is
not adequate to study the formation of bound states (hadrons) from quarks and gluons. For
instance, we cannot reliably calculate the mass of the pion or proton from first principles (even
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numerically), nor show the confinement of color. Numerical simulation of the path integral in
a discretized version of QCD (lattice QCD) provides a computational approach which has seen
much progress in the last 40 years, though there are many challenges that remain. Another
promising approach is an expansion of appropriate physical quantities in inverse powers of the
number of colors

∑∞
0 N−nc an . Though Nc = 3 in nature, the theory simplifies somewhat when

Nc =∞ (only planar Feynman diagrams survive), but is expected to retain many of its essential
physical features. It is hoped that an understanding of large-Nc QCD (i.e., the leading term in a
large-Nc expansion) will provide a first step towards QCD. This is an area of current and future
research.

10.13 Spontaneous global symmetry breaking

• Even without a solution of QCD, there are specific strong interaction phenomena that can be
treated within approximate ‘effective models’, by isolating the relevant degrees of freedom and
identifying interactions among these degrees of freedom that are consistent with the symmetries.
One enduring example is the sigma model for pions and nucleons. It predates QCD but remains
interesting and has found application in many areas of physics.

• Pions are particularly light (mπ = 135−140 MeV) compared to nucleons as well as all other
hadrons. For some purposes they may even be treated as massless. Nambu used the idea of
spontaneous global symmetry breaking (SSB) to explain why the pions are so light. Nambu’s
model (developed with Jona Lasinio), is more complicated than the sigma model that we discuss
and use to illustrate the idea of SSB.

• When a Lagrangian field theory possesses a continuous global symmetry, then there can be a
continuous family of vacua related by the symmetry. If initial conditions are such that the system
is in one of the possible ground states, then the symmetry is not manifest in the ground state.
The symmetry is said to be spontaneously broken if the g.s is not invariant under the symmetry
transformation. However, the system can be moved from one vacuum to a neighboring one
by an infinitesimal symmetry transformation costing an arbitrarily small amount of energy.
In other words, there can be excitations with arbitrarily low energy or arbitrarily long wave
length. These zero modes lead to massless particles in the spectrum of the QFT, they are called
Nambu-Goldstone bosons. There are as many NG bosons as there are independent directions
in which the ‘potential’ is ‘flat’. We may regard pions as the three Nambu-Goldstone bosons of
a spontaneously broken O(4) symmetry. Spin waves are NG bosons of spontaneously broken
rotation invariance in a system of spins on a lattice, which all point in a common direction in a
ferromagnetic ground state.

• SSB is a subtle phenomenon. It is present in classical point particle mechanics, ‘goes away’
due to tunneling in quantum systems with finitely many degrees of freedom, but returns in
systems with infinitely many degrees of freedom.

• Consider a classical non-relativistic particle subject to the potential V (r) . In its ground state,
it is at rest at a minimum r0 of the potential: ∂iV (r0) = 0 . Taylor expanding the potential,

V (r) = V (r0) +
1

2
∂i∂jV (r0)(ri − r0i)(rj − r0j) + · · · (396)
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The hessian of the potential ∂i∂jV (r0) is a real symmetric matrix with non-negative eigen-
values, since r0 is a minimum of V . It controls the behavior of V in the neighborhood
of r0 . For example, consider the Mexican hat potential for a particle moving on the plane
V (x, y) = (λ/4)(x2 + y2 − v2)2 . The ground states (vacua) lie on the circle x2 + y2 = v2 . We
say the vacuum manifold is a circle. V is invariant under the group O(2) comprising rotations
in the x-y plane. But none of the vacua is invariant. Instead, rotations take one vacuum to
another vacuum. In this case, the Hessian at any of the minima x2 + y2 = v2 is

∂2V = 2λ

(
x2 xy
xy y2

)
. (397)

The eigenvalues are 0 and 2λv2 . The zero eigenvalue corresponds to the eigenvector
(
−y
x

)
which points in the θ̂ direction tangential to the vacuum manifold. This ‘zero-mode’ corre-
sponds to infinitesimal rotations that take one vacuum to a neighboring vacuum. A ball can
‘roll’ with arbitrarily low energy from one vacuum to another one. This is the simplest version
of a Nambu-Goldstone mode. The eigenvector corresponding to the non-zero eigenvalue 2λv2

points in the radial direction ~r = (x, y) at any of the minima. It corresponds to a radial oscilla-
tory mode about any ground state. Taylor expansion of the potential about any minimum leads
to a 1d SHO in the radial direction V ≈ 1

2
(2λv2)(r − v)2 . Thus the frequency of the corre-

sponding radial oscillation is ω =
√

2λv/m . In field theory, the radial mode would correspond
to a massive particle (such as the sigma meson below or the Higgs particle).

• In general, whenever a continuous symmetry is broken by the ground state, there are zero
modes that point in directions (in configuration space) along which the potential is flat to
quadratic order. This is not the case for discrete symmetries with degenerate vacua. For exam-
ple, the reflection symmetric double well potential in one dimension V (x) = (λ/4)(x2 − v2)2

has two ground states x = ±v . Each of the ground states spontaneously breaks the x → −x
symmetry of the potential. But V ′′ has one non-zero eigenvalue at each ground state, there are
no zero modes. Discrete global symmetries can break spontaneously but do not lead to NG
modes.

• For example, if we had a particle moving in 3d subject to the O(3) (rotations and reflections
of 3d space) invariant potential V (r) = λ(r2 − v2)2 . Every point (x, y, z) on the sphere of
radius v (e.g. (x = 0, y = 0, z = v)) is a vacuum, and elements of the symmetry group
O(3) can rotate one vacuum into another. However, the symmetry is not completely broken.
If r0 is a ground state, then rotations about the vector r0 (and more generally rotations and
reflections in the plane perpendicular to r0 ) leave the ground state invariant. We say that O(3)
spontaneously breaks to O(2). In this case, the hessian of V at any vacuum has two zero
eigenvalues corresponding to two zero modes that point in flat directions of V along the surface
of the sphere. The hessian also has one positive eigenvalue ∝ λv2 which is proportional to the
square of the frequency of small oscillations in the radial direction.

• In quantum mechanics, even if the potential has degenerate minima, the ground state is unique
since the particle can tunnel between minima and lower the energy. The ground state is not
concentrated around any one minimum of the potential, but is a linear combination of states
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concentrated around the classical minima. If the potential has a symmetry, then the linear com-
bination with lowest energy eigenvalue is invariant under the symmetry [symmetric combination
of wave packets concentrated around the two minima of a double well potential]. Spontaneous
symmetry breaking does not occur in quantum systems with finitely many degrees of freedom.
However, if the number of degrees of freedom is infinite, tunneling is suppressed and SSB can
occur, the system can get ‘stuck’ in a ground state that is not invariant under the symmetry.

10.14 Pions and the Gell-Mann Levy linear sigma model

• Pions can be regarded as Nambu-Goldstone bosons of a spontaneously broken global sym-
metry of an ‘effective’ field model proposed by M. Gell-Mann and M. Levy. We have seen that
a spontaneously broken O(2) symmetry has one zero mode and one massive excitation while
O(3) leads to two zero modes and one massive mode. Since there are three very light pions,
it is natural to consider an O(4) invariant Lagrangian in 3+1 space time dimensions for a four
component real scalar field φ = (φ1, φ2, φ3, φ4) = (~φ, φ4):

T =
1

2

4∑
i=1

|∂φi|2, V = (λ/4) (φ2
1 + φ2

2 + φ2
3 + φ2

4 − F 2
π )2. (398)

λ is a dimensionless coupling constant and Fπ ≈ 150 MeV is a constant with dimensions of
mass, called the pion decay constant for historical reasons [it also controls the rate of weak
decay of charged pions in a different model]. The vacua are points on a 3-sphere of radius
Fπ in R4 , i.e.,

∑
i φ

2
i = F 2

π . Suppose initial conditions are such that in the vacuum state,φ
points along the 4th direction φ4 = Fπ and φ1,2,3 = 0 (in the quantum theory these are the
vacuum expectation values of the four fields). This vacuum breaks the O(4) symmetry. O(4)
transformations in general take this vacuum to other vacua. However, this vacuum is clearly
invariant under the subgroup O(3) that rotates the first three components ~φ among each other.
We say that O(4) is broken to O(3) by the non-zero vev of φ . Moreover, at any ground state
(point on 3-sphere of radius Fπ ), there are three independent directions tangent to the three
sphere, along which the potential does not change. In other words, the hessian evaluated at a
vacuum has three zero eigenvalues.

∂iV = 2λ2φiδij

(
4∑
k=1

φ2k − F 2
π

)
⇒ ∂i∂jV = 4λδij

(
4∑
k=1

φkφk − F 2
π

)
+

4∑
k=1

4λφj2φkδki = 8λφiφj = 8λF 2
π

The corresponding zero modes are three massless particles which we identify with the pions.
The only non-zero eigenvalue of the hessian is 8λF 2

π . It is the square of the mass of a ‘ra-
dial’ excitation called the σ particle mσ = 2

√
2λFπ . The sigma particle has been identified in

the hadronic spectrum, but is very short-lived and decays to two pions. Since pions are pseu-
doscalars, the sigma is a true scalar. The model is named after the sigma particle as well as its
originators Gell-Mann and Levy. It is called a linear sigma model since the fields φ take values
in a linear space R4 : they are maps from 3+1 dimensional Minkowski space to R4 .

• There is a related model called the non-linear sigma model. In the NLSM, the potential V
is absent (in a sense λ → ∞), but the fields satisfy the constraint

∑4
k=1 φ

2
i = F 2

π . So fields in
the NLSM take values on a 3-sphere (the so-called target space), which is not a linear space,
hence its name. Remarkably in addition to low lying excitations which we may identify with
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the pi mesons, the NLSM also has more massive topologically non-trivial excitations which
can be identified with baryons (nucleons). This was discovered by T H R Skyrme. A specific
realization is the Skyrme model, where baryons arise as topological solitons of the pion field.
This ‘effective’ model is quite successful in predicting properties of pions, nucleons as well as
nuclei.

• More general non-linear sigma models are studied, where fields take values in a ‘target space’
that is a coset space of a group. For example, string theories are often defined as 1 + 1 dimen-
sional non-linear sigma models, with the target space playing the role of a curved ‘background’
space-time. Of particular interest is the type IIB string sigma model where the target space is
the product of a sphere and an anti-deSitter space, AdS5× S5 . The 1+1 dimensional space time
is reinterpreted as the string world sheet while the target space is interpreted as space-time.

• The linear sigma model can be Yukawa-coupled to nucleons, which are Dirac spinors. The
pions must couple to the pseudoscalar bilinear in Dirac fields while the sigma particle must
couple to the scalar bilinear. Let us rename φ4 = σ , then the Lagrangian is

L = ψ̄iγµ∂µψ +
1

2
|∂φ|2 +

1

2
|∂σ|2 − λ

(
~φ2 + σ2 − F 2

π

)2

− gψ̄(σ + i~τ · ~φγ5)ψ. (399)

Notice that there are no mass terms for the nucleons. Nevertheless since σ acquires a non-zero
vev (equal to Fπ ), the Yukawa coupling implies an effective nucleon mass mN = gFπ . This
relation between nucleon mass, Yukawa coupling and pion decay constant has been experimen-
tally verified. We will say more about this type of Yukawa coupling in the context of the abelian
Higgs model.

• In reality, pions are not exactly massless. Their masses can be accommodated by via ‘explicit’
breaking of O(4), i.e., through the addition of a small O(4) breaking term, say proportional to σ
in the potential.

11 Higgs mechanism

• Weak interactions are very feeble and very short ranged. Fermi’s 4-fermion contact interac-
tion model did a good job at tree level, but led to incurable divergences when quantum correc-
tions were included, it is not renormalizable, GF has negative mass dimension 10−5m−2

p . The
feeble and short-ranged nature of weak interactions can be explained if they are mediated by
very heavy vector bosons (MW± = 80 GeV). The propagator of a W -boson 1/(p2 −M2

W ) is
suppressed for momenta small compared to MW . However, a theory of massive vector bosons
is not renormalizable either. Vector boson masses violate gauge invariance. Without gauge
symmetry, the quantum theory cannot be cured of infinities.

• The Higgs mechanism (due to Brout, Englert, Higgs, Kibble, Guralnik and Hagen in 1964)
gives a way of making gauge bosons appear massive without spoiling the gauge symmetry. Es-
sentially, minimal coupling of gauge bosons to scalar fields with non-zero vev can make the
gauge bosons appear massive at low energies: the gauge symmetry is spontaneously broken.
The gauge boson mass is proportional to the vev of the scalar field. The massive gauge boson
can then mediate a short ranged force. The Higgs mechanism was used by Weinberg and Salam
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in 1967 to propose a gauge theoretic model for electroweak interactions, based on an earlier
proposal of Glashow. However, it was unclear whether the model could be made free of diver-
gences and used for calculating physical quantities. Gauge theories spontaneously broken by
the Higgs mechanism were shown to be renormalizable by Veltman and ’t Hooft by 1971-72.
In the process, they gave a method (based on dimensional regularization and renormalization)
to perform calculations and reliably predict physical quantities. The resulting theory is the elec-
troweak standard model, which has been tested to great accuracy (2-loops in many cases). A
not-so-technical account of these developments may be found in Frank Close’s recent book,
The Infinity Puzzle.

• Analogy with super-conductivity: Non-zero electric and magnetic fields can exist inside an
insulator, they are transparent to these fields. The mobile electrons in conductors on the other
hand, cancel out any external electric field, so conductors expel electric fields, though they are
transparent to magnetic fields. Indeed, we use iron as a core for solenoid. Superconductors
are special in that they expel both electric and magnetic fields (Meissner effect). The magnetic
field only penetrates a short distance into the super conductor, the London penetration depth. It
is as if the photon has become massive in a super conductor, it transmits a short range force.
This phenomenon can be described by spontaneous breaking of the U(1) gauge symmetry of
Maxwell theory. The Abelian Higgs model (AHM) does precisely this.

11.1 Abelian Higgs Model (AHM) for generating vector boson mass

• In the standard model, the weak gauge bosons ‘get their masses’ from the Higgs mechanism
via the spontaneous breaking of the SU(2) × U(1) electroweak gauge symmetry. A simpler
place to study the Higgs mechanism is the spontaneous breaking of a U(1) gauge symmetry.

• The Abelian Higgs model consists of a complex scalar subject to the so-called Higgs/Mexican
hat potential, minimally coupled to a U(1) gauge field. If Dµ = ∂µ − iAµ , then

L = − 1

4e2
F µνFµν + |Dµφ|2 − V (|φ|). (400)

The gauge-invariant quartic self-interaction potential V (|φ|) = −m2|φ|2 + λ
4
|φ|4 is chosen such

that for m2 > 0 , φ = 0 is a local maximum while the points on the circle |φ|2 = 2m2/λ are a
1-parameter family of global minima. Up to an irrelevant additive constant, it is convenient to
write

V (|φ|) =
λ

4
(|φ|2 − v2)2 where v2 =

2m2

λ
. (401)

The potential is clearly minimized when |φ| = v =
√

2m2

λ
, and v is called the vacuum expec-

tation (vev) value of the scalar field since in the ground state 〈|φ|〉 = v .

• If m2 < 0 , then the minimum of the potential is at φ = 0 , and this minimum energy
configuration is invariant under the U(1) symmetry φ → eiθφ . So for m2 < 0 , the g.s. retains
this symmetry of the Hamiltonian. However, for m2 > 0 , we have a degenerate family of
ground states φ = veiθ , none of which is invariant under U(1) phase changes. So for m2 > 0 ,
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the ground states do not posses the symmetry of the hamiltonian and the U(1) symmetry is said
to be spontaneously broken by the non-zero vev v of the scalar field.

• In general, the symmetry group G (U(1) in the case) may not be completely broken, there
may be a remnant, the unbroken subgroup H . It is defined as the isotropy group of the vacuum,
i.e., the subgroup of G which leaves the vacuum invariant. In our case, the vacuum is any one of
φθ = veiθ . For g ∈ U(1) to leave φθ invariant, we must have gφθ = φθ , this is possible only if
g = 1 . So in this case, the unbroken subgroup H = {1} is trivial. We say that the U(1) gauge
symmetry is completely broken by the non-zero vev of the scalar field. In the Weinberg-Salam
model, G = SU(2)W × U(1)Y is broken to the subgroup U(1)EM of electromagnetism.

• When a continuous global symmetry is broken (see Gell-Mann-Levy linear sigma model) we
have a massless boson in the spectrum, the Nambu-Goldstone boson. The case of spontaneous
gauge-symmetry breaking is more intricate. Around a symmetry-broken vacuum, the AHM
describes a massive spin one particle (massive vector boson like photon in a superconductor, or
Z boson) and a massive neutral scalar particle (like the Higgs particle).

• First let us count field degrees of freedom. If m2 < 0 and the symmetry is unbroken, we have
a massless U(1) gauge field (Aµ , a photon) which has two polarizations as well as a complex
scalar field φ . In total these have 4 real field degrees of freedom (DoF) at each space-time
point. The number of DoF should not change upon SSB. Indeed, a massive vector boson has
three possible polarization states and a massive real scalar accounts for one field degree of
freedom.

• To see these features around a symmetry broken vacuum, we write the Lagrangian in terms of
new variables. Let φ = (v+h)eiθ where h is a real field. If h = 0 and θ is a constant, then this
is a minimum energy state. h will describe fluctuations around the vacuum (a massive neutral
scalar, like the Higgs particle) and we will see that θ can be eliminated from the Lagrangian.
This has to be the case, since we expect the gauge field Aµ to describe three field dof (massive
vector boson) and the real scalar h should be the 4th field degree of freedom. To begin with,
the scalar potential is simply

V =
λ

4
(|φ|2 − v2)2 = λv2h2 + λvh3 +

λh4

4
. (402)

The first term is a mass term for the scalar h field while the next two describe cubic and quartic
self-interaction vertices of h . λ is called the Higgs self-coupling. θ(x) dropped out of V since
it only depends on |φ|2 to satisfy gauge invariance. The square of the covariant derivative of φ ,
|Dµφ|2 can also be made independent of θ by a suitable gauge transformation. Indeed, if we
view φ → eiθφ as a gauge transformation, then the corresponding gauge transformation takes
A→ A+ ∂θ . So this suggests we define a new gauge field Bµ = Aµ − ∂µθ . Then

∂µφ = ∂µ
[
(v + h)eiθ

]
= [∂µh+ i(v + h)∂µθ] e

iθ and
Dµφ = (∂µ − i(Bµ + ∂µθ))φ = [∂µh− iBµ(v + h)] eiθ (403)

Thus θ drops out of the square of the covariant derivative

|Dµφ|2 = |∂µh− iBµ(v + h)|2 = (∂h)2 + v2B2 + 2vhB2 +B2h2. (404)
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(∂h)2 is the kinetic term for a real scalar, v2B2 is a mass term for the gauge field while the last
two terms describe interactions between the massive gauge field and the scalar particle. Finally,
the Maxwell Lagrangian −1

4
F µνFµν for the gauge field Aµ being gauge-invariant takes the

same form in terms of Bµ

− 1

4e2
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) = − 1

4e2
(∂µBν − ∂νBµ)(∂µBν − ∂νBµ). (405)

Adding the three terms, the Lagrangian in the new variables upon extracting the gauge coupling
from the gauge field, (B → eB ) is

L = −1

4
(∂µBν−∂νBµ)(∂µBν−∂νBµ)+e2v2B2+(∂h)2−λv2h2−λvh3−λh

4

4
+2e2vhB2+e2B2h2.

(406)
This Lagrangian describes a massive vector field Bµ (massive photon, m2

B = 2e2v2 , see below)
coupled to a massive real scalar field h (Higgs field m2

h = λv2 ). Notice that the scalar does not
have derivative interactions with the vector field: the scalar is uncharged (neutral) with respect
to the U(1) gauge symmetry. Moreover, in this form, the Lagrangian is not manifestly gauge-
invariant, due to the vector boson mass term e2v2BµBµ . However, this is an artifact of writing
L in variables adapted to a vacuum state φ = veiθ that is not invariant under the U(1) symmetry.
The model is in fact gauge-invariant as it was in the original variables.

• There are 4 types of interaction vertices, λvh3 + λh4

4
+ 2e2vhB2 + e2B2h2 which describe

self-interactions of the Highs particle and interactions between the Higgs and the massive vector
boson. They describe scattering and decay vertices (possibly virtual) such as h → hh (higgs
radiating a virtual higgs), hh→ hh (higgs-higgs scattering), h→ BB and hB → hB .

• The massive vector boson Bµ has three physical degrees of freedom at each location. One
way to see this is to consider the above Lagrangian for B , ignoring interactions with h . This is
the non-gauge-invariant Proca Lagrangian

LProca = −1

4
(∂µBν − ∂νBµ)(∂µBν − ∂νBµ) + e2v2B2. (407)

The resulting equation of motion is the Proca equation ∂µF
µν + 2e2v2Bν = 0 where F µν =

∂µAν − ∂νAµ . Since F µν is antisymmetric, taking the divergence of the Proca equation gives
us the consistency condition ∂νB

ν = 053. This is one constraint on the 4 components of Bµ ,
leaving only three propagating degrees of freedom for a massive vector field. Each component
of the Proca field Bµ satisfies the massive KG equation for a real scalar field

∂µ∂
µBν + 2e2v2Bν = 0 or (�+m2

B)Bν = 0. (408)

From this we read off the mass of the photon m2
B = 2e2v2 resulting from the Higgs mechanism.

This is the tree-level mass ignoring quantum effects of interactions, which can and do modify
the mass slightly, as one finds in perturbation theory.

53If we had kept the interaction terms, we would get a more complicated consistency condition depending on
the other fields, but it too would impose one constraint among the four components of B .
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11.2 Dirac fermion masses from Abelian Higgs mechanism

• In the electroweak standard model, the quarks and charged leptons ‘get their masses’ by
the Higgs mechanism via the spontaneous breaking of the SU(2) × U(1) electroweak gauge
symmetry. The Abelian Higgs model is a simpler context in which to study how spin half Dirac
fermions can get masses.

• Consider a Dirac field ψ Yukawa-coupled (g below is the Yukawa coupling constant) to a
complex scalar φ = φ1 + iφ2 subject to a Mexican hat potential

L = |∂φ|2 + ψ̄iγ · ∂ψ − λ

4
(|φ|2 − v2)2 − gψ̄(φ1 + iγ5φ2)ψ (409)

Notice that the real part of φ couples to the scalar ψ̄ψ while the imaginary part couples to the
pseudo-scalar ψ̄γ5ψ . φ1 is assumed to be a scalar while φ2 is taken to be a pseudoscalar, so
that as a whole, L is parity even. This seemingly peculiar coupling is needed to ensure that L
possesses a U(1) global symmetry that we mention below, the symmetry would be lost if both
φ1 and φ2 coupled to the scalar ψ̄ψ .

• The energy is minimized when |φ| = v . So if φ1 has a non-zero vacuum expectation value
v , then the Yukawa interaction mimics a mass term for the Dirac field, mψ = gv .

• This Lagrangian has an interesting U(1) global symmetry under the compensating phase
changes of the complex scalar and Dirac spinor

φ→ eiθφ, and ψ → e−
i
2
γ5θψ. (410)

Use the fact that γ2
5 = I (so eiθγ5 = cos θ + i sin θ ) and that {γ5, γ

µ} = 0 to show that under
this transformation,

ψ̄ → ψ̄e−
i
2
γ5θ and (φ1 + iγ5φ2)→ eiθγ5(φ1 + iγ5φ2). (411)

As a consequence, both ψ̄/∂ψ and ψ̄(φ1 + iγ5φ2)ψ are invariant under this global U(1) sym-
metry. The seemingly peculiar coupling of the real and imaginary parts of φ to the scalar and
pseudoscalar bilinears in Dirac fields was essential for this to work.

• So far, we have a complex scalar in the Mexican hat potential coupled to a Dirac fermion with
Yukawa interactions giving a mass to the fermion when the scalar has a non-zero vev. We may
gauge the above global U(1) symmetry and arrive at a theory of spin zero, half and one fields
where the Higgs mechanism gives masses to the fermion as well as gauge boson.

• Minimal coupling of the scalar and Dirac fields to a U(1) gauge field Aµ is effected via
different covariant derivatives

Dµφ = (∂µ − iAµ)φ and Dµψ = (∂µ +
1

2
iγ5Aµ)ψ. (412)

These ensure that Dµφ and Dµψ transform in the same way as φ, ψ . Indeed,

ψ → gψ where g(x) = e−
i
2
γ5θψ and Aµ → Aµ + ∂µθ
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⇒ Dµψ →
(
g∂µψ −

1

2
iγ5(∂µθ)g +

1

2
iγ5Aµg +

1

2
iγ5(∂µθ)g

)
ψ = gDµψ.(413)

[g(x) in these equations is not to be confused with the Youkawa coupling constant g !] Thus
we may write down a gauge invariant Lagrangian

L = − 1

4e2
FµνF

µν + ψ̄(iγ ·D − g(φ1 + iγ5φ2))ψ + (Dµφ)∗(Dµφ)− λ

4
(|φ|2 − v2)2. (414)

By transforming to variables adapted to the vacua |φ| = v :

φ = (v + h)eiθ, ψ = e−
1
2
iγ5θχ, Bµ = Aµ − ∂µθ. (415)

it is possible to write the Lagrangian in terms of a massive neutral scalar Higgs field h , a
massive fermion χ and a massive photon Bµ just as was done for the abelian Higgs model in
the previous section. θ drops out of the Lagrangian as before, due to the gauge symmetry. Show
that the masses are

mB =
√

2ev, mh =
√
λv and mχ = gv. (416)

We notice that the fermion and vector boson masses are proportional to the vev v of the scalar
field. It is the non-zero vev of the scalar field that is responsible for these particles having
non-zero masses. Writing out the interaction terms in the Lagrangian one also finds a trilinear
coupling of the fermions to the Higgs scalar gχ̄hχ . Thus both the mass of the fermion as well as
its Yukawa coupling are proportional to g . This means a heavier fermion couples more strongly
to the Higgs than a light fermion. This feature continues to hold in the standard model, where
there are several fermions - the charged leptons and quarks, all of which get their masses via
the spontaneous breaking of the non-abelian EW gauge symmetry SU(2)× U(1) by the Higgs
mechanism. The top quark couples much more strongly to the Higgs particle than the electron
does. What is more, due to the γ5 in Dµψ , the massive vector boson Bµ couples to the axial
vector current χ̄γµγ5χ of the massive Dirac fermion rather than to the vector current.

11.3 Higgs mechanism in an SU(2) gauge theory

• We now generalize the abelian (U(1)) Higgs model to a gauge theory associated to a non-
abelian group SU(2). This is a step closer to the SU(1)× U(1) gauge theory relevant to the
electroweak standard model. Since there are three weak gauge bosons and su(2) is a 3d Lie
algebra, it is a natural example to consider. Upper case SU(2) refers to the group and lower case
su(2) to the Lie algebra.

• The non-abelian gauge fields of su(2) , Aµ transform in the adjoint representation of SU(2)

(so they are 2 × 2 matrices) and are coupled to a complex doublet of scalar fields φ =

(
φ1

φ2

)
that transform in the fundamental representation of SU(2). Since su(2) is three dimensional,
there are three gauge bosons. The covariant derivative is Dµφ = ∂µφ − ieWµφ where Wµ =
W a
µ t
a , ta = 1

2
σa and σa are the Pauli matrices which furnish a basis for the Lie algebra, with

tr tatb = 1
2
δab . Then the Lagrangian is

L = −1

2
tr F µνFµν + (Dµφ)†(Dµφ)− V (φ). (417)
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If V (φ) = 0 , since there is no mass term for the gauge bosons, this would describe 10 propa-
gating field degrees of freedom: three gauge bosons, each with two independent polarizations
and four real scalar fields.

• A scalar potential that is a function of φ†φ is automatically gauge invariant, and we take the
Mexican hat potential

V (φ) =
λ

4
(φ†φ− v2)2 (418)

The scalar potential is minimized when φ†φ = |φ1|2 + |φ2|2 = v2 . The space of minima
(vacua) is called the vacuum manifold. In this case it is a 3-sphere S3 embedded in R4 since
the complex doublet of scalar fields have four real components. If the vacuum value of the

scalar field is non-zero (e.g. φ =

(
0
v

)
), then the SU(2) symmetry is spontaneously broken.

• G = SU(2) is completely broken to H = {I} since the isotropy subgroup of the vacuum
(sub group that leaves the vacuum invariant) is trivial. For,(

a b
c d

)(
0
v

)
=

(
bv
dv

)
=

(
0
v

)
⇒ b = 0, d = 1 (419)

and unitarity and determinant one force c = 0 and a = 1 .

• If SU(2) were a global symmetry then there would be three massless Nambu-Goldstone
bosons corresponding to the three zero modes of the potential about any vacuum (3 independent
directions we may move in S3 without changing the potential). When the local gauge symme-
try SU(2) is spontaneously broken, it is as if these three massless Goldstone bosons are eaten
by the three vector bosons, making them massive. A massive spin one gauge field has three
modes of polarization (three spin projections) unlike a massless spin one particle, which only
has two helicities. It is as if the Goldstone bosons become the longitudinal polarization states of
the vector bosons. We will see below that SU(2) is completely broken, all three vector bosons
become equally massive and there is also a neutral scalar Higgs particle in the spectrum. Thus
the number of propagating fields remains the same (10) after SSB: 3 massive spin one particles
and a spin zero particle.

• To find the masses of the gauge bosons after SSB we work in the gauge φ =

(
0

v + h

)
where

v, h are real and expand out the square of the covariant derivative of φ keeping terms quadratic
in fields. Denote W± = W 1 ± iW 2 . Then,

Dµφ = ∂µφ− ieWµφ =

(
0
∂µh

)
− ie

2

(
W 3
µ W−

µ

W+
µ −W 3

µ

)(
0

v + h

)
=

(
− ie

2
W−
µ (v + h)

∂µh+ ie
2
W 3
µ(v + h)

)
and (Dµφ)†(Dµφ) = (∂h)2 +

e2v2

4

[
(W 1

µ)2 + (W 2
µ)2 + (W 3

µ)2
]

+ interactions. (420)

The second term is the mass term for gauge bosons, all three are equally massive. To identify
the numerical factors in the mass, one compares with the kinetic term for gauge fields from the
YM Lagrangian

−1

2
tr FµνF

µν = −1

2
tr tatb

[
2∂µW

a
ν ∂

µW νb − 2∂µW
a
ν ∂

νWµb + cubic and quartic interactions
]
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=
1

2
[W a

ν�W
νa −W a

ν ∂
ν∂µW

µa + divergence and interaction terms] (421)

The equation of motion for W a
µ is �W a

µ + e2v2

2
W a
µ + . . . = 0 . So we have three spin one gauge

bosons with equal masses mWa = ev√
2

for a = 1, 2, 3 .

• The mass of the the Higgs field h is similarly obtained by expanding the potential. Note that
φ†φ = (v + h)2 , so the Higgs Lagrangian becomes

(∂h)2−V (φ) = (∂h)2−λ
4

(φ†φ−v2)2 = (∂h)2−λ
4

(4v2h2+4vh3+h4) = (∂h)2−(λv2)h2+interactions.
(422)

We read off mH = v
√
λ .

• This spontaneously broken su(2) gauge theory is interesting but cannot be appropriate for
the weak interactions since the W and Z do not have the same masses. Moreover, the strengths
of the neutral and charged weak interactions aren’t quite the same. This indicates su(2) cannot
be the gauge Lie algebra of the weak interactions. We now proceed to the idea that worked.

12 SU(2)W× U(1)Y Electroweak gauge theory

Parity transforms a LH Dirac fermion into a RH one. Parity violation in the weak interactions
is because the LH and RH components couple differently to the weak gauge bosons. Indeed,
Marshak and Sudarshan, Feynman and Gell-Mann found that the experimental data favors the
charged weak currents to have a V-A structure. As a consequence, only the LH projections of
the quarks and leptons participate in the charge-changing weak interactions mediated by W± ,
parity is maximally violated. W± must be very heavy, to explain the weakness of the weak
force in beta decay. In 1973, more feeble ‘neutral’ weak interactions were discovered, mediated
by the Z0 . The masses of the weak gauge bosons were measured in 1983, MW = 80,MZ = 91
GeV. Unlike the W± , the Z couples to both LH and RH components of fermions, though not in
the same way, so Z interactions also violate parity. The only renormalizable theory of massive
vector bosons we know of, is a spontaneously broken (via the Higgs mechanism) gauge theory
coupled to scalar fields. The gauge group would have to have dimension 3 to accommodate
W± and Z . However, it cannot be SU(2) which leads to 3 gauge bosons of equal mass while
MW 6= MZ . Moreover, the fact that W± do not couple to RH fermions while Z0 couples to
both LH and RH fermions, and that the strengths of the charged and neutral weak interactions
are slightly different suggests we cannot have a simple gauge group: we need two coupling
constants. Moreover, we should bear in mind that SSB via the Higgs mechanism can be partial,
some gauge symmetries may be broken while others may survive. Now recall that in addition to
these weak gauge bosons, we also have the massless photon of an unbroken U(1) gauge theory:
electromagnetism. The photon couples in the same way to both LH and RH Dirac fermions
and conserves parity. So we seek a 4d gauge lie algebra that can be broken to the u(1) of EM,
leaving three massive weak gauge bosons.
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12.1 Electroweak mixing, Higgs mechanism, W±, Z0, γ

• The 4d unitary Lie algebra u(2) ∼= su(2)W × u(1)Y is an obvious choice, it is a product
of weak isospin and weak hyper charge. It consists of 2 × 2 hermitian matrices. Any such
hermitian matrix is a linear combination of the identity and the Pauli matrices. The identity
generates U(1)Y while the Pauli matrices generate SU(2)W . Since u(2) is a product of a
simple factor and a u(1), the gauge theory can have two independent coupling constants e2 and
e1 respectively.

• As we will see, su(2)× u(1) can be broken by the Higgs mechanism to u(1) of electromag-
netism (which is not the same as u(1)Y ). The three gauge bosons W±

µ ,W
0
µ of su(2)W couple

only to LH components of quarks and leptons. W± become massive as a consequence of SSB
via the Higgs mechanism. The weak hypercharge gauge boson Yµ couples to both LH and RH
components, but in different ways. There is a linear combination of W 0 and Y which couples
in the same way to both LH and RH fermions, i.e. to the vector current constructed from Dirac
spinors. It is identified with the photon field Aµ , it remains massless and corresponds to the
unbroken u(1) of electric charge. The coefficients in the linear combination are determined by
the gauge couplings e1 and e2 . The orthogonal linear combination of W 0

µ and Yµ is the mas-
sive Z0

µ . It mediates the weak neutral interactions which violate parity. In this section we focus
on the electroweak gauge bosons and the scalar fields responsible for SSB. We will include the
quarks and leptons subsequently.

• As in the case of SU(2) gauge theory, we consider a complex doublet of scalar fields φ =(
φ1

φ2

)
which transform in the fundamental representation of U(2) gauge group. The gauge-

invariant scalar potential we consider is as before: V (φ) = λ
4
(φ†φ− v2)2 .

• The u(2) gauge field is a hermitian 2 × 2 matrix at each space-time point. We choose as
basis the identity and Pauli matrices, which span commuting u(1) and su(2) sub-algebras,
Wµ = W a

µ
σa
2

. We may write the covariant derivative of the scalar field as

Dµφ = ∂µφ− i

(
1

2
e1Yµ + e2

3∑
a=1

1

2
σaW

a
µ

)
φ. (423)

As before we use W± to denote the combinations W±
µ = W 1

µ ± iW 2
µ .

• The gauge field kinetic and self-interactions are given by the Yang-Mills Lagrangian

− 1

4
Y µνYµν −

1

2
tr W µνWµν . (424)

The field strengths are

Yµν = ∂µYν − ∂νYµ and Wµν = ∂µWν − ∂νWµ − ie2[Wµ,Wν ]. (425)

The possibility of having two independent coupling constants can also be understood by think-
ing directly in terms of a u(2) gauge field Aµ which is a hermitian matrix field with no
constraint on its trace (unlike in the case of su(2) it need not be traceless). Let Fµν =
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∂µAν−∂νAµ− i[Aµ, Aν ] . Now one can form two independent gauge- invariant and Lorentz in-
variant quantities that involve at most two derivatives, these are tr FµνF

µν and tr Fµν tr F µν .
The latter was identically zero for su(2) but is non-trivial here. The Lagrangian can then be an
arbitrary linear combination of these two, giving two independent coupling constants.

• The minima of the scalar potential φ†φ = v2 form a 3-sphere. We choose the vacuum as

φ =

(
0
v

)
where v is a real number. The isotropy subgroup of the vacuum is non-trivial in this

case, in fact it is U(1) (good since we want an unbroken U(1) of electromagnetism):(
a b
c d

)(
0
v

)
=

(
bv
dv

)
=

(
0
v

)
⇒ b = 0, d = 1 (426)

and unitarity implies c = 0 and |a| = 1 , leaving an arbitrary phase a ∈ U(1) . Thus the residual
symmetry group is U(1) , we will see that the corresponding massless gauge boson is the photon
field.

• The hypercharges of W a
µ and Yµ are all zero while the third component of weak isospin T3

is ±1 for W± and zero for W 3
µ and Yµ . We will define the electric charge as Q = T3 + Y/2

(for reasons to be indicated below), so W± have electric charges ±1 in units of the positron
charge, while W 3 and Y are electrically neutral.

Minimal coupling to the U(2) scalar doublet is effected via the covariant derivative

Dµφ = ∂µφ− i
(

1

2
e1Yµ + e2

σa
2
W a
µ

)
φ =

(
− ie2

2
(v + h)W−

µ

∂µh− ie1
2

(v + h)Y + ie2
2

(v + h)W 3
µ

)
. (427)

The Lagrangian is

L = −1

4
Y µνYµν −

1

4
W aµνW a

µν + (Dµφ)†(Dµφ)− λ

4
(φ†φ− v2)2. (428)

The quadratic terms in gauge fields are normalized as for real scalar fields. Up to terms that are
4-divergences,

L =
1

2

(
Yµ�Y

µ − Yν∂ν∂µY µ +W a
µ�W

µa −W a
ν ∂

ν∂µW
µa
)

+ . . . . (429)

To identify the gauge and Higgs boson masses, we go to the gauge where φ =

(
0

v + h

)
and

expand the Lagrangian to quadratic order in the fluctuating fields W,Y, h . The square of the
covariant derivative of the scalar fields is

(Dµφ)†(Dµφ) = (∂h)2 +
e22(v + h)2

4
W−µ W

µ+ +
e21(v + h)2

4
Y 2 +

e22(v + h)2

4
(W 3

µ)2 − e1e2(v + h)2

2
YµW

3µ

= (∂h)2 +
e21v

2

4
Y 2 +

e22v
2

4

(
(W 1

µ)2 + (W 2
µ)2 + (W 3

µ)2
)
− e1e2v

2

2
W 3
µYµ + interactions. (430)

Putting |Dφ|2 = (∂h)2+ 1
2
MabX

a
µX

bµ where Xµ = (Yµ,W
1
µ ,W

2
µ ,W

3
µ) we identify a symmetric

mass2 matrix for gauge bosons

Mab =
v2

2


e2

1 0 0 −e1e2

0 e2
2 0 0

0 0 e2
2 0

−e1e2 0 0 e2
2

 . (431)
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It is clear that W 1 and W 2 (or the charged weak bosons W± ) have definite and equal masses
m2
W = 1

2
e2

2v
2 . But Y and W 3 do not have definite masses as the mass2 matrix is not diagonal

in this basis. The neutral electroweak gauge bosons with definite masses (which we identify
with the photon Aµ and Z0 boson Zµ ) are the remaining eigenvectors of the mass2 matrix.
Since the matrix has zero determinant, the remaining eigenvalues are 0 and 1

2
v2(e2

1 + e2
2) with

corresponding eigenvectors

Aµ =
e1W

3
µ + e2Yµ√
e2

1 + e2
2

= sin θWW
3
µ+cos θYµ and Zµ =

e2W
3
µ − e1Yµ√
e2

1 + e2
2

= cos θW 3
µ−sin θWYµ.

(432)
It is natural to identify Aµ with the photon field, since it is the only massless gauge boson in
the model. Thus, the masses of the four gauge bosons are

mW± =
1

2
v2e2

2, mZ =
1

2
v2(e2

1 + e2
2) and mγ = 0. (433)

We defined the weak mixing angle or Weinberg angle θW (originally introduced by Glashow)

sin θW =
e1√
e2

1 + e2
2

, cos θW =
e2√
e2

1 + e2
2

, tan θW =
e1

e2

and e2 sin θW = e1 cos θW .

(434)
θW measures the extent of mixing between weak hypercharge and weak isospin [if θW = 0 ,
then Aµ = Yµ and Zµ = W 3

µ ] or the relative strengths of the corresponding gauge couplings e1

and e2 . θW is a ‘running’ parameter, it has been measured to be about 30◦ or sin2 θW ≈ 0.23
at an energy scale corresponding to the mass of the Z boson, 91 GeV. The ratio of the masses
of the W and Z bosons is

mW

mZ

=
ve2

v
√
e2

1 + e2
2

= cos θW . (435)

• So far, the EM coupling and electric charge have not appeared in the Weinberg-Salam model.
They need to be defined in such a way that the model agrees with QED when we consider the
interactions of charged particles with photons. To relate the electromagnetic coupling e to the
couplings e1 and e2 we write the covariant derivative in terms of Aµ and Zµ (instead of Yµ and
W 3
µ ) and compare with the usual electromagnetic coupling ∂µ − ieQAµ to charged particles,

where e =
√

4π~cα is the electromagnetic coupling and Q is the charge in units of the positron
charge. Here we work with the covariant derivative of the Higgs doublet. Being a complex
scalar, it is charged, though the two components can have different charges, as we will see.
Using

Yµ = cos θWAµ − sin θWZµ and W 3
µ = sin θWAµ + cos θWZµ, (436)

the covariant derivative for the scalar doublet

Dµ = ∂µ −
ie2

2
(σ1W

1
µ + σ2W

2
µ)− ie1

2
Yµ −

ie2

2
σ3W

3
µ

= ∂µ −
ie2

2
(σ1W

1
µ + σ2W

2
µ)− i

2
(e1I cos θ + e2σ3 sin θ)Aµ −

i

2
(e2σ3 cos θ − e1I sin θ)Zµ.

However, this must reduce to the usual electromagnetic coupling to the photon ∂µ − iQeAµ ,
where Q is the charge matrix for the particles under consideration, and e is the electromagnetic
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coupling. Comparing, we see that eQ must be a linear combination of 1
2
σ3 = T3 (corre-

sponding to the 3rd component of weak isospin) and the identity I/2 (corresponding to weak
hypercharge) and e should be linearly related to e1 and e2 through coefficients that are trigono-
metric functions of the weak mixing angle. e, e1, e2, θW are all ‘running’ parameters while Q
is a constant matrix depending on the charged particles being considered. There is some free-
dom in how one arranges the factors. We will define the charge matrix as the linear combination
Q = σ3

2
+ Y

2
, where Y is the hypercharge matrix and e is the electromagnetic coupling constant

(some authors absorb the half into Y ). So we must have

− ieQAµ = −ie
(
σ3

2
+
Y

2

)
Aµ = − i

2
(e2 sin θσ3 + e1 cos θ I)Aµ (437)

Now the hypercharge matrix of the scalar doublet is Y = I (this is explained in the section on
fermion masses) so we must have

e = e2 sin θW = e1 cos θW . (438)

• We have seen that the Fermi coupling of low energy beta decay is proportional to the square of
the weak coupling e2 and inversely proportional to the square of MW (from the W propagator)

GF =
e2

2

4
√

2m2
W

=
1

2
√

2v2
⇒ v =

1√
2
√

2GF

≈ 174.3 GeV. (439)

We used m2
W = 1

2
v2e2

2 from the GWS model and the known value of GF ≈ 1.165 × 10−5

GeV−2 to estimate the vev of the Higgs field. Sometimes
√

2v = 246.4 GeV is quoted. The
weak mixing angle was determined in the mid 1970s through a measurement of the strength
of weak neutral currents (relative to the weak charged currents), giving sin2 θW ≈ 0.23 . Thus
it became possible to predict the masses of the W and Z bosons using known values for the
Higgs vev v ≈ 174.3 GeV, electromagnetic coupling e =

√
4παem ≈ 0.31 (we use the value

α = 1/129 valid at 91 GeV) and sin θW ≈ 0.48 , cos θ ≈ .88:

mW =
1√
2
ve2 =

ve√
2 sin θW

≈ 79.6GeV and mZ =
mW

cos θW
=

ev√
2 sin θ cos θ

≈ 90.4GeV.

(440)
The W and Z were discovered at roughly the predicted masses in 1983 at CERN.

• The mass of the Higgs field h is similarly obtained by expanding the potential. Note that
φ†φ = (v + h)2 , so the Higgs Lagrangian becomes

(∂h)2−V (φ) = (∂h)2−λ
4

(φ†φ−v2)2 = (∂h)2−λ
4

(4v2h2+4vh3+h4) = (∂h)2−(λv2)h2+interactions.
(441)

We read off mH = v
√
λ . The spin zero Higgs particle with mass mH ≈ 125 GeV was

discovered at CERN in 2012. This fixes the dimensionless Higgs self coupling λ = (mH/v)2 ≈
0.5 . The fact that the measured value of λ is not large justifies a perturbative treatment of the
scalar sector of the SM.
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12.2 Minimal coupling to fermions in the SU(2)× U(1) model

Quarks and leptons are modeled as Dirac spinors in the standard model. To accommodate parity
violation as encoded in the V-A theory of weak interactions, the left and right handed projections
of the Dirac fermions (quarks and leptons) behave differently54 under SU(2)× U(1) . Let us
first consider the first generation ((νe, e) , and (u, d)), ignoring mixing among generations. The
LH components of a Dirac spinor are those that live in the −1 eigenspace of γ5 while the RH
components lie in the +1 eigenspace of γ5 . So γ5νeL = −νeL and PLνeL = 1

2
(I−γ5)νeL = νeL

etc. The property of being right or left handed is a Lorentz-invariant concept, unlike positive or
negative helicity which is well-defined only for massless particles.

• Parity violation and V-A implies that only the LH projections of quarks and leptons partic-
ipate in the charge changing weak interactions. Since these W± interactions arise from the
SU(2)W group, the LH projections of quarks and leptons must transform non-trivially under
weak isospin, the simplest possibility is that they transform in the fundamental representation.
On the other hand, the RH projections do not participate in the charge changing weak interac-
tions, so they must be singlets under SU(2)W .

• The LH components of the quarks and leptons each transform as a doublet in the fundamental
representation of weak isospin. In the case of quarks, we have three such doublets, one for each
color α = 1, 2, 3:

LH weak isospin doublets lL =

(
νe
e

)
L

, and qαL =

(
uα
dα

)
L

. (442)

Weak isospin gauge transformations can rotate the LH electron neutrino into a LH electron for
instance. The electron neutrino and up quarks (of all colors) have third component of weak
isospin T3 = 1

2
while T3 = −1

2
for the electron and down quarks. The weak hypercharges

of these LH components are fixed by their electric charges and the relation Q = T3 + Y/2 .
Thus YνeL = YeL = −1, YuαL = YdαL = 1

3
. Under a U(1)Y transformation, a field ψ of

weak-hypercharge Y transforms as ψ → eiY θψ .

• On the other hand, the RH components νR, eR, uαR and dαR are singlets under weak isospin
(i.e. they transform in the trivial representation). In the standard model νR does not interact
with any other particle and decouples from the theory. So T3 = 0 for all the RH quarks and
leptons. Thus their weak hypercharges are simply twice their electric charges Y = 2Q or
YνeR = 0, YeR = −2, YuαR = 4

3
, YdαR = −2

3
.

• The weak ispspins and weak hypercharges of the second and third generations of quarks and
leptons are assigned in the same way.

• It follows that the RH anti-leptons and RH anti-quarks also form weak isospin doublets:(
e+

νe+

)
L

etc. Similarly, the LH anti-leptons and anti-quarks are singlets under weak isospin.

The hypercharges of the anti-particles are the negatives of the Y -values of the corresponding
particles.

54By contrast the left and RH components of the quarks transform in the same way under color SU(3) .
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• These weak isospins and hypercharges are important in determining the covariant deriva-
tives of the fermion fields, and consequently their coupling to electromagnetic and weak gauge

bosons. For instance, the covariant derivative of the LH neutrino-electron doublet l =

(
νe
e

)
is

Dµla = ∂µla − i
(
Wµ

b
a − Yµδ

b
a

)
lb (443)

Here a = 1, 2 labels the T3 = 1
2
,−1

2
components of the weak isospin doublet, l1 = νeL, l2 =

eL . Here Wµ
b
a and Yµ are the gauge fields corresponding to weak isospin and weak hypercharge

(the coupling constants e2 and e1 ) have been absorbed into the respective gauge fields.

• The RH electron is a weak isospin singlet, it does not couple to Wµ , so its covariant derivative
is

DµeR = [∂µ − i(−2Yµ)] eR. (444)

• For the LH quarks qαa α = 1, 2, 3 , is a color index while a = 1, 2 label the two weak isospin
projections (qα1 = uαL, qα2 = dαL ). If Aµβα are the gluon fields, then

Dµqαa = ∂µqαa − i
[
Wµ

b
aδ
β
α +

1

3
Yµδ

β
αδ

b
a + Aµ

β
α

]
qβb (445)

• The RH up and down quarks do not couple to Wµ since they are weak isospin singlets. Thus

DµuαR = ∂µuαR − i
[

4

3
Yµδ

β
α + Aµ

β
α

]
uβR and DµdαR = ∂µdαR − i

[
−2

3
Yµδ

β
α + Aµ

β
α

]
dβR.

(446)

• The RH neutrinos transform trivially under the whole SM gauge group. So they do not couple
to any gauge fields DµνeR = ∂µνeR . They do not interact with any other particles and have not
been detected.

12.3 Fermion masses from Yukawa couplings sans mixing of generations

• Quarks and leptons are spin-half Dirac fermions in the standard model. Mass terms for Dirac
spinors take the form −mψ̄ψ = −mψ̄RψL −mψ̄LψR . Such mass terms for quarks and leptons
are not gauge-invariant since the LH components transform as weak isospin doublets while the
RH components are weak isospin singlets. Moreover, such a mass term is also not invariant
under U(1)Y since the LH and RH fermions do not have the same weak hypercharges Y . (Note
that hypercharge of ēR is 2 while that of eL is −1 . To be U(1) invariant, the sum of the
hypercharges of the fields in a product should be zero.

On the other hand, Yukawa coupling of a Dirac spinor to a scalar field can lead to a mass
term for the Dirac spinor if the scalar has a non-zero vev. To get a gauge invariant mass term
this way, we exploit the fact that both the scalar field and the LH fermions are doublets under
weak isospin. There are two distinct and interesting ways in which we may introduce gauge
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invariant Yukawa couplings. They are based on the observation that both the ‘dot’ and ‘cross’
products of a pair of SU(2) doublets are invariant under SU(2). Suppose

φ =

(
φ1

φ2

)
and l =

(
l1
l2

)
=

(
νe
e

)
L

or
(
u
d

)
L

(447)

are the Higgs scalar and the LH lepton (or quark) SU(2)W doublets. Then the ‘dot product’
φ†l is obviously SU(2) invariant. Similarly, the ‘cross’ product

φ× l = εabφalb = φ1l2 − φ2l1 = φt (iσ2) l (448)

is also invariant under φ→ gφ, l → gl . This is familiar to us as the spin singlet combination of
two spin halves. But we may show it explicitly by using the general parametrization of an SU(2)

matrix g =

(
z w
−w∗ z∗

)
where z and w are complex numbers with det g = |z|2 + |w|2 = 1 .

Then an SU(2) transformation takes the Higgs doublet to

φ1 → zφ1 + wφ2 and φ2 → −w∗φ1 + z∗φ2 (449)

and similarly for the quark/lepton doublet l . It follows that the cross product

φ1l2 − φ2l1 → (zφ1 + wφ2)(−w∗l1 + z∗l2)− (−w∗φ1 + z∗φ2)(zl1 + wl2)
= (|z|2 + |w|2)(φ1l2 − φ2l1) = det g(φ1l2 − φ2l1) = (φ1l2 − φ2l1). (450)

is SU(2) invariant.

• The ‘cross-product’ type of Yukawa coupling generates masses for the up-type quarks q =(
u
d

)
L

.

guū
α
Rφ

t(iσ2)

(
uα
dα

)
L

+ h.c. = guū
α
Rεabφaqb + h.c. (451)

As discussed, this is invariant under weak isospin gauge transformations. To be invariant under
U(1)Y we need to ensures that the weak hypercharges of ūR(Y = −4/3), φ and qL(Y = 1/3)
add up to zero. This requirement fixes the hypercharge of the scalar field to be 1 as mentioned

earlier. Choosing ‘unitary’ gauge where φ =

(
0

v + h

)
we see that the up quark mass is guv :

guū
α
R

(
0 v + h

)( 0 1
−1 0

)(
uα
dα

)
+ h.c. = −guvūαRuLα − guhūαRuL + h.c. (452)

The cross-product type of Yukawa coupling can also generate masses for the charged leptons
(see below). The second term describes the trilinear vertex at which up quarks and up anti-
quarks couple to the Higgs. Both the up quark mass and its Yukawa coupling to the Higgs
are proportional to gu . So a heavier Dirac fermion couples more strongly to the Higgs, as
we noticed in the Abelian Higgs model. This is like more massive bodies feeling a stronger
gravitational force. In particular, the top quark has the strongest coupling to the Higgs among
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all the quarks and leptons and provides a possible way of producing and studying the Higgs
particle.

• Note: the Yukawa coupling gu is a priori a complex number. However, it can be taken to be
a non-negative real number (quark mass divided by Higgs vev) since its phase can be absorbed
into a redefinition of the quark fields. More on this in the next section.

• The above ‘cross-product’ Yukawa couplings cannot lead to masses for down-type quarks (or
neutrinos). The down quark gets its mass gdv using the ‘other’ gauge-invariant ‘dot-product’
Yukawa coupling to the Higgs. In the same gauge,

−gdd̄αRφ†
(
uα
dα

)
L

+h.c. = −gdd̄αR
(
0 v + h

)(uα
dα

)
L

+h.c. = −gdd̄αR(v+h)dαL+h.c. (453)

• In the SM, the electron and other charged leptons (though not the neutrinos) receive their
masses through the Yukawa coupling to the scalar doublet. To write down the Yukawa couplings

and identify the masses (using the same gauge as above), it is convenient to define l =

(
e+

νe+

)
R

to be the RH (positron, anti-neutrino) weak isospin doublet (with Y = 1) rather than the LH
neutrino, electron doublet (with Y = −1). If ge is the electron (and positron) Yukawa coupling
constant, then

geēL(φ× lR) + h.c. = geēLφ
t(iσ2)

(
e
νe

)
R

+ h.c. = geēLεabφalb + h.c. (454)

For the reasons given above, this is invariant under weak isospin gauge transformations. Check
that it is also invariant under weak hypercharge if we assign Yφ = 1 , which is consistent
with what we found above. To find the resulting electron (and positron) mass (which is gauge

invariant), we work in the gauge in which φ =

(
0

v + h

)
, where v is the vev of the scalar and

h the Higgs scalar. Then the Yukawa coupling term is

geēL
(
0 v + h

)( 0 1
−1 0

)(
e
νe

)
R

+ h.c. = −gevēLeR − geēLheR + h.c. (455)

The electron mass is then me = gev . The second term describes the trilinear vertex at which
electrons and positrons couple to the Higgs.

• The cross-product Yukawa couplings can be used to obtain neutrino masses, though it leaves
unexplained why neutrinos are so much lighter than the other charged leptons. For that matter,
we do not know why the top quark is so much heavier than the up quark either!

12.4 Quark mixing: CKM matrix

• The above Yukawa coupling of quarks and leptons to the scalar doublet can give masses to
fermions in each generation. Let us focus on the quarks (same reasoning applies to leptons and
can lead to masses for charged leptons and neutrinos). Generations are weak eigenstates, quarks
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that couple in a specific way to weak gauge bosons (e.g. the LH ones from each generation form
a weak isospin doublet). So we might imagine obtaining masses for each of the two quarks in
each generation. However, it is found that the weak eigenstates of quarks do not have definite
masses. Mass eigenstates are those that propagate a definite ways while the weak eigenstates
are those that interact with weak gauge bosons in definite ways, the two do not coincide. To
accommodate this, we notice that each generation of quarks transforms in the same way under
U(1)Y . So without losing gauge invariance, we can have a Yukawa coupling between a RH up-
quark, Higgs doublet and a LH (c, s) doublet just as we can have a Yukawa coupling between
a RH u-quark, Higgs doublet and a LH (u,d) doublet, generations can mix. So there aren’t just
6 Yukawa couplings but a 3 × 3 complex matrix g of Yukawa couplings for up-type quarks
and another 3 × 3 complex matrix g̃ for the down-type quarks. Let us use i = 1, 2, 3 to label
generations and suppress color indices, then the Yukawa couplings are

LYuk = −g̃ji d̄iRφ†
(
uj
dj

)
L

+ gji ū
i
Rφ

t(iσ2)

(
uj
dj

)
L

+ h.c. (456)

A general complex matrix g cannot be diagonalized by a similarity transformation. But it can
be diagonalized by two different unitary transformations, one acting on the right and one on
the left! To see this, note that by polar decomposition, any complex matrix can be written as
g = PΘ where P is a positive matrix (hermitian with non-negative eigenvalues) and Θ is a
unitary matrix. Moreover, suppose U is a unitary matrix that diagonalizes P , U †PU = D .
Now if we let V = Θ†U we find that U †gV = D . The entries of the diagonal matrix D are
called the singular values of g , they are non-negative real numbers, the positive square-roots of
the positive matrix gg† (g†g and gg† have the same eigenvalues).

• So let us suppose we have unitary matrices AL, AR and ÃL, ÃR that diagonalize g and g̃
respectively. The singular values of g are the masses of the up-type quarks in units of the Higgs
vev v while the singular values of g̃ are the masses of the down-type quarks in units of v :

g =
1

v
ARMA†L and g̃ =

1

v
ÃRM̃Ã†L or A†RgAL =

M

v
and Ã†Rg̃ÃL =

M̃

v
. (457)

Here M = diag(mu,mc,mt) and M̃ = diag(md,ms,mb) are the diagonal 3 × 3 matrices of
u-type quark masses and d-type quark masses.

• In the ‘unitary’ gauge φ = (0, v + h) , the Yukawa Lagrangian, omitting interactions with h
becomes

LYuk = −v
(
ū c̄ t̄

)
R
g

uc
t


L

− v
(
d̄ s̄ b̄

)
R
g̃

ds
b


L

+ h.c. + interactions. (458)

• Now we define linear combinations of the weak eigenstates so as to diagonalize g and g̃ . Letuc
t


L

= AL

uc
t

′
L

,

uc
t


R

= AR

uc
t

′
R

,

ds
b


L

= ÃL

ds
b

′
L

,

ds
b


R

= ÃR

ds
b

′
R

.

(459)
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In terms of these new ‘primed’ quark fields the Yukawa Lagrangian simplifies. Below we use u
and d as short-hand notation for the three up-type and three down-type quarks:

LYuk = −vū′RA
†
RgALu

′
L − vd̄′RÃ

†
Rg̃ÃLd

′
L + h.c. + interactions

= −ū′RMu′L − d̄′RM̃d′L − ū′LMu′R − d̄′LM̃d′R + interactions. (460)

We see that the Yukawa couplings have lead to Dirac masses for the six quarks. The primed
quark fields have definite masses are are called the mass eigenstates. They are linear combina-
tions of the un-primed weak eigenstates.

• These mass terms only involve the 6 quark masses, which are the singular values of the com-
plex Yukawa coupling matrices g and g̃ . Do the remaining parameters in g, g̃ (or equivalently
the parameters in the unitary matrices AL, AR, ÃL, ÃR ) play any role? The passage to mass
eigenstates for quark fields affects the interaction terms between quarks and gauge fields. We
may write the EM, neutral weak and charged weak interactions in terms of mass eigenstates. It
turns out that the EM and neutral weak interactions are unaffected (check in the same way as we
do below for the charge changing weak interactions below). Something interesting happens in
the charge-changing weak interactions, a combination of the AL , ÃL matrices show up there.

• Recall that the charge weak interactions only affect the left handed quark and lepton doublets.
Focusing on quarks, consider the LH doublets qLiαa where i = 1, 2, 3 label 3 generations,
a = 1, 2 label a basis in the fundamental rep of weak isospin and α = 1, 2, 3 label a basis in
the fundamental representation of color. The covariant derivative is

DµqLiαa = ∂µqLiαa − i
[
Gµ

β
αδ

b
a +Wµ

b
aδ
β
α +

2

3
Yµ

]
qLiβb. (461)

The Dirac Lagrangian is then
LD = q̄iαaL iγµDµqLiαa (462)

Let us focus on the change changing weak interactions that involve W±
µ (we suppress color

indices below)

Lcc =
1

2
q̄iLγ

µ

(
0 W−

W+ 0

)
qLi =

1

2

(
ū c̄ t̄

)
L
γµW−µ

ds
b


L

+ h.c.

=
1

2

(
ū c̄ t̄

)′
L
A†Lγ

µW−µ ÃL

ds
b

′
L

+ h.c. =
1

2

(
ū c̄ t̄

)′
L
γµW−µ C

ds
b

′
L

+ h.c.(463)

Here we defined the 3 × 3 unitary CKM matrix C = A†LÃL . In general, the same unitary
matrices do not diagonalize both g and g̃ . C measures the difference. If AL = ÃL , then there
is no mixing. We see that the charged current weak interactions can convert an up quark mass
eigenstate into a linear combination of mass eigenstates of the down type quarks accompanied
by the emission of a W+ . While cc weak interactions operate within generations of weak
or flavor eigenstates, they do not operate within families of mass eigenstates. The Yukawa
couplings enter the Lagrangian only through the quark masses and CKM matrix elements.
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• The CKM matrix introduces several parameters into the standard model beyond the quark
masses, let us count them. Suppose there are Ng generations. Being a unitary Ng × Ng ma-
trix, C depends on N2

g parameters. However, there is an equivalence relation among CKM
matrices, two distinct unitary matrices AL, ÃL may correspond to the same Yukawa couplings.
Indeed, AL and AR are not unique. Multiplying AL and AR by a diagonal unitary matrix
diag(eiθ1 , · · · , eiθNg ) on the right does not affect g . Similarly, multiplying ÃL and ÃR by a
diagonal unitary matrix diag(eiθ̃1 , · · · , eiθ̃Ng ) on the right does not affect g̃ . So the CKM ma-
trix Cij = (A†LÃL)ij is physically equivalent to Cije

i(θ̃j−θi) . However, a constant addition to
both the θ ’s and θ̃ ’s does not affect C . We can use these phases to eliminate 2Ng − 1 pa-
rameters from the N2

g parameters that C can depend on. Thus, the CKM matrix depends on
N2
g − 2Ng + 1 = (Ng − 1)2 free parameters. For two generations there is one one such param-

eter, which is the Cabibbo mixing angle and was introduced to incorporate the possibility that
both the strange and down quark mass eigenstates could decay to an up quark mass eigenstate.

• For Ng = 3 , there are 4 parameters in the CKM matrix. Three of these can be regarded as
generalized Cabibbo mixing angles as they are present in a 3×3 (real) orthogonal matrix, which
depends on 1

2
3(3− 1) = 3 parameters. The fourth parameter is a (complex) phase. A complex

phase in the CKM matrix makes the weak interaction Lagrangian not invariant under time-
reversal (which involves complex conjugation). By the CPT invariance of the same Lagrangian
this implies CP violation in the weak interactions. Indeed, Kobayashi and Maskawa in 1973
predicted a third generation of quarks in order to make it possible to incorporate CP violation
in the weak interactions, which had been unexpectedly experimentally discovered in 1964 by
Cronin and Fitch.

13 Summary of the Standard Model

• The standard model of particle physics (aside from the inclusion of the third generation of
quark and leptons) reached its current form around 1973-1974 when it became generally ac-
cepted that QCD was the best candidate for a theory of the strong interactions, displaying the
crucial property of asymptotic freedom (Gross, Wilczeck and Politzer, based on the work of ’t
Hooft and Veltman on quantization of non-abelian gauge theories). The need for asymptotic
freedom arose as a consequence of the results of the deep inelastic scattering experiments of the
late 1960s which showed that the structure functions of the proton were scale invariant, at suffi-
ciently small scales. This was explained by Bjorken and Feynman in terms of the parton model,
the constituents of the proton had to be point-like nearly free particles. So the force that bound
these partons had to be weak at short distances (asymptotically free) but strong at long distances
(infrared slavery). QCD had this remarkable property. The discovery (Ting and Richter) of the
J/ψ meson containing a charm quark convinced most that quarks were real. Partons were iden-
tified as quarks and gluons. The charm quark had been predicted by Glashow Iliopolous and
Maiani (GIM mechanism which involves mixing among quarks of two generations).

• Following the discovery of parity violation in 1956 and the development of the V-A theory of
weak interactions, Glashow proposed an SU(2) × U(1) gauge theory of massive weak gauge
bosons in 1961, but it was not renormalizable and the mass terms for the gauge fields broke
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the local gauge symmetry. The Higgs mechanism for a gauge invariant way to generate vector
boson masses was proposed in 1964 and by 1967-68 Weinberg and Salam combined the Higgs
mechanism with Glashow’s model to arrive at the Lagrangian of the electroweak part of the SM
(for two families of leptons). However, this model had to wait for the work of ’t Hooft and
Veltman (1972) to be shown to be a viable quantum theory in a perturbation approximation.
Kobayashi and Maskawa introduced three generations of quarks with mixing among them in
1973 to incorporate CP violation. While the Lagrangian of QCD is relatively simple since it
is not a chiral gauge theory, the Lagrangian of the electro-weak theory is more intricate due to
parity violation, Yukawa coupling to scalars and mixing among quark and lepton families. Mix-
ing among two lepton families was introduced by Maki, Nakagawa and Sakata in 1962 based
on Pontecorvo’s 1957 prediction of neutrino oscillations. However, this was generally accepted
and extended to three lepton families only in the late 1990s with experimental confirmation of
neutrino oscillations coming in 2001.

• The standard model is a non-abelian Yang-Mills gauge theory with gauge Lie algebra su(3)×
su(2) × u(1) , corresponding to color, weak isospin and weak-hypercharge symmetries. In
addition to the 8 gluons and 4 electroweak gauge bosons, it also has a complex doublet of scalar
fields and a set of fermion fields for the quarks and leptons. The gauge fields corresponding to
color, weak isospin and weak hypercharge are Gµ , Wµ and Yµ . For each µ = 0, 1, 2, 3 and
location x they are traceless hermitian 3× 3 matrices, traceless hermitian 2× 2 matrices and a
real number respectively, each transforming in the adjoint representation of the respective gauge
group while being a singlet under the other gauge groups. We will use α = 1, 2, 3 to denote
color indices, i.e. to enumerate a basis for the fundamental (triplet) representation of color
SU(3). a = 1, 2 label a basis for the fundamental (doublet) representation of weak isospin.

• The kinetic terms and self-interactions of the gauge fields are simply described by the squares
of the corresponding field strengths (Y µν = ∂µY ν − ∂νY µ and W µν = ∂µW ν − ∂νW µ −
i[W µ,W ν ] and Gµν = ∂µGν − ∂νGµ − i[Gµ, Gν ])

Lgauge = − 1

2(e2
1/4)

Y µνYµν −
1

2e2
2

tr W µνWµν −
1

2e2
3

tr GµνGµν (464)

Here e1,2,3 are the coupling constants of u(1)Y , su(2)W and su(3)C . We absorb the coupling
constants into the corresponding gauge fields, so they appear as pre-factors in the Yang-Mills
Lagrangian.

• The scalar and fermion fields are introduced by specifying the representation of the SM gauge
group G according to which they transform. This allows us to write covariant derivatives for
each of the spin zero and half matter fields, from which their coupling to gauge fields follows by
the Lorentz minimal coupling prescription. The scalar fields are color singlets, transform as a
doublet under weak isospin and have Y = 1 (in order that the Yukawa couplings to quarks and
leptons be gauge invariant). So they belong to the (1, 2, 1) representation of G . The covariant
derivative of φ is

(Dµφ)a = ∂µφ− i[Wµ
b
a + Yµδ

b
a]φa. (465)

If we had not absorbed the couplings into the gauge fields, then they would appear here as
(e1/2)Yµδ

b
a and (e2/2)WA

µ (σA)ab .
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• The propagation, self-interactions and interactions of scalars with electroweak gauge fields is
governed by the Lagrangian density

Lscalar = (Dµφ)†(Dµφ)− λ

4

(
φ†φ− v2

)2
. (466)

Under a gauge transformation g ∈ U(2) , φ → gφ and it is clear that the scalar potential is
invariant.

• Now we come to the quarks and leptons, which are Dirac spinor fields whose LH and RH
components are in different representations of G and consequently have different covariant
derivatives and couplings to the gauge and Higgs fields. We will use the Greek letters α, β =
1, 2, . . . , Nc for color indices (Nc = 3). Latin letters from the beginning of the alphabet a, b =
1, 2 label a basis for the fundamental representation of weak isospin SU(2)W . Latin indices
from the middle of the alphabet i, j = 1, 2, . . . , Ng label the Ng = 3 generations of quarks and
leptons, i.e., the weak eigenstates (rather than the mass eigenstates). The number of quark and
lepton generations are the same: this is needed for the cancelation of anomalies in the quantum
theory, it is also an experimental fact. The covariant derivatives do not mix generations, the
Yukawa couplings mix generations. Let us recall the covariant derivatives.

• We denote the LH quarks by qαai , γ5q = −q . they transform in (3,2, 1
3
) , i.e., in the fun-

damental representations of color SU(3) and weak isospin and have hyper charge Y = 1/3 . It
follows that the covariant derivatives of the LH quarks are

Dµqαai = ∂µqαai − i
[
W b
µaδ

β
α +

1

3
Yµδ

b
aδ
β
α +Gβ

µα

]
qβbi (467)

• The RH up type quarks uαi transform in (3, 1, 4
3
) and the RH down type quarks dαi belong

to (3, 1,−2
3
) . So

Dµuαi = ∂µuαi − i
(
Gβ
µα +

4

3
Yµδ

β
α

)
uβi, and Dµdαi = ∂µdαi − i

(
Gβ
µα −

2

3
Yµδ

β
α

)
dβi

(468)

• The LH leptons lai (γ5l = −l ) belong to (1,2,−1) , i.e., are color singlets, fundamental
under weak isospin and have weak hyper-charge −1 . Their covariant derivatives are

Dµlai = ∂µlai − i
[
W b
µa − Yµδba

]
lbi (469)

• The RH charged leptons γ5ei = ei are singlets under both color and weak isospin and have
weak hypercharge Y = −2 . They belong to (1,1,−2) , so

Dµei = ∂µei − i(−2Yµ)ei. (470)

• The RH neutrinos γ5νi = νi belong to (1,1, 0) , i.e., they transform trivially under the full
SM gauge group. So they do not interact with any of the SM gauge fields: Dµνi = ∂µνi .
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• Using these covariant derivatives, we can write down the Dirac Lagrangian for the massless
quarks and leptons

LDirac = q̄αai(iγ·D)qαai+ū
αi(iγ·D)uαi+d̄

αi(iγ·D)dαi+l̄
ai(iγ·D)lai+ē

i(iγ·D)ei+ν̄
i(iγ·D)νi.

(471)

• The Yang-Mills, Higgs and Dirac Lagrangians treat each generation of massless quarks and
leptons separately. The Yukawa couplings of fermions give them masses and can mix genera-
tions. Recall that the up type quarks and charged leptons have cross-product-type of Yukawa
couplings (ūφ× q ) while the down type quarks (and possibly the neutrinos) have dot-product-
type of Yukawa couplings ( d̄φ†q ). The Yukawa coupling terms are

LYukawa = gji ū
αiφaε

abqαbj + f ji ē
iφaε

ablbj + g̃ji d̄
αiφ†

a
qαaj + f̃ ji ν̄

iφ†
a
laj. (472)

Here g and g̃ are the up-type and down-type complex Yukawa coupling matrices while f, f̃ are
the charged lepton and neutrino Yukawa coupling matrices. Let M and m be the diagonal mass
matrices of up-type-quarks and charged leptons (masses Mi and mi are the singular values of
g, f in units of the Higgs vev v ), and similarly M̃i and m̃i are masses of the down-type quarks
and neutrinos respectively. Then

g =
1

v
ARMA†L and g̃ =

1

v
ÃRM̃Ã†L and f =

1

v
BRmB

†
L and f̃ =

1

v
B̃RM̃B̃†L.

(473)
Here the A’s and B ’s are unitary matrices relating the mass eigenstates to the weak eigenstates
as explained in the last section. The 3 × 3 unitary CKM and PMNS matrices C = A†LAL and
P = B†LBL encode mixing among mass eigenstates of down-type quarks and neutrinos when
they participate in charge changing weak interactions (the CKM matrix is usually denoted V ).

• Here M,m, M̃, m̃ are diagonal matrices with entries Mi , mi , M̃i , m̃i respectively. In the
original SM, the last term was absent as neutrinos were taken to be massless m̃ ≡ 0 .

• Let us count the number of free input parameters in the SM that are to be determined from
experiment. In the gauge sector, there are three dimensionless gauge couplings e1, e2, e3 (e3 is
determined in terms of ΛQCD ). In the scalar sector we have the dimensionless scalar (Higgs)
self-coupling λ and the scalar vev

√
2v ≈ 246 GeV. All of these have been measured. The

rest of the parameters are the Yukawa couplings, or equivalently, the masses of the quarks and
leptons and the dimensionless mixing angles in the unitary CKM and PMNS matrices C and
P . Suppose there are Ng generations of quarks and leptons. Then there are 4Ng quark and
lepton masses and (Ng − 1)2 mixing angles and phases each in C and P , after accounting
for the freedom to redefine phases of fermion fields. Thus the SM with three generations has
5+4Ng+2(Ng−1)2 = 25 free parameters. The masses of the charged leptons and heavy quarks
are known reasonably accurately while the light quark masses mu,d,s are somewhat imprecisely
known. The CKM matrix elements have all been measured, three angles (beginning with the
Cabibbo angle from weak decays of charged Kaons followed by two more mixing angles from
weak decays of heavy mesons containing c and b quarks) and a CP violating phase. The three
neutrino mixing angles have also been measured from neutrino oscillations (the atmospheric,
solar and reactor angles). The neutrino masses and CP violating phase in the PMNS matrix
remain to be measured.
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• The vacuum expectation value of the scalar field v is the only dimensional parameter in
the electroweak part of the standard model: quark and lepton masses are multiples of v as
determined by the dimensionless Yukawa couplings. It is a mystery why some of the Yukawa
couplings are so small.

• The number of colors Nc is an integer and experiments favor Nc = 3 , we did not include it
with the continuous free parameters above. Measurements of the Z0 decay width favor Ng = 3
generations.

• Note that we do not count the speed of light or Planck’s constant among the parameters of the
SM. ~ and c may be regarded as parameters of the frameworks of quantum theory and relativity
and do not pertain to the specific dynamical model of forces specified by the SM. We may work
in units where they are equal to one. ~ and c are used to set the scale for two out of the three
dimensions of mass, length and time.

• In addition to the 25 continuous free parameters of the SM needed to explain strong, weak
and electromagnetic phenomena, we need two more parameters to use general relativity to pre-
dict classical gravitational phenomena: Newton’s gravitational constant and the cosmological
constant.

• Though most of the Lagrangian of the SM is now confirmed, we are still quite far from under-
standing its consequences, especially in the low-energy behavior of the strong interactions and
the high-energy behavior of electroweak interactions. Much progress has been made, primarily
in weak coupling perturbation theory but many things (like the masses and structure of hadrons)
remain beyond the reach of perturbation theory. It is a little bit like being able to integrate New-
ton’s equations for the motion of planets for short times, but not knowing the medium and long
term behavior (shapes of orbits and their stability).
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