Nonlinear Dynamics, Spring 2020 CMI

Problem set 9 Due by 12 noon on Tuesday Mar 31, 2020 Hamiltonian systems and recurrence

- 1. $\langle \mathbf{13} \rangle$ Consider a Hamiltonian system with planar $x \cdot p$ phase space and real Hamiltonian H(x, p). Suppose (x_*, p_*) is a fixed point of the Hamiltonian vector field.
 - (a) $\langle 2 \rangle$ Find the Jacobian matrix J of the linearization of the Hamiltonian vector field around the fixed point.
 - (b) $\langle \mathbf{3} \rangle$ What is the trace of J? What are the possible forms of the eigenvalues of J?
 - (c) $\langle 3 \rangle$ Assuming the eigenvalues are not both zero, what sort of (linear) fixed points do the above possibilities correspond to?
 - (d) $\langle \mathbf{5} \rangle$ For the free particle $(H = p^2/2m)$, what are the fixed points of the Hamiltonian vector field? What is J at these fixed points and how many linearly independent eigenvectors does it have? Draw the phase portrait showing at least three qualitatively different trajectories.
- 2. $\langle 5 \rangle$ Does the motion of a free particle on a line display Poincaré recurrence? What about the dynamics of the Kepler problem? Why or why not? Hint: Think about the various types of motion that these systems display.