Nonlinear Dynamics, Spring 2020 CMI

Problem set 5 Due at the beginning of lecture on Monday Feb 17, 2020 Linear vector fields on the plane

- 1. $\langle \mathbf{5} \rangle$ Suppose \mathbf{w}_{\pm} are eigenvectors corresponding to the eigenvalues λ_{\pm} of a real 2 × 2 matrix A. Assuming the eigenvalues are distinct, argue that the eigenvectors can be taken either both having real components or to be complex conjugates of eachother: $\mathbf{w}_{-} = \mathbf{w}_{+}^{*}$.
- 2. $\langle \mathbf{15} \rangle$ Consider the harmonic oscillator $\dot{x} = p/m$ and $\dot{p} = -kx$ with $\omega = \sqrt{k/m}$. Take $\mathbf{r} = (x, p)$ so that $\dot{\mathbf{r}} = A\mathbf{r}$.
 - (a) (5) Find the coefficient matrix A and its eigenvalues λ_±. Comment on the implications of the eigenvalues of A for the nature of the fixed point (and its stability) at (x_{*} = 0, p_{*} = 0).
 - (b) $\langle \mathbf{5} \rangle$ Find the eigenvectors \mathbf{w}_{\pm} of A corresponding to the eigenvalues λ_{\pm} and show that they can be taken to be complex conjugates. For definiteness, try to ensure that the first component of both eigenvectors is 1 (choice of normalization).
 - (c) $\langle \mathbf{5} \rangle$ Use these eigenvalues and eigenvectors to write the general solution of the equations for a harmonic oscillator in the form (for some complex number r_+)

 $x(t) = 2(\Re r_+) \cos \omega t - 2(\Im r_+) \sin \omega t \quad \text{and} \quad p(t) = 2m\omega \left[-\Re r_+ \sin \omega t - \Im r_+ \cos \omega t\right].$ (1)

3. $\langle 5 \rangle$ Give an example of a 2×2 real matrix with only one linearly independent eigenvector. Find its eigenvalues and the lone independent eigenvector.