Nonlinear Dynamics, Spring 2020 CMI

Problem set 4
Due at the beginning of lecture on Wed Feb 12, 2020
Vector field on S^{1}, Bottlenecks, Inhomogeneous linear ODE

1. $\langle\mathbf{1 4}\rangle$ Consider the vector field on a circle $v(\theta)=\omega-a \sin \theta$ for $\omega, a \geq 0$ describing an overdamped pendulum subject to a constant torque.
(a) $\langle 8\rangle$ Calculate the time period $T(a ; \omega)$ for oscillatory motion (when $a<\omega$) by evaluating the appropriate integral in closed form and comment on its behavior as $a \rightarrow \omega^{-}$, where a bottle-neck forms near $\theta=\pi / 2$ in the vicinity of the saddle-node bifurcation.
(b) $\langle\mathbf{6}\rangle$ Estimate the time $T_{\text {bottleneck }}(r)$ spent near the bottleneck around $x=0$ for trajectories of the canonical vector field displaying a saddle-node bifurcation $v(x)=$ $r+x^{2}$ as $r \rightarrow 0^{+}$. Give reasons for any approximation made. Compare the behavior of $T_{\text {bottleneck }}(r)$ with the above time period $T(a ; \omega)$ in the appropriate limits.
2. $\langle\mathbf{6}\rangle$ Solve the following inhomogeneous linear ODE for $x(t)$:

$$
\begin{equation*}
\dot{x}=\lambda x+y_{0} e^{\lambda t} \quad \text { with } \quad x(0)=x_{0} . \tag{1}
\end{equation*}
$$

Here y_{0} is a constant and $\lambda \neq 0$ is a real constant. Give the intermediate steps in obtaining your solution. Check that it satisfies the initial value problem.

