Nonlinear Dynamics, Spring 2020 CMI

Problem set 14
Due by noon on Wednesday April 22, 2020
Bifurcations in 2d

1. $\langle\mathbf{8}\rangle$ Consider the planar vector field

$$
\begin{equation*}
\dot{x}=x\left(a-x^{2}\right), \quad \text { and } \quad \dot{y}=-y . \tag{1}
\end{equation*}
$$

Draw the phase portraits for two typical values of $a(a<0$ and $a>0)$, indicating the qualitatively different trajectories and stable/unstable fixed points. What kind of bifurcation does it display at $a=0$ (suggest a suitable name)?
2. $\langle\mathbf{1 5}\rangle$ Consider the vector field in plane polar coordinates

$$
\begin{equation*}
\dot{r}=a r+r^{3}-r^{5} \quad \text { and } \quad \dot{\theta}=\omega+b r^{2} . \tag{2}
\end{equation*}
$$

We will suppose that b and ω are fixed (and say positive for simplicity) and that a is varied. (i) $\langle\mathbf{3}\rangle$ Find the nature of the fixed point at the origin as a function of a mainly by analysing the radial equation. (ii) $\langle\mathbf{4}\rangle$ Working in cartesian coordinates, find the Jacobian at the origin and its eigenvalues and describe their behavior as a crosses zero. (iii) $\langle\mathbf{4}\rangle$ Find the limit cycles for $-1 / 4<a<0$ and $a>0$. (iv) $\langle\mathbf{4}\rangle$ Sketch a phase portrait for two values of $a(-1 / 4<a<0$ and $a>0)$.

