# Nonlinear Dynamics, Spring 2020 CMI 

Problem set 13
Due by noon on Tuesday April 14, 2020
Periodic trajectories, Poincaré recurrence

1. $\langle\mathbf{7}\rangle$ Consider the system on the $x-y$ plane:

$$
\begin{equation*}
\dot{x}=x-x\left(x^{2}+y^{2}\right) \quad \text { and } \quad \dot{y}=y-y\left(x^{2}+y^{2}\right) . \tag{1}
\end{equation*}
$$

Show that it has no periodic trajectories by expressing it as a gradient flow for a suitable potential function $W(x, y)$. Plot a graph of $W$ and describe its shape. What is the circle $x^{2}+y^{2}=1$ in this system?
2. $\langle\mathbf{6}\rangle$ Poincaré recurrence: Let $N_{0}$ be a connected, simply connected open set in the phase space of a Hamiltonian dynamical system. There can be initial conditions lying in $N_{0}$ for which a trajectory that begins there returns to $N_{0}$ a finite number of times, and then stops doing so. Give an example where a trajectory intersects $N_{0}$ two times and never comes back after exiting for the second time. Hint: Try out the Hamiltonian systems we have studied. Use the freedom to pick $N_{0}$ as you wish.

