Nonlinear Dynamics, Spring 2020 CMI

Problem set 13 Due by noon on Tuesday April 14, 2020 Periodic trajectories, Poincaré recurrence

1. $\langle 7 \rangle$ Consider the system on the x-y plane:

$$\dot{x} = x - x(x^2 + y^2)$$
 and $\dot{y} = y - y(x^2 + y^2).$ (1)

Show that it has no periodic trajectories by expressing it as a gradient flow for a suitable potential function W(x, y). Plot a graph of W and describe its shape. What is the circle $x^2 + y^2 = 1$ in this system?

2. $\langle 6 \rangle$ Poincaré recurrence: Let N_0 be a connected, simply connected open set in the phase space of a Hamiltonian dynamical system. There can be initial conditions lying in N_0 for which a trajectory that begins there returns to N_0 a finite number of times, and then stops doing so. Give an example where a trajectory intersects N_0 two times and never comes back after exiting for the second time. Hint: Try out the Hamiltonian systems we have studied. Use the freedom to pick N_0 as you wish.